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Abstract: 
 
Background: Clonal hematopoiesis of indeterminate potential (CHIP) occurs when 
hematopoietic stem cells acquire mutations that confer a proliferative advantage. CHIP is 
associated with increased risk of multiple vascular diseases. Mouse models have identified 
CHIP monocytes as highly proinflammatory. Here we seek to build on these earlier studies by 
characterizing adipose tissue macrophages and vascular cells in patients with CHIP. 
 
Methods: We performed single-cell RNA sequencing on paired peripheral blood mononuclear 
cells and subcutaneous adipose tissue from 6 CHIP patients and 6 matched controls. We 
analyzed cell type specific gene expression profiles and intercellular interactions. 
 
Results: We found that macrophages had an exaggerated proinflammatory profile compared to 
circulating monocytes. We also found increased interaction between circulating CD14+ 
monocytes and endothelial cells. Specifically, cells from patients with CHIP showed enhanced 
signaling related to leukocyte transendothelial migration. These differences were tissue specific. 
We recapitulated monocyte-endothelial cell interactions in single cell RNA sequencing data from 
a mouse model of CHIP. 
 
Conclusions: Monocytes from patients with CHIP have increased endothelial interaction 
compared to controls and macrophages from patients with CHIP are highly proinflammatory. 
Alterations in the monocyte-endothelial interaction in CHIP likely contribute to cardiovascular 
disease risk. 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.20.24303046doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:celestine.wanjalla@vumc.org
mailto:alexander.bick@vumc.org
https://doi.org/10.1101/2024.02.20.24303046


Introduction: 
 
Clonal hematopoiesis of indeterminate potential (CHIP) occurs when hematopoietic stems cells 
acquire mutations in leukemia-associated genes conferring a proliferative advantage to those 
stem cells. Mutant hematopoietic stem cells give rise to mutated blood cell populations. CHIP 
can be initiated by mutations in more than 50 genes, but approximately two-thirds of all CHIP 
cases are driven by mutations in just two genes: DNA Methyltransferase 3A (DNMT3A) and Tet 
Methylcytosine Dioxygenase 2 (TET2).  
 
CHIP has been associated with a diverse set of cardiac and vascular diseases, including 
coronary artery disease, peripheral vascular disease, vascular dementia, and heart failure1–5. 
Hypercholesterolemic mouse models of TET2 and DNMT3A have highlighted the critical role of 
inflammatory pathways in disease pathogenesis4,6,7. Mice that receive bone marrow transplants 
containing Tet2 knockout cells develop significantly larger atherosclerotic lesions than control 
mice4. Additionally, bone marrow-derived macrophages from Tet2 knockout mice have 
significant upregulation of inflammatory cytokines and chemokines, including Cxcl1, Cxcl2, 
Cxcl3, Pf4, Il1b, and Il64,7. Evidence of increased inflammation in these mice is also present in 
spleen, kidney, liver, and lung in the form of xanthomas, foam cell accumulation, and 
inflammatory infiltrates4.  
 
CHIP studies involving multiomic characterization of human subjects to date have principally 
focused on the peripheral blood8–13. Recent single-cell RNA sequencing (scRNAseq) studies of 
human CHIP samples have established that CHIP affects the inflammatory state of blood cells, 
most significantly CD14+ monocytes8,9,11,12. Lineage tracing has allowed comparison of mutant 
and wildtype cells, demonstrating both cell-intrinsic and cell-extrinsic effects of CHIP mutations 
in monocytes and T cells. These studies have highlighted significant upregulation of key 
cytokines and inflammasome components in monocytes from patients with CHIP and more 
specifically in monocytes that carry CHIP mutations. 
 
Although blood is a highly convenient tissue, it does not capture critical aspects of CHIP 
vascular pathology, such as macrophages or the vasculature itself. Peripheral adipose tissue, a 
highly vascularized tissue, offers a unique window into the vasculature. Recent work on the 
effect of infectious diseases on metabolism has made use of peripheral adipose tissue to 
evaluate gene expression and cell type proportions14. We hypothesized that adipose tissue 
samples may similarly provide insight into the effects of CHIP on the vasculature. CHIP has 
been associated with adipose-related phenotypes including insulin resistance and increased 
BMI1,15,16, suggesting that vascular related consequences of CHIP may be observable in 
adipose tissue. 
 
In this study, we report for the first time that CHIP alters the interaction of blood immune cells 
with vascular endothelial cells in human patients. We used scRNAseq to characterize the 
molecular landscapes of blood and adipose tissue biopsies taken from CHIP patients at the 
same clinic visit. We found that CHIP is associated with upregulation of key molecules related to 
leukocyte capture in endothelial cells. We replicated these observations in a mouse model. 
Additionally, within the myeloid lineage, we identified more differentially expressed genes in 
macrophages from adipose tissue than in monocytes from blood. Lastly, our evaluation of 
interactions between endothelial cells from various vascular beds and macrophages from 
patients with CHIP identified significant heterogeneity between vascular beds. Together these 
observations provide a more complete understanding of how CHIP contributes to vascular 
pathology in human patients and highlights potential therapeutic strategies for these patients. 
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Methods: 
 
Samples for this study came from 12 participants from the HIV, Adipose Tissue Immunology, 
and Metabolism study (NCT04451980) 14, including 6 patients with CHIP and 6 controls. All 
individuals provided informed consent and the study was approved by the Vanderbilt University 
Medical Center Institutional Review Board. CHIP status was identified using a previously 
described targeted sequencing assay17. Controls were matched based on age, sex, and 
HIV/diabetic status. 10 of the samples were from HIV-negative participants with diabetes. The 
remaining two samples came from HIV-positive, prediabetic participants. Adipose tissue 
biopsies and blood samples were taken at the same clinic visit. scRNAseq yielded data for 
73,790 cells, averaging 6,149 cells per person. See Supplemental Methods for further details. 
 
Data for the mouse monocyte-endothelial cell signaling prediction experiment was extracted 
from publicly available datasets. Monocyte data was obtained from a published CHIP mouse 
model18. Endothelial cell data was obtained from The Tabula Muris Consortium19 through the 
CZI CELLxGENE database. Data for the human monocyte-endothelial cell signaling prediction 
experiment was extracted from a prior CHIP scRNAseq study8. Endothelial cells were obtained 
from the CZI CELLxGENE database using the census. 
 
Differential expression and pathway analysis was performed using a metacells approach in 
which reads from cells in similar transcriptional states were collapsed into single measurements 
to overcome issues with sparsity and prevent false discovery. Intercellular signaling was 
predicted based on ligand-receptor gene expression levels using CellChat20. Transcription factor 
activity was evaluated using decoupleR, based on the CollecTRI network21. Interactor scoring 
for individual cells was determined based on expression of marker genes. We used the top 10 
markers that defined high and low interacting endothelial tissues and then calculated an 
interaction likelihood score for each cell. 
 
 
Results: 
 
To understand the interactions between peripheral blood containing cells with CHIP mutations 
and vascular tissue, we collected both peripheral blood mononuclear cells (PBMCs) and 
adipose tissue biopsies from 6 patients with CHIP and 6 controls (Fig. 1A, Table 1). scRNAseq 
yielded data for a total of 73,790 cells. We identified distinct populations of immune cells in both 
PBMCs and in adipose tissue (Fig. 1B, Supplemental Fig. 1). To understand how signaling 
between blood cells and vascular tissue changes with CHIP, we predicted intercellular signaling 
using CellChat. Across all cell types, we found that intercellular signaling was most enhanced 
for interactions with endothelial cells, specifically for interactions with adipose tissue CD8+ T 
cells and circulating CD14+ monocytes (Fig. 1C). We also observed that intercellular signaling 
in CHIP was most diminished for interactions with macrophages. 
 
 
CHIP macrophage gene expression reflects transcription factor activity in mutant CD14+ 
monocytes 
 
The two CHIP driver genes considered in this analysis, TET2 and DNMT3A, are both involved in 
DNA methylation and have been found to play a cooperative role in regulating expression of 
transcription factors22. For this reason, we were interested in evaluating transcription factor 
activity amongst CHIP and control cells. We performed transcription factor enrichment analysis 
on CHIP patient CD14+ monocytes that have been labeled with mutation status in a study by 
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Heimlich et al8. We identified a set of transcription factors that were more active in mutant cells, 
including myelocytomatosis oncogene (MYC) and signal transducer and activator of 
transcription 6 (STAT6) (Fig. 2A). MYC plays an important role in hematopoiesis and is often 
activated in acute myeloid leukemia23,24. STAT6 is the major transcription factor responsible for 
inducing macrophage M2 polarization25. Downstream differential expression of target genes for 
these transcription factors followed expectations. For example, HLA-A, HLA-C, HLA-E, VAMP2, 
ICAM1, CXCL2, CXCL8, and FOS are targets of MYC and were significantly upregulated in 
macrophages from patients with CHIP compared to controls (adj p-value < 0.05, 
Supplementary Table 1). Similarly, CXCL8, JAK1, DUSP1, FOS, MRC1, CD4, and CD86 are 
targets of STAT6 and were all significantly upregulated in macrophages from patients with CHIP 
compared to controls (adj p-value < 0.05, Supplementary Table 1). We also identified a set of 
transcription factors that were less active in mutant cells, including NR1H3 and NR1H4. In 
macrophages from patients with CHIP, targets of NR1H3, APOE and CD36, were significantly 
downregulated (adj p-value < 0.05, Supplementary Table 1). Targets of NR1H4, MMP9, 
APOE, CD36, and SUMO1, were also significantly downregulated in macrophages from patients 
with CHIP (adj p-value < 0.05, Supplementary Table 1). 
 
 
Macrophages from patients with CHIP have more differentially expressed genes compared to 
controls than circulating CD14+ monocytes 
 
Previous analyses of CHIP have mainly focused on effects of CHIP on peripheral blood8,9,11,12. 
Here, we took advantage of having access to both peripheral blood and adipose tissue to 
compare the effects of CHIP in both compartments. We observed very few differentially 
expressed genes in circulating CD14+ monocytes, compared to what we observed in adipose 
tissue macrophages from matched sample pairs (Fig. 2B, Supplementary Table 1-2). In the 
macrophage analyses, we observed several differentially expressed genes involved in 
transendothelial migration, including vesicle associated membrane protein 2 (VAMP2) and 
intercellular adhesion molecule 1 (ICAM1) (log2(fold change) = 0.49, adj p-value = 2.02x10-5; 
log2(fold change) = 0.53, adj p-value = 4.83x10-4). We also observed significant upregulation of 
human leukocyte antigen (HLA) types, HLA-A, HLA-C, and HLA-E, in macrophages from 
patients with CHIP compared to controls (log2(fold change) = 0.74, adj p-value = 2.7.80x10-13; 
log2(fold change) = 0.61, adj p-value = 7.19x10-11; log2(fold change) = 0.54, adj p-value = 
3.04x10-9). Gene set enrichment analysis explained that while cellular energy production was 
largely unaffected by CHIP in circulating CD14+ monocytes, oxidative phosphorylation and 
mitochondrial function were significantly suppressed in macrophages (Fig. 2C, Supplementary 
Fig. 2).  
 
 
Transendothelial migration signaling enhanced in endothelial cells from CHIP patients 
compared to controls 
 
Differential expression analysis of endothelial cells from CHIP patients and controls identified 
that, as seen in macrophages, several HLA types were significantly upregulated with CHIP, 
namely HLA-A, HLA-C, HLA-B (log2(fold change) = 0.448, adj p-value = 5.92x10-49; log2(fold 
change) = 0.802, adj p-value = 1.10x10-47; log2(fold change) = 0.619, adj p-value = 1.88x10-39, 
Supplementary Table 3). Additionally, important regulators of transendothelial migration were 
upregulated in endothelial cells from patients with CHIP, specifically vesicle associated 
membrane protein 3 (VAMP3), platelet and endothelial cell adhesion molecule 1 (PECAM1), 
and plasmalemma vesicle associated protein (PLVAP) (log2(fold change) = 0.285, adj p-value = 
2.44x10-5; log2(fold change) = 0.410, adj p-value = 2.16x10-5; log2(fold change) = 0.458, adj p-
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value = 0.01, Supplementary Table 3) (Fig. 3A). The process of monocyte transendothelial 
migration includes chemokine/cytokine-directed attraction, selectin-dependent tethering/rolling, 
integrin-dependent adhesion, and adhesion molecule-dependent migration across the 
endothelial cell barrier (Fig 3B). Dysregulation of transendothelial migration is implicated in 
inflammatory disease processes, including vascular diseases26. CellChat predictions of 
circulating CD14+ monocyte and endothelial cell interactions highlighted multiple 
transendothelial migration signaling pathways that differ in signaling strength between CHIP and 
control. A dominant signal from circulating CD14+ monocytes to endothelial cells was present in 
CHIP for each step of transendothelial migration: chemokine (C-X-C motif) ligand (CXCL) for 
cytokine-directed attraction, L-selectin (SELL) for selectin-dependent tethering, integrin subunit 
beta 2 (ITGB2) for integrin-dependent adhesion, and platelet and endothelial cell adhesion 
molecule 1 (PECAM1) for adhesion molecule-dependent migration across the endothelial 
barrier (Fig. 3C-F). In comparing signaling strength between CHIP and control samples, there 
was a statistically significantly higher signal for each of these pathways in CHIP (p-value < 
0.0125) (Fig. 3G).  
 
We replicated this signal in the CHIP mouse model by analyzing mouse monocytes from Tet2 
KO and control mice in conjunction with mouse endothelial cells. Signaling molecules involved 
in transendothelial migration do not perfectly correlate between humans and mice, so we could 
not directly compare pathways. For example, IL8 is one of the central components of CXCL 
signaling in humans but the mouse homologs KC, MIP-1, and LIX do not function in the same 
way and therefore cannot be compared27. However, the general process of leukocyte 
transendothelial migration involves similar steps that can be compared. As in humans, cytokine 
and selectin signaling, denoted here by tumor necrosis factor (TNF) and selectin P ligand gene 
(SELPLG), were increased with CHIP in mice (Fig. 3H). Integrin signaling, denoted here by 
integrin alpha L-integrin subunit beta 2 (ITGAL-ITGB2), was increased in mice with CHIP but did 
not reach statistical significance. Transforming growth factor-β (TGFβ) signaling, which plays a 
role in mice similar to PECAM1’s role in humans by regulating the cadherin-dependent 
endothelial barrier permeability, was significantly higher in mice with CHIP than in wildtype mice. 
Overall, these simulations suggested that CHIP in mice and humans is characterized by 
increases in transendothelial migration signaling. 
 
 
Macrophages from patients with CHIP have enhanced signaling to endothelial cells 
 
We used CellChat to predict how macrophages from patients with CHIP and from controls 
interact with endothelial cells (Fig. 4A). We evaluated differential signaling strength between 
macrophages and endothelial cells for three transendothelial migration pathways (CXCL, 
ITGB2, and PECAM1) that align with three of the four steps of transendothelial migration: 
chemokine/cytokine signaling, integrin binding, and adhesion molecule migration (Fig. 4B). We 
did not observe any selectin signaling in these cells so could not perform that comparison. Each 
of the three pathways we evaluated had statistically significantly higher signaling in CHIP 
compared to controls.  
 
 
High heterogeneity in interactions between macrophages and endothelial cells across tissues 
 
Although there are vascular beds in nearly every tissue in the body, CHIP causes disease in 
specific vascular beds2,28. To investigate the origin of differential interactions between CHIP 
blood and endothelial cells throughout the body, we extracted endothelial cell gene expression 
data from 15 unique tissues from the Chan Zuckerberg Initiative (CZI) CELLxGENE database29. 
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Endothelial cell identity was verified using expression of known endothelial marker genes 
(Supplementary Fig. 3). We predicted signaling strength between macrophages from patients 
with CHIP and endothelial cell populations using CellChat (Fig. 4C). There was high 
heterogeneity in the interaction of endothelial cells with macrophages, depending on the tissue 
of origin. We ranked tissues based on the strength of their interactions with CHIP macrophages 
(Fig. 4D). The top interacting tissues included spleen, liver, and endometrium. Low interacting 
tissues included lung, heart right ventricle, and heart left ventricle.  
 
To determine factors contributing to interaction strength, we calculated cluster defining markers 
for endothelial cells from high interactor and low interactor tissues. Top markers of high 
interactors included albumin (ALB), serpin family E member 1 (SERPINE1), and NF-kappa-B 
inhibitor alpha (NFKBIA) (adj p-value < 0.05x10-10, Supplementary Table 4). Top markers of 
low interactors included protein tyrosine phosphatase receptor type M (PTPRM), endomucin 
(EMCN), and MDS and EVI1 complex locus (MECOM) (adj p-value < 0.05x10-10, 
Supplementary Table 4). To compare high and low interacting endothelial cells within CHIP 
patients, we used the cluster defining markers to classify individual endothelial cells from the 
CHIP adipose tissue data. An interaction score was calculated for each cell using gene 
expression multiplied by the rank order of top marker genes. The top 500 cells were classified 
as high interactors, and the bottom 500 cells were classified as low interactors. We then 
characterized differences in transcription factor activity between high and low interactors. We 
identified many transcription factors that were more active amongst the high interactors 
including Jun proto-oncogene (JUN), JunD proto-oncogene (JUND), and regulatory factor X 
associated protein (RFXAP), important regulators of cytokine release and MHC class II 
presentation30,31(Fig. 4E). As we might expect based on activity of these transcription factors, 
CXCL signaling between macrophages and high interactor endothelial cells was enhanced 
compared to signaling between macrophages and low interactor endothelial cells (Fig. 4F). 
Upon further review of high and low interactor endothelial cells, we found that observed counts 
of endothelial cell subtypes within high interactor and low interactor groups varied. A 
generalized linear model of the effect of endothelial cell subtype and sample of origin on high 
interactor proportion suggested that venous endothelial cell status is a positive predictor of high 
interactor proportion with a coefficient of 0.461, standard error of 0.138, and p-value of 0.004. 
No other endothelial cell subtype or sample of origin was a statistically significant predictor of 
high interactor proportion (Fig. 4G).  
 
 
Discussion: 
 
Here we conduct the first multi-tissue scRNAseq analysis of CHIP in humans, using samples 
from peripheral blood and adipose tissue. By simultaneously sampling peripheral blood and 
adipose tissue from CHIP cases and controls, we demonstrate that endothelial cells from 
patients with CHIP have significant upregulation of key molecules related to leukocyte 
transendothelial migration. We characterize effects of CHIP on myeloid cells, which vary greatly 
depending on the location in the body. We also demonstrate that vascular disease-relevant 
effects may be limited to tissues with endothelial cells that have high likelihood of interacting 
with macrophages. These findings permit several conclusions.  
 
First, CHIP affects gene expression of key molecules related to leukocyte capture in endothelial 
cells. CHIP is known to affect the vasculature, as it has been associated with higher risk of 
coronary artery disease, peripheral artery disease, and atherosclerosis1,3,28. Additionally, studies 
in mice have shown that CHIP endothelial cells overexpress P-selectin and recruit monocytes 
more readily4. However, this is the first study to evaluate changes to gene expression and 
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signaling patterns in human endothelial cells from patients with CHIP. We identified upregulation 
of VAMP3, PECAM1, and PLVAP, all key molecules involved in transendothelial migration, in 
endothelial cells from patients with CHIP. 
 
Second, within the myeloid lineage, we identified more differentially expressed genes in 
macrophages from adipose tissue than in monocytes from blood. Most CHIP studies to date 
have focused on peripheral blood and have found differences related to inflammatory signaling. 
While these findings are supported by our data, we demonstrate that more significant and 
disease-relevant differences are found in peripheral tissues, emphasizing the importance of 
evaluating CHIP in tissues beyond blood. We found that adipose tissue macrophages from 
patients with CHIP had upregulation of genes favoring transendothelial migration, including 
VAMP2 and ICAM1, as well as several HLA types. Murine models of TET2 CHIP have similarly 
demonstrated a differentiation bias towards proinflammatory MHCII+ macrophages32,33. Because 
this study did not evaluate mutation status of macrophages, future work will be needed to clarify 
the extent to which macrophages in human adipose tissue carry CHIP mutations.  
 
Third, our evaluation of the interaction between macrophages and endothelial cells in CHIP 
demonstrated that there is a heterogenous response across tissues. We observed that 
macrophage interactions with endothelial cells differ in strength according to the endothelial 
tissue of origin. Highest signaling strength was observed in the spleen and liver, tissues that 
have high levels of sinusoidal endothelial cells which express MHC receptors and have high 
leukocyte permeability34,35. High interactor endothelial cells from the CHIP adipose dataset 
demonstrated high activity of transcription factors related to MHC class II presentation. It is 
possible that the differential response of endothelial cells across tissues contributes to the 
variability of disease risk across tissues. Notably, prior work has demonstrated effects of CHIP 
on these highly interacting tissues. Specifically, mouse models of CHIP develop splenomegaly 
as excess immune cells accumulate in the spleen16,33. Future work investigating drug targets for 
CHIP may benefit from tissue-specific evaluation.  
 
Our study has several limitations that we have attempted to address. Our cohort consists mainly 
of patients with obesity. For this reason, some inflammatory markers may already be 
upregulated, even in the absence of CHIP. We addressed this by matching cases and controls 
by diabetic status, as described in the methods. Obesity could also mask some of the 
inflammatory response triggered by CHIP, as obesity contributes to inflammation. Therefore, 
observations related to inflammation are likely to be conservative and repeating this study in 
non-obese individuals is likely to identify greater differences. 
 
In conclusion, our study suggests that in addition to initiating an inflammatory response in the 
blood, CHIP affects the function of endothelial cells and disrupts regulation of monocyte 
transendothelial migration. This deeper understanding of signaling patterns suggests a specific 
biological pathway that may be targeted in therapies to address vascular disease risks 
associated with CHIP. 
 
 
Supplemental methods: 
 
Patient attainment and inclusion criteria 
 
Samples were taken from participants in the HIV, Adipose Tissue Immunology, and Metabolism 
(HATIM) study, designed to characterize adipose tissue in the context of HIV infection and 
metabolic disease (ClinicalTrials.gov registration NCT04451980). Patients with HIV (PWH) were 
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recruited from the Vanderbilt University Medical Center Comprehensive Care Clinic between 
August 2017 and June 2018. All were on antiretroviral therapy (ART) for ≥ 18 months, had 
virologic suppression (serum HIV-1 RNA quantification < 50 copies/mL) for ≥ 12 months, had a 
CD4+ T cell count ≥ 350 cells/mm at enrollment and had no known inflammatory or 
rheumatologic conditions. Patients were further classified as non-diabetic (HbA1c < 5.7% and/or 
fasting blood glucose [FBG] < 100 mg/dL), pre-diabetic (HbA1c 5.7-6.5% and/or FBG 100-125 
mg/dL), or diabetic (HbA1c > 6.4% and/or FBG ≥ 126 mg/dL and/or on anti-diabetic medication) 
in accordance with the American Diabetes Association criteria. HIV-negative patients with 
diabetes were recruited from the Vanderbilt ResearchMatch cohort. These patients were 
matched by age and BMI with diabetic PWH. Before sample collection, all patients underwent a 
minimum 8-hour fast. PBMCs and subcutaneous adipose tissue were then collected. The 
project was approved by the Vanderbilt Institutional Review Board (IRB # 161254), and all 
patients provided written consent. From this cohort, patients were evaluated for CHIP status. Six 
patients with CHIP and six controls matched for age, sex, HIV status, and diabetic status were 
selected for this study. Adipose tissue and PBMCs were collected from all patients. 
 
CHIP variant calling 
 
Samples from all patients underwent targeted sequencing to identify the presence of CHIP 
driver mutations. DNA extraction from whole blood was performed using Qiagen Mini kits Cat 
#27104, following standard procedures. Samples were then sequenced on an Illumina Novaseq 
6000 using a custom gene panel designed to target CHIP driver genes with 600x read depth as 
previously described10,17. Putative somatic mutations were identified using the Mutect2-GATK 
package, and filtering was applied to identify variants that met previously defined criteria for 
CHIP36. Variants with total low read depth (<100), low variant allele read depth (<3) and/or 
variant allele fraction below the threshold for CHIP (<2%) were removed from the dataset.  
 
Subcutaneous adipose tissue biopsies 
 
Biopsies from subcutaneous adipose tissue (SAT) were collected approximately 3 cm to the 
right of the umbilicus after anesthetizing the skin with lidocaine/epinephrine and infiltrating 40 
mL of sterile saline and lidocaine into the SAT. Approximately 5 grams of adipose tissue were 
collected using a 2.1 mm blunt, side-ported liposuction catheter (Tulip CellFriendlyTMGEMS 
system Miller Harvester, Tulip Medical Products). This method results in droplets of adipose 
tissue, typically < 3 mm in diameter. The samples were then placed in 40-50 mm of cold saline 
and mixed. Visible blood clots were removed. Samples were then transferred to a 70 µm filter 
for repeat saline washes with constant stirring. The adipose tissue was then placed in a 
gentleMACSTM Dissociator (Miltenyi Biotec) followed by incubation with 100 µL of collagenase D 
(20mg/mL). The SVF was separated using a Ficoll-Paque Plus density gradient. Samples were 
cryopreserved in fetal bovine serum with 10% DMSO in liquid nitrogen. 
 
Single-cell RNA sequencing (PBMCs) 
 
Cryopreserved PBMCs were thawed at 37°C then washed with complete RPMI (RPMI + 10% 
FBS + 1% PS, cRPMI) to remove the freezing media. An aliquot of 500,000 cells from each 
sample was plated with phosphate-buffered saline and incubated for 4.5 hours at 37°C and 5% 
CO2. Cells were then pooled with unique hashtag antibody oligonucleotide-conjugates (HTOs) 
for 30 minutes (Biolegend, TotalSeq-B). Samples were then prepared with a 10X Chromium 3’ 
library preparation kit (10X Genomics) and immediately run on a 10X Chromium Controller to 
create scRNAseq libraries. 
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Single-cell RNA sequencing (adipose tissue) 
 
An antibody Total Seq C master mix was prepared using 0.5 µL each of 45 markers for lineage, 
memory and activation. Samples for this study were prepared in a larger group of samples in 
which 12 samples were processed at a time. Samples were thawed and transferred to 15 mL 
tubes then diluted to 10 mL with phosphate-buffered saline. They were then spun down at 300 
G for 10 minutes. The supernatant was aspirated, and the pellet was resuspended in cell 
staining buffer. Samples were transferred to flow tubes and spun at 300 G for 10 minutes. The 
supernatant was aspirated, and cells were resuspended in 100 µL of staining buffer. The tubes 
each received 5 µL of Human TruStain FcX Receptor Blocking Solution and were incubated at 
4°C for 10 minutes. The antibody master mix was spun at 15,000 rpm for 5 minutes to remove 
aggregates and then 22.5 µL of master mic was added to each tube of cells, followed by mixing 
with flicking. Each tube received 1 µL of Total Seq C hashtag antibody and was then incubated 
at 4°C for 30 minutes. The cells were then washed with Cell Staining Buffer 3 times and spun at 
300 G for 10 minutes. Cells were resuspended in 100 µL of PBS with 0.04% bovine serum 
albumin. Cells were counted using the Countess II Automated Cell Counter (Thermo Fisher) to 
calculate the suspension volume to transfer to obtain 5,000 cells. Samples were then pooled 
after being labeled with unique hashtag antibodies. Pooling was done by metabolic status in 
groups of four. Non-diabetic and prediabetic samples from PWH were pooled together. 
Multiplexed cells were then loaded onto a Chromium Single Cell 5’ v.2 assay (10X Genomics). 
 
scRNAseq data processing and cell type annotation 
 
Next-generation 150-nt paired-end sequenced was performed on an Illumina Novaseq6000. 
Resulting bcl files were demultiplexed using bcl2fastq. Reads were aligned to the human 
genome (hg38) using STAR version 2.7.2a and cells were called using CellRanger from 10X 
Genomics with default parameters. Downstream analysis was performed in R (v4.3.2) on 
Terra.bio. To improve assignment of cells to donors, we used Souporcell (v2.0), which 
genetically demultiplexes samples using single nucleotide variants37. Ambient RNA was 
removed using the R package SoupX (v1.6.2)38 and Seurat (v5.0.1)39 objects were created. 
Cells with greater than 25% mitochondrial reads, <800 total transcripts, or <200 genes were 
filtered out. Doublets were identified using the R package DoubletFinder (v2.0.3)40. Cells lacking 
HTOs were removed. HTOs were used as ground truth for doublet identification. The doublet 
formation rate was set to (dim(seurat_object)[2]/0.57) * 4.6e-6, based on doublet formation rates 
predicted by the Satija lab (satijalab.org/costpercell).  
 
Processed lanes were merged. HTO and DoubletFinder-predicted doublets were removed. 
Remaining hemoglobin, X chromosome, mitochondrial, and ribosomal genes were removed. 
Gene counts were normalized using the NormalizeData() function, followed by 
FindVariableFeatures() with nFeatures = 3000. Counts were scaled with the ScaleData() 
function, and dimensionality reduction was performed with the functions RunPCA() and 
RunUMAP() with dims = 1:15. We corrected batch effects with the R package Harmony (0.1.1)41 
and calculated clusters with the Seurat functions FindNeighbors() and FindClusters(). 
Annotation of cell types was performed with scType42 for PBMCs and with manual annotation 
for adipose tissue cells. One cluster of PBMCs had high levels of mitochondrial DNA and low 
transcript and gene counts, suggesting that it captured a population of dead or dying cells. This 
cluster was removed from the analysis.  
 
Differential expression and pathway analysis 
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scRNAseq analysis is complicated by frequent dropout from high levels of sparsity. We used a 
metacells approach in which reads from cells in similar transcriptional states were collapsed into 
single measurements. Metacell assignments were determined using the Python (v3.10.11) 
package Metacell-2 (v0.8.0)43. Metacells were classified within disease-state and cell type 
groups. Gene counts for each metacell were summed into a single value using the function 
aggregateAcrossCells(). Genes that had at least 10 transcripts in 85% of metacells were 
considered for downstream analysis. Differential expression was calculated with a negative 
binomial Wald test and Benjamini Hochberg p-value adjustment from the R package DESeq2 
(1.40.2)44.  
 
Pathway analysis was performed based on differential expression results using the function 
gseGO() from the R package clusterProfiler (4.8.1)45. The dataset of pathways used was the 
“ALL” set from the GO database. Minimum gene set size was set to 2 and maximum gene set 
size was set to 800. The number of permutations calculated was 10,000. 
 
Intercellular signaling prediction 
 
Cell signaling was predicted using the R package CellChat (v1.6.1)20. CellChat uses a reference 
database of ligand-receptor interactions from peer-reviewed literature and other public signaling 
databases to estimate the likelihood of cell-cell interactions. The standard protocol was followed 
to create CellChat objects. The value for min.cells in filterCommunication was set to 25. For 
comparisons between groups, statistical significance was evaluated using the rankNet() function 
with do.stat = TRUE. This function performs a paired Wilcoxon test to evaluate whether there is 
a significant difference between the groups. The p-value threshold for significance was set using 
the Bonferroni method in which 0.05 was divided by the number of signaling pathways being 
evaluated. 
 
Mouse validation of monocyte-endothelial cell signaling patterns 
 
Data for the mouse monocyte-endothelial cell signaling prediction experiment was extracted 
from publicly available datasets. Monocyte data was obtained from a CHIP model mouse 
study18. Endothelial cell data was obtained through the CZI CELLxGENE database from The 
Tabula Muris Consortium19. Cell type annotations were assigned for the monocyte data using to 
original authors’ publicly available code. Only cells labeled as “Monocytes” were included in this 
analysis. Endothelial cell data was subset to cells that had been annotated by original authors 
with the labels “endothelial cell,” “vein endothelial cell,” “endothelial cell of lymphatic vessel,” 
“endothelial cell of coronary artery,” “kidney capillary endothelial cell,” and “endothelial cell of 
hepatic sinusoid.” The data was merged, normalized and scaled with the function 
SCTransform(), and then passed to CellChat for signaling prediction. The standard process was 
followed for generating CellChat objects. Signaling was predicted from monocytes to endothelial 
cells using CellChat. 
 
Signaling predictions for interactions between macrophages and endothelial cells 
 
We predicted signaling from macrophages to endothelial cells from 15 unique tissues using 
publicly available data from the CZI CELLxGENE database. Data was obtained using the R 
package cellxgene.census (v1.8.0)29. The census database version used was “2023-07-25.” 
Cells were requested that fit the following filters: organism = “Homo sapiens,” cell type = 
“endothelial cell,” assay = “10x 3’ v3,” and disease = “normal.” Cells were verified to be 
endothelial cells using known endothelial cell marker genes, including ICAM1, PECAM1, CD34, 
and VWF. Only cell types that had at least 645 cells and appreciable expression of endothelial 
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cell markers were included. The endothelial dataset was downsampled to 645 cells per tissue 
and merged with macrophages from this study (downsampled to 2700 cells from patients with 
CHIP and from controls). The data was then normalized and scaled using the function 
SCTransform(). The standard process was followed for generating CellChat objects and 
performing predictions. 
 
Transcription factor enrichment 
 
Two evaluations of transcription factor activity were performed: one between mutant and 
wildtype CD14+ monocytes and one between high and low interactor endothelial cells. For the 
mutant and wildtype monocyte comparison, we isolated CD14+ monocytes from a single-cell 
analysis of CHIP that separated based on mutation status8. For the endothelial cell comparison, 
we used the top 500 high interactor and the top 500 low interactor endothelial cells from the 
adipose tissue samples from CHIP patients in this study. Transcription factor activity was 
evaluated using the R package decoupleR (v2.6.0)21. Data being evaluated was normalized and 
scaled using the function SCTransform() then analyzed using the function run_wmean() with the 
parameters times = 100 and minsize = 5. The network of transcription factors evaluated was 
pulled from the CollecTRI network, using the function get_collectri().  
 
CHIP adipose tissue endothelial cell interactor scoring and comparison 
 
High and low interacting tissues were defined from a ranked list of overall interaction strength 
outgoing from macrophages from patients with CHIP, incoming to endothelial cells from adipose 
tissue, accessible through cellchat_obj@net$weight. The highest five tissues were classified as 
high interacting tissues, and the lowest five tissues were classified as low interacting tissues. To 
understand gene expression patterns that defined high and low interactions, we subset 
endothelial cells to those from high and low interacting tissues then calculated cluster-defining 
markers using a Wilcoxon rank sum test as performed by the function FindAllMarkers() with 
parameters of logfc.threshold = 0.5, min.pct = 0.25, and assay = “SCT.” The set of markers was 
filtered to exclude mitochondrial and ribosomal genes.  
 
We were interested in comparing high and low interacting cells from our CHIP adipose tissue 
endothelial cell data. To do so, we used the top 10 markers that defined high and low interacting 
tissues and calculated an interaction likelihood score. For each cell, gene expression of the 
marker was multiplied by the marker’s rank + 1. Markers for high interaction were added and 
markers for low interaction were subtracted to calculate a final score. The 500 cells with the 
highest score were classified as high interactors and the 500 cells with the lowest score were 
classified as low interactors. A CellChat object was created with the standard process and 
comparisons were made between high and low interactors. 
 
Visualization 
 
Visualization of data was primarily completed with the R package ggplot2 (v3.4.4)46. All 
schematics were prepared using BioRender.com. Colors were drawn from the R package 
RColorBrewer (v1.1-3)47, Paired palette.  
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Figure legends: 
 
Figure 1: Single-cell analysis of peripheral blood mononuclear cells and adipose tissue 
cells from patients with CHIP and controls highlights differences at the cell type level. A. 
Peripheral blood mononuclear cells and adipose tissue cells from 6 patients with CHIP and 6 
matched controls were analyzed using single-cell RNA sequencing and intercellular signaling 
prediction. Patients were matched on diabetic and HIV status. B. 73,790 cells represented in 
uniform manifold approximation and projection (UMAP) space. Cell type labels for PBMCs were 
assigned using scType, which relies on unsupervised clustering and known cell type marker 
genes. Cell types for adipose tissue cells were determined using unsupervised clustering and 
manual curation. Asterisk indicates cells are from blood. Otherwise, cells are from adipose 
tissue. C. Predicted differential signaling strength between cell types comparing CHIP to control. 
Line thickness is proportional to differential signaling strength. Largest differences in signaling 
strength seen in endothelial cells and macrophages.  
 
Figure 2: Macrophages exhibit greater differences with CHIP than circulating CD14+ 
monocytes. A. Heatmap representing transcription factor enrichment for mutant and wildtype 
CD14+ monocytes (data originating from Heimlich et al 20238). B. Volcano plots showing 
differential expression results comparing circulating CD14+ monocytes from patients with CHIP 
to circulating CD14+ monocytes from controls (left) and comparing macrophages from patients 
with CHIP to macrophages from controls (right). Differential expression was computed using a 
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metacells aggregation approach followed by a negative binomial Wald test with Benjamini 
Hochberg p-value adjustment. Genes highlighted in purple are involved in transendothelial 
migration. Genes highlighted in red are HLA types. C. Dotplot showing results of gene set 
enrichment analysis of differential expression for macrophages using all GO pathways.  
 
Figure 3: Endothelial cells from patients with CHIP have altered gene expression and 
intercellular communication patterns. A. Volcano plot showing differential expression results 
comparing endothelial cells from patients with CHIP to endothelial cells from controls. 
Differential gene expression was computed using a metacells aggregation approach followed by 
a negative binomial Wald test with Benjamini Hochberg p-value adjustment. Genes highlighted 
in purple are involved in transendothelial migration. Genes highlighted in red are HLA types. B. 
Schematic showing key signaling molecules involved in transendothelial migration: 
chemokines/cytokines, selectins, integrins, and adhesion molecules. C-F. Predicted signaling 
strength for key pathways involved in transendothelial migration: CXCL, SELL, ITGB2, and 
PECAM1. Outgoing signaling from circulating CD14+ monocytes red, all other signaling in grey. 
Cell types with asterisks were captured in adipose tissue samples. Other cell types were 
captured in PBMCs. G. CellChat predicted signaling from circulating CD14+ monocytes to 
endothelial cells comparing CHIP to controls. Signaling for CXCL, SELL, ITGB2, and PECAM1 
were all statistically significantly higher in CHIP than controls. Statistical significance was 
evaluated with a Wilcoxon test and the p-value significance threshold was adjusted using the 
Bonferroni correction (p-value < 0.0125, indicated by asterisk). H. CellChat predicted signaling 
from murine circulating monocytes from CHIP model mice and WT mice to healthy murine 
endothelial cells from the CZI CELLxGENE database. Statistical significance was evaluated with 
a Wilcoxon test and the p-value significance threshold was adjusted using the Bonferroni 
correction (p-value < 0.0125, indicated by asterisk). Not all signaling pathways were available 
for comparison between human and mouse data, so closely corresponding pathways were 
selected.  
 
Figure 4: Macrophage-endothelial cell signaling has high heterogeneity depending on 
endothelial cell tissue of origin. A. Predictions were made based on interactions of 
macrophages from patients with CHIP and controls and endothelial cells from several tissues. 
Signaling predictions are based on expression of ligands, receptors, and cofactors. B. Within 
the adipose tissue dataset from this study, signaling between macrophages and endothelial 
cells differed for transendothelial migration pathways. Signaling was significantly higher for 
CXCL, ITGB2, and PECAM1 in CHIP compared to controls. Statistical significance was 
evaluated with a Wilcoxon test and the p-value significance threshold was adjusted using the 
Bonferroni correction (p-value < 0.017, indicated by asterisk). C. Predicted signaling strength 
from macrophages to endothelial cell from several tissues. Data originated from CZI 
CELLxGENE database. Line thickness is proportional to interaction strength. Asterisk indicates 
that data originated from this study. D. Ranked interaction strength between mutant CD14+ 
monocytes and endothelial cells from several tissues. Asterisk indicates that data originated 
from this study. E. Heatmap for transcription factor enrichment of high and low interacting 
endothelial cells from CHIP adipose tissue samples. F. Predicted signaling from CHIP and 
control macrophages to high and low interacting endothelial cells from CHIP adipose tissue 
samples for CXCL signaling. G. Boxplot showing high interactor proportions for subtypes of 
endothelial cells. Venous endothelial cell status is a positive predictor of high interactor status 
(generalized linear model coefficient = 0.461, standard error = 0.138, p-value = 0.004). Dots of 
the same color are from the same patient. 
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Supplementary Figure 1: CD14+ monocyte and macrophage UMAP. UMAP demonstrating 
separation of circulating CD14+ monocytes, adipose tissue CD14+ monocytes, and 
macrophages.  
 
Supplementary Figure 2: CD14+ monocytes gene set enrichment. Dotplot showing results 
of gene set enrichment analysis of differential expression for CD14+ monocytes using all GO 
pathways. 
 
Supplementary Figure 3: Endothelial cell marker expression for data from CZI 
CELLxGENE. Dotplot showing average expression and percent expression for known 
endothelial cell markers in CZI data. 
 
Table 1: Demographic characteristics for patients with matched PBMC and adipose 
tissue samples. Table displaying sex, age, study group, and BMI for cases and controls. 
 
Supplementary Table 1: Differential expression results comparing macrophages from patients 
with CHIP and from controls. 
 
Supplementary Table 2: Differential expression results comparing adipose tissue circulating 
CD14+ monocytes from patients with CHIP and from controls. 
 
Supplementary Table 3: Differential expression results comparing endothelial cells from 
patients with CHIP and from controls. 
 
Supplementary Table 4: Marker genes defining high interactor and low interactor endothelial 
cells. 
 
 
Code availability: All code used in this analysis has been deposited on GitHub at 
https://github.com/bicklab/SC_CHIP_HIV_Diabetes and will be made public at the time of 
publication. 
 
Data availability: Data generated in this analysis will be made available on the Chan 
Zuckerberg Initiative’s CELLxGENE database upon publication. 
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Figure 1: Single-cell analysis of peripheral blood mononuclear cells and adipose tissue cells from patients with 
CHIP and controls highlights differences at the cell type level. A. Peripheral blood mononuclear cells and adipose 
tissue cells from 6 patients with CHIP and 6 matched controls were analyzed using single-cell RNA sequencing and 
intercellular signaling prediction. Patients were matched on diabetic and HIV status. B. 73,790 cells represented in 
uniform manifold approximation and projection (UMAP) space. Cell type labels for PBMCs were assigned using scType, 
which relies on unsupervised clustering and known cell type marker genes. Cell types for adipose tissue cells were 
determined using unsupervised clustering and manual curation. Asterisk indicates cells are from blood. Otherwise, cells 
are from adipose tissue. C. Predicted differential signaling strength between cell types comparing CHIP to control. Line 
thickness is proportional to differential signaling strength. Largest differences in signaling strength seen in endothelial 
cells and macrophages.
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Figure 2: Macrophages exhibit greater differences with CHIP than circulating CD14+ monocytes. A. Heatmap 
representing transcription factor enrichment for mutant and wildtype CD14+ monocytes (data originating from Heimlich 
et al 20238). B. Volcano plots showing differential expression results comparing circulating CD14+ monocytes from 
patients with CHIP to circulating CD14+ monocytes from controls (left) and comparing macrophages from patients with 
CHIP to macrophages from controls (right). Differential expression was computed using a metacells aggregation 
approach followed by a negative binomial Wald test with Benjamini Hochberg p-value adjustment. Genes highlighted in 
purple are involved in transendothelial migration. Genes highlighted in red are HLA types. C. Dotplot showing results of 
gene set enrichment analysis of differential expression for macrophages using all GO pathways. 
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Figure 3: Endothelial cells from patients with CHIP have altered gene expression and intercellular 
communication patterns. A. Volcano plot showing differential expression results comparing endothelial cells from 
patients with CHIP to endothelial cells from controls. Differential gene expression was computed using a metacells 
aggregation approach followed by a negative binomial Wald test with Benjamini Hochberg p-value adjustment. Genes 
highlighted in purple are involved in transendothelial migration. Genes highlighted in red are HLA types. B. Schematic 
showing key signaling molecules involved in transendothelial migration: chemokines/cytokines, selectins, integrins, and 
adhesion molecules. C-F. Predicted signaling strength for key pathways involved in transendothelial migration: CXCL, 
SELL, ITGB2, and PECAM1. Outgoing signaling from circulating CD14+ monocytes red, all other signaling in grey. Cell 
types with asterisks were captured in adipose tissue samples. Other cell types were captured in PBMCs. G. CellChat 
predicted signaling from circulating CD14+ monocytes to endothelial cells comparing CHIP to controls. Signaling for 
CXCL, SELL, ITGB2, and PECAM1 were all statistically significantly higher in CHIP than controls. Statistical 
significance was evaluated with a Wilcoxon test and the p-value significance threshold was adjusted using the 
Bonferroni correction (p-value < 0.0125, indicated by asterisk). H. CellChat predicted signaling from murine circulating 
monocytes from CHIP model mice and WT mice to healthy murine endothelial cells from the CZI CELLxGENE 
database. Statistical significance was evaluated with a Wilcoxon test and the p-value significance threshold was 
adjusted using the Bonferroni correction (p-value < 0.0125, indicated by asterisk). Not all signaling pathways were 
available for comparison between human and mouse data, so closely corresponding pathways were selected. 
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Figure 4: Macrophage-endothelial cell signaling has high heterogeneity depending on endothelial cell tissue of 
origin. A. Predictions were made based on interactions of macrophages from patients with CHIP and controls and 
endothelial cells from several tissues. Signaling predictions are based on expression of ligands, receptors, and 
cofactors. B. Within the adipose tissue dataset from this study, signaling between macrophages and endothelial cells 
differed for transendothelial migration pathways. Signaling was significantly higher for CXCL, ITGB2, and PECAM1 in 
CHIP compared to controls. Statistical significance was evaluated with a Wilcoxon test and the p-value significance 
threshold was adjusted using the Bonferroni correction (p-value < 0.017, indicated by asterisk). C. Predicted signaling 
strength from macrophages to endothelial cell from several tissues. Data originated from CZI CELLxGENE database. 
Line thickness is proportional to interaction strength. Asterisk indicates that data originated from this study. D. Ranked 
interaction strength between mutant CD14+ monocytes and endothelial cells from several tissues. Asterisk indicates 
that data originated from this study. E. Heatmap for transcription factor enrichment of high and low interacting 
endothelial cells from CHIP adipose tissue samples. F. Predicted signaling from CHIP and control macrophages to high 
and low interacting endothelial cells from CHIP adipose tissue samples for CXCL signaling. G. Boxplot showing high 
interactor proportions for subtypes of endothelial cells. Venous endothelial cell status is a positive predictor of high 
interactor status (generalized linear model coefficient = 0.461, standard error = 0.138, p-value = 0.004). Dots of the 
same color are from the same patient.
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Supplementary Figure 1: CD14+ monocyte 
and macrophage UMAP. UMAP 
demonstrating separation of circulating CD14+ 
monocytes, adipose tissue CD14+ monocytes, 
and macrophages. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.20.24303046doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.20.24303046


activated suppressed

0.3 0.35 0.4 0.45 0.50 0.3 0.35 0.4 0.45 0.50

cell periphery

nuclear lumen

nucleic acid metabolic process

nucleoplasm

vesicle

extracellular region

extracellular space

RNA processing

GeneRatio

Count
120

150

180

210

2e−07

3e−07

4e−07

5e−07

6e−07

p.adjust

Circulating CD14+ monocytes enriched pathways

Supplemental Figure 2

Supplementary Figure 2: CD14+ monocytes gene set 
enrichment. Dotplot showing results of gene set 
enrichment analysis of differential expression for CD14+ 
monocytes using all GO pathways.
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Supplemental Figure 3

Supplementary Figure 3: Endothelial cell marker expression for data from CZI CELLxGENE. Dotplot 
showing average expression and percent expression for known endothelial cell markers in CZI data.
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Table 1

CHIP (n = 6) Control (n = 6)

Sex Female 3 (50%) 3 (50%)

Male 3 (50%) 3 (50%)

Age Mean (SD) 55 (9.8) 56 (8.8)

Study Group HIV- diabetic 5 (83.3%) 5 (83.3%)

HIV+ prediabetic 1 (16.7%) 1 (16.7%)

BMI Mean (SD) 39 (7.2) 40 (9.0)

Table 1: Demographic characteristics for patients with matched PBMC and adipose tissue samples. 
Table displaying sex, age, study group, and BMI for cases and controls.
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