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Abstract 41 

Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid 42 

neurodevelopmental disorders, although typically developing children can also be affected. 43 

Infections or other stressors are likely triggers. The underlying causes are unclear, but a current 44 

hypothesis suggests the convergence of genes that influence neuronal and immunological 45 

function. We previously identified 11 genes in Pediatric Acute-Onset Neuropsychiatry Syndrome 46 

(PANS), in which two classes of genes related to either synaptic function or the immune system 47 

were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, 48 

and RAG1. We now report an additional 16 cases with mutations in PPM1D and other DDR 49 

genes in patients with acute onset of psychiatric symptoms and/or regression that were 50 

classified by their clinicians as PANS or another inflammatory brain condition. The genes 51 

include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the 52 

Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, and FANCI). We hypothesize that 53 

defects in DNA repair genes, in the context of infection or other stressors, could lead to an 54 

increase in cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and 55 

AIM2 inflammasomes. These findings could lead to new treatment strategies. 56 

 57 

Introduction  58 

We recently reported the first whole exome and whole genome sequencing (WES and 59 

WGS, respectively) analysis in Pediatric Acute-Onset Neuropsychiatry Syndrome (PANS) in 60 

which ultrarare variants were found in 11 genes in 21 cases1. The genes harboring ultrarare 61 

variants (minor allele frequency <0.001) showed extensive heterogeneity but clustered to those 62 

that affect innate and adaptive immunity; PPM1D (3 cases), NLRC4 (4 cases), RAG1 (3 cases), 63 

PLCG2, and CHK2, or genes that affect synaptic function; SGCE (2 cases), CACNA1B (2 64 

cases), SHANK3 (3 cases), and one case each for GRIN2A, GABRG2, and SYNGAP1. Of the 65 

21 subjects, five were diagnosed with autism spectrum disorder (ASD) before their deterioration 66 

that met PANS criteria. In addition to ASD, four cases were diagnosed with another 67 

neurodevelopmental disorder (NDD), one of whom had Jansen de Vries Syndrome (JdVS), 68 

which is caused by truncating mutations in PPM1D exons 5 or 6 that cause a gain-of-function 69 

effect by suppressing p53 and other proteins involved in the DNA damage repair response 70 

(DDR) (e.g., MDM2, ATM, CHK1, CHK2, ATR, and H2AX)2-6.  The high prevalence of PANS 71 

superimposed on pre-existing NDD is consistent with the observations of other groups7, 8. 72 

PANS is thought to be an inflammatory disorder that primarily affects the deep brain grey 73 

matter (primarily the basal ganglia but the thalamus and amygdala may be involved in more 74 
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extensive cases). This hypothesis is based on the cardinal symptoms of PANS and is supported 75 

by four neuroimaging studies showing the following: swelling of the basal ganglia during the 76 

acute stage, microglial activation in the caudate and globus pallidus, grey/white matter 77 

differences in the basal ganglia, and microstructural changes throughout the brain but most 78 

prominently in the basal ganglia9-12.  79 

The clinical diagnosis PANS has core symptoms of abrupt onset obsessive-compulsive 80 

disorder (OCD) and/or restricted eating (food aversion), with two or more secondary symptoms: 81 

anxiety, emotional lability, irritability, rage, cognitive regression, sleep disturbance, sensory 82 

dysregulation, movement abnormalities, urinary symptoms including new onset dysuria or 83 

urinary frequency13. While the criteria require 2 secondary symptoms, most patients have 5 to 6 84 

secondary symptoms that start abruptly alongside the OCD and/or eating restriction. Autonomic 85 

instability (POTS, dilated pupils, increased urinary frequency, enuresis) and hypermobility have 86 

also been reported as co-morbid with PANS13-18. A deterioration in school performance occurs, 87 

exemplified by the loss of previously learned skills and/or new onset procedural learning 88 

challenges presumably relating to the basal ganglia inflammation PANS9-12, 19. Activities of daily 89 

living, extracurricular activities, and social interactions are severely affected during relapses. 90 

PANS can occur in children with or without premorbid ASD or other NDD. 91 

For parents, the abrupt onset is a telling feature with a rapid decline in behavior and 92 

functioning that is sometimes, literally, overnight or emerging over a period of a week. The 93 

course is typically relapsing and remitting, but not all relapses are hyperacute/acute. Relapses 94 

are frequently associated with an infection and data in support of a neuroinflammatory etiology 95 

for PANS is accumulating. In the subgroup of cases following Streptococcus infections, a range 96 

of group A streptococcal (GAS) autoantibodies and antibodies to striatal cholinergic 97 

interneurons can be detected15, 20-22. Recently, an increased prevalence of folate receptor alpha 98 

autoantibodies associated with cerebral folate deficiency and ASD were detected in PANS23. 99 

Additionally, cross-sectional prevalence data show that approximately one-third of patients 100 

meeting PANS criteria eventually develop enthesitis-related arthritis (ERA) and/or inflammatory 101 

back pain further supporting a role for inflammation in this disorder18, 24. Furthermore, 102 

inflammatory/autoimmune disorders are prevalent in first-degree family members8, 25, 26. 103 

As is true in other rare pediatric rheumatological conditions (including ERA and 104 

Sydenham chorea), observational studies in PANS suggest that non-steroidal anti-inflammatory 105 

drugs (NSAIDs) and corticosteroids may alleviate symptoms and/or shorten the length of the 106 

relapses27-29. More potent immunomodulators, such as intravenous immunoglobulin (IVIg) and a 107 
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B-cell inhibitor Rituximab have mixed results, likely due to the genetic heterogeneity and the 108 

difficulty in appropriately powering randomized trials in relapsing/remitting conditions30, 31.  109 

An immune-based etiology is also suggested in some cases of ASD and NDD, 110 

especially acute and subacute regression, which have some symptoms that overlap with PANS 111 

and respond to immunomodulators32-35. In addition, a strong family history of autoimmune 112 

disorders is associated with an increased risk for ASD36-38. 113 

We are interested in identifying genetic factors that underlie the development of PANS 114 

and acute behavioral regression using next-generation sequencing. In our original paper, two of 115 

the ultrarare variants we found are in genes that affect DDR (PPM1D and CHK2), and one 116 

induces DNA breaks (RAG1). RAG1, along with RAG2, codes for endonucleases that induce 117 

DNA double-strand breaks responsible for the somatic recombination that generates immune 118 

cell diversity in B- and T-lymphocytes1, 39, 40. RAG1/RAG2 also affects NK cell differentiation and 119 

plays a role in DNA transposition41, 42. Double-stranded breaks induced by the RAG complex are 120 

repaired by ATM, a serine/threonine kinase that orchestrates DNA repair at double-strand 121 

breaks40, 43-45. 122 

Our overarching aim is to identify genetic variations that converge on common biological 123 

pathways within the heterogeneous population of children with PANS or acute-onset regression 124 

with or without premorbid NDD. Given the findings in our first PANS genetic study, one common 125 

pathway is DNA repair. This hypothesis is supported by the findings in this paper in which many 126 

other genes involved in DNA repair were identified that may contribute to genetic vulnerability. 127 

 128 

Subjects and Methods 129 

Ethical considerations 130 

This study was conducted in accordance with the Declaration of Helsinki. Parents signed 131 

informed consent approved by the Albert Einstein College of Medicine IRB (2022-14636). 132 

 133 

Subjects. The subjects were identified through connections between the senior investigators 134 

and a PANS group called EXPAND, a non-profit European advocacy organization for families of 135 

children, adolescents, and adults with immune-mediated neuropsychiatric disorders 136 

(https://expand.care/), through the Neuroimmune Foundation, a non-profit organization 137 

dedicated to neuroimmune and inflammatory brain conditions (https://neuroimmune.org/about/), 138 

The Louisa Adelynn Johnson Fund for Complex Disease 139 

(https://tlajfundforcomplexdisease.com/), and the Jansen de Vries Syndrome Foundation 140 

(https://jansen-devries.org/). Histories were obtained by the participating physicians and 141 
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confirmed and collated by one of the senior investigators who interviewed every family member 142 

(H.M.L). The cases met the criteria for PANS with or without co-morbid ASD or NDD, or 143 

individuals with ASD or other NDDs who had a history of rapid-onset behavioral regression.  144 

 145 

Genetic analyses 146 

Whole exome sequencing (WES) data was available for six cases (Table). WES was carried out 147 

by different companies Courtagen Diagnostics Laboratory, GeneDx, Baylor Genetics, and for 148 

case 10, WES was conducted locally in the Genetics Core at the Albert Einstein College of 149 

Medicine, Epigenetics Shared Facility. For the remaining cases, data was available from 150 

commercially available panels: Invitae (Primary Immunodeficiency Panel), NHS North West 151 

(NDD panel). The genetic variants for cases 1 and 4-12 were verified using Sanger sequencing 152 

(see Table and Supplementary Methods). A comprehensive description of the library 153 

preparation and analysis of sequencing data for the Einstein sample (case 10) can be found in 154 

the Supplementary Methods section. Parents were genotyped for variants found in all cases 155 

except cases 10, and 13-16. 156 

 157 

Evaluation of Variants 158 

Minor allele frequencies (MAFs) were obtained from the GnomAD database on the UCSC 159 

Genome Browser (https://genome.ucsc.edu/). The ClinVar database, Combined Annotation-160 

Dependent Depletion (CADD), and AlphaMissense were used to predict the pathogenicity of 161 

mutations46-49. https://www.ncbi.nlm.nih.gov/clinvar/. RNAfold was used to predict the secondary 162 

structure of RMRP. A detailed explanation is in the Supplementary Methods section.  163 

 164 

Results 165 

Ultrarare variants (MAF <0.001) affecting DNA repair genes were found in 16 cases (10 males 166 

and 6 females; specific sex of cases not included to maintain anonymity) including four families 167 

with two or more affected individuals. The identified genes are involved in the p53 repair 168 

pathway: PPM1D (2 cases), ATM (5 cases,), ATR (2 cases), and 53BP1 (one case) (Figure 1), 169 

and the Fanconi Anemia Complex (FC): FANCE (2 cases), FANCP/ SLX4 (2 cases), FANCI, 170 

and FANCA (one case each) (Figure 2; see Table for details on all p53 and FC gene variants). 171 

The FC pathway repairs DNA interstrand crosslinks and interacts with ATM/ATR/p53 DNA 172 

repair pathways (Figure 2)50-55. In addition, ultrarare variants were found in 32 other genes, 173 

many of which have effects on DNA repair and innate immune function (see Supplementary 174 

Table for details on all additional variants for this and other cases described in this paper). 175 
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STRING was used to show the connections between the DNA repair genes and other variants 176 

found in this study, which centered around ATM and p53 (Figure 3). The cases and genetic 177 

variants with their potential impact on the phenotypes are described below. 178 

  179 

p53 DNA Repair Pathway (PPM1D, ATM, ATR, 53BP1) 180 

PPM1D (Protein phosphatase, Mg2+/Mn2+dependent 1D) 181 

Case 1 has JdVS with a 1:1 mosaicism for a de novo truncating PPM1D variant in exon 6. The 182 

patient was diagnosed with mild intellectual disability but was high functioning, requiring minimal 183 

support until high school when the patient had an abrupt onset of OCD, anxiety, cognitive 184 

regression, insomnia, and psychosis with rapid decline over approximately three weeks. The 185 

deterioration coincided with an upper respiratory infection and vasculitis. Further regression 186 

occurred with the loss of previously mastered global abilities and eventual development of 187 

mutism, which has persisted for several years, unresponsive to psychiatric medications and 188 

other clinical and behavioral interventions. 189 

Two additional ultrarare de novo variants were found and are likely pathogenic, one of 190 

which is relevant to the DDR hypothesis: a variant in CSNK1a1, which codes for Casein Kinase 191 

1 Alpha 1, a p53 inhibitor56, 57. Another was found in SRPK3, an SRSF Protein Kinase that has 192 

no known effect on DDR, although interestingly, expression is inversely correlated with alpha-193 

synuclein levels in mouse models of Parkinson’s disease58. Finally, an inherited ultrarare, 194 

nonsense mutation was found in the citrate transporter, SLC13A5 as well as a splice acceptor 195 

variant in CACNA1S. 196 

Case 2 also has a typical JdVS variant (a truncating mutation in PPM1D exon 6) and 197 

was diagnosed with ASD and a learning disability. The patient has periods of abrupt onset 198 

behavioral regression lasting several days to months, characterized by eating refusal, rage, 199 

cognitive deficits, loss of previously learned skills, an inability to walk, and enuresis. The most 200 

severe relapses have occurred following infection with SARS-CoV2 and a Group A 201 

Streptococcal infection concurrent with shingles.  202 

 203 
ATM (Ataxia-telangiectasia mutated or serine/threonine kinase) 204 

Case 3 carries an ultrarare and pathological frameshift mutation in ATM. The patient was 205 

typically developing and excelled in school until adolescence when diagnosed with Postural 206 

Orthostatic Tachycardia Syndrome (POTS), irritable bowel syndrome gastroparesis, and 207 

enthesitis-related arthritis. Soon thereafter, an episode of gastroenteritis led to acute-onset 208 

OCD, anxiety, impulsivity, and severe rage; the first of many such episodes. An MRI scan was 209 
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negative. Relapses responded to IVIg and steroid bursts; however, due to frequent relapses and 210 

the development of chronic symptoms, a trial of Rituximab was undertaken, which was helpful. 211 

While the patient appeared to respond to immunomodulation, severe symptoms returned when 212 

these therapies were tapered or discontinued. Multiple hospitalizations for uncontrolled 213 

psychiatric symptoms followed. A parent carries the same ATM variant and has a history of 214 

dysautonomia and an inflammatory skin conditions. 215 

Other ultrarare variants found in this patient include a de novo variant in AHNAK2 and 216 

compound heterozygosity for two ultrarare CACNA1H variants. While there are no obvious 217 

connections to DNA repair, AHNAK2 has been implicated in systemic lupus erythematosus 218 

(SLE) in two studies and CACNA1H mutations are found in ASD and intellectual disabilities59-62. 219 

Cases 4-7 are a family with four affected children who all carry a pathogenic parental 220 

transmitted ATM splice donor mutation. There is a bilneal parental history of severe autoimmune 221 

disorders and hypermobile joints, as well as an extended family history of early-onset cancer, 222 

and autoimmune disorders. This is consistent with the increased risk of cancer and autoimmune 223 

disorders in individuals with loss of function mutations in ATM 63-66.   224 

Case 4, the proband, was diagnosed with ASD and experienced a typical PANS 225 

relapsing-remitting course with abrupt relapses of OCD, food aversion, anxiety, irritability, 226 

impulse control problems, oppositional behaviors, tics, and fatigue. Relapses were commonly 227 

coincident with infections and were effectively managed by addressing infections with antibiotics 228 

and using IVIg. The proband also has a history of Hashimoto’s thyroiditis, joint hypermobility, 229 

and consistently low immunoglobulin levels which likely contributed to frequent infections. 230 

Alongside the ATM variant, the patient inherited rare and ultrarare variants affecting DNA repair 231 

and innate immunity including a likely pathogenic variant in RNASEH2B, which codes for 232 

Ribonuclease H2, an enzyme that removes ribonucleotides that have been incorporated into 233 

replicating DNA, affecting double-stranded break repair kinetics67. Homozygosity for this variant 234 

leads to Aicardi-Goutières syndrome (AGS), a type I interferonopathy characterized by 235 

neurodevelopmental defects and upregulation of type I interferon signaling and 236 

neuroinflammation due to the effects of DNA damage67, 68. The patient also has ultrarare 237 

nonsynonymous variants of unknown significance in RAG2, NOD2, and a 24-base pair 238 

microduplication in SP110. Each of these genes has effects on innate immunity, but RAG2 is the 239 

only one with a strong connection to DNA repair, as described in the introduction1, 39, 40, 69. An 240 

NOD2 variant was transmitted from one of the parents. A second ultrarare variant in NOD2 was 241 

identified in the other parent (see Supplementary Table). 242 
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Cases 5-7 are siblings to case 4 who were all diagnosed with ASD, dysautonomia, and 243 

joint hypermobility. They all have a relapsing-remitting course characterized by abrupt onset 244 

OCD, anxiety, emotional lability, increased urinary frequency, oppositional behavior, and 245 

reduced social interactions, along with cognitive and behavioral regression. Relapses are 246 

typically coincident with infection. Case 5 had an MRI that showed right temporal sclerosis. 247 

Cases 6 and 7 have epilepsy, low levels of IgM and IgA, and relapses improve after clearance 248 

of infection and treatment with IVIg and/or a corticosteroid burst. Although they were not 249 

analyzed by WES, each was analyzed by Sanger sequencing for the variants found in the 250 

proband. Each sibling has inherited the ATM variant, and cases 5 and 6, the RNASEH2B 251 

variant. They have also inherited one of the two NOD2 variants. 252 

 253 

ATR (Ataxia telangiectasia and rad3-related protein) 254 

Cases 8 and 9 are siblings with regressive ASD and a relapsing-remitting course with relapses 255 

commonly coincident with infections. They both have a unique, transmitted ultrarare ATR variant 256 

of unknown significance. One parent has a history of Hashimoto’s thyroiditis and a family history 257 

of SLE, and the other parent has a history of joint hypermobility and childhood seizure disorder. 258 

ATR is a serine/threonine kinase and DNA damage sensor that functions as a master regulator 259 

of the DDR70-74. The proband, case 8, was a typically developing child with hypermobility who 260 

was well until abrupt behavioral regression occurred following “croup” at which time a diagnosis 261 

of ASD was made. The patient subsequently developed a relapsing-remitting course 262 

characterized by abrupt onset OCD, aggression, and mutism. Relapses appeared to be 263 

responsive to NSAIDs.  264 

The proband’s sibling, Case 9, was well until the development of an abrupt behavioral 265 

regression and loss of previously achieved milestones following a herpesvirus 6 infection, after 266 

which a diagnosis of ASD was made. The patient also has a relapsing-remitting course 267 

characterized by abrupt onset of OCD, restricted eating, rage, and depression. Relapses are 268 

typically coincident with infections. Symptoms typically respond to glucocorticoid bursts. MRI 269 

showed atrophy of the hippocampus, amygdala, caudate, and putamen. WES analysis of both 270 

cases 8 and 9 also revealed several other ultrarare variants of interest: NLRX1, CENPJ, 271 

CACNA1S, DBH, and CLPB. The most interesting from the DNA repair perspective is a 272 

pathogenic frameshift mutation in CENPJ, which codes for centromere protein J. Centromere 273 

regulation is critical for maintaining genomic stability, and defects lead to aberrant mitosis and 274 

activation of the cGAS-STING pathway74, 75. It is interesting to note that biallelic mutations in 275 

CENPJ and ATR can both cause Seckel syndrome, which is associated with cell-cycle 276 
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checkpoint signaling abnormalities76, 77. Another variant was found in NLRX1, which codes for a 277 

key player in the innate immune response that regulates NF-κB expression and has been 278 

implicated in autoimmune and inflammatory diseases78-81. A third sibling is typically developing 279 

and did not inherit the ATR variant but carries the CENPJ, CACNA1S, and CLPB variants. 280 

Thus, the two affected siblings with ASD and acute-onset neuropsychiatric symptoms have 281 

ultrarare variants in two genes that affect DNA repair, ATR, and CENPJ, as well as NLRX1 282 

DBH, CACNA1S, and CLPB.  283 

 284 

53BP1 (Tumor suppressor p53-binding protein 1) 285 

Case 10 has a history of developmental delay, and experienced severe regression as a young 286 

child characterized by loss of the ability to walk, loss of verbal skills, and new-onset enuresis. 287 

Upon WES, we found an ultrarare missense mutation in 53BP1, a p53-binding protein that 288 

regulates DDR 82-84. A preceding infection to initial deterioration was not ascertainable. 289 

However, the patient developed a relapsing-remitting course with relapses (abrupt onset of 290 

OCD, eating refusal, severe rage, and oppositional behavior) coincident with infections with 291 

improvement following treatment infections with antibiotics. The patient also developed 292 

Hashimoto’s thyroiditis, scoliosis, joint hypermobility, and gastroparesis. A parent has a history 293 

of Raynaud’s and fibromyalgia, and there is a family history of thyroid disease and Parkinson’s 294 

Disease. Parents have not been genotyped. In addition to 53BP1, several other ultrarare 295 

variants were found that could be playing a role in the clinical state via DNA repair. One is 296 

MED1, which codes for a mediator complex protein that plays a major role in homologous 297 

recombination, base excision repair, the maintenance of genomic stability, and p53-dependant 298 

apoptosis85. It has also been implicated in SLE86. Another is KMT2D, which codes for a histone 299 

methyltransferase that plays a role in DNA repair and has been implicated in autoimmune 300 

disorders87, 88. Finally, we found a nonsense mutation in MTO1, which regulates oxidative 301 

phosphorylation and has been found to affect DNA repair and recombination in yeast  89, 90.   302 

 303 

Fanconi Anemia Complex (FANCE, FANCP/SLX4, FANCA, and FANCI) 304 

FANCE (Fanconi anemia complementation group E) 305 

Cases 11 and 12, a sibling pair with common variable immune deficiency (CVID) and acute 306 

onset of neuropsychiatric symptoms; both carry an ultrarare missense mutation in FANCE. 307 

Case 11 met the diagnostic criteria for PANS, characterized by a relapsing-remitting course of 308 

abrupt onset OCD, anxiety, and rage. Episodes were commonly coincident with group A 309 

streptococcal infection and other infections and always improved after treating the infection 310 
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followed by a corticosteroid burst. IVIg (aimed to treat the underlying CVID) was associated with 311 

a reduced frequency of relapses but did not reduce the severity of relapses. Case 12 was 312 

diagnosed with ASD as a child after the abrupt loss of speech and eye contact following an 313 

infection. The patient regained eye contact and sociability, but apraxia of speech continued. He 314 

regressed again later in childhood and soon thereafter was diagnosed with PANS characterized 315 

by abrupt onset of OCD, anxiety, aggression (self-injurious behavior and property destruction), 316 

and tics, which improved after treating the infection followed by corticosteroids. The patient 317 

subsequently developed acute onset dysarthria and mutism and further evaluation revealed 318 

CSF pleocytosis, intracranial hypertension, and GAD antibodies (three times the upper limit of 319 

normal). Subsequent relapses responded to addressing infection followed by a corticosteroid 320 

burst. Relapse frequency (but not severity) was reduced following the introduction of IVIg to 321 

treat CVID. Due to a chronic progressive course, Rituximab was added, which was followed by 322 

documented improvements by the speech pathologist that were lost when B cells were 323 

repopulated (the speech pathologist was blinded to treatments and B cell repopulation).  324 

Consequently, Rituximab was scheduled quarterly. The clinical trajectory improved but 325 

deteriorations coincident with infections occurred, so Leflunomide was added as adjunct therapy 326 

which has led to further stabilization for 2 years. There is a positive history of an inflammatory 327 

skin disease on both sides of the family and a family history of an immunodeficiency syndrome, 328 

arthritis, lupus-related autoantibodies, recurrent sepsis, and recurrent septic joints. Both cases 329 

carry an ultrarare variant of unknown significance in VPS13B. Case 11 carries a maternally 330 

transmitted NOD2 variant that has been described as a risk allele in Crohn's disease90, 91. Case 331 

12 carries another ultrarare, pathogenic, novel variant involved in the DNA repair gene, 332 

THRAP3, which codes for thyroid hormone receptor-associated protein 3, an RNA processing 333 

factor involved in ATR kinase-dependent DDR and the expression of several DNA repair 334 

proteins, including FANCL 92, 93.  335 

 336 

FANCI (Fanconi anemia, complementation group I) 337 

Case 13 is a neurotypical child who developed a sudden onset of OCD, fatigue, restricted 338 

eating, severe anxiety, enuresis, and insomnia following an upper respiratory infection. 339 

Autoimmune thyroiditis was diagnosed based on having high titers of anti-thyroid peroxidase 340 

and anti-thyroglobulin antibodies, an elevated TSH, and an ultrasound. A nonsense mutation in 341 

FANCI was identified. There was a partial response to intravenous glucocorticoids, IVIg, and 342 

Rituximab. Case 11 also carries ultrarare variants in two other genes that affect DNA repair. 343 

One is a non-synonymous variant in another FC gene, FANCP/SLX4, which may be a benign 344 
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variant. However, cases 14 and 15 also have an ultrarare variant in this gene (see below). The 345 

other is a variant in the DNA repair gene, LIG4, which codes for DNA Ligase IV, a key enzyme 346 

involved in repairing DNA double-strand breaks through non-homologous end joining and 347 

sealing DNA breaks that occur during V(D)J recombination94, 95. LIG4 mutations cause 348 

autoimmune and immunodeficiency disorders95, 96. 349 

 350 

FANCP/SLX4 Fanconi anemia, complementation group P/Structure-Specific 351 

endonuclease subunit) 352 

Cases 14 and 15 are siblings diagnosed with CVID who carry a pathogenic mutation in 353 

TNFRSF13B, which is one of the more common variants found in immune deficiencies97, 98. The 354 

same variant has been found in several other PANS cases (unpublished observations). They 355 

also share an ultrarare variant in FANCP/SLX4, but the relatively low CADD score suggests that 356 

the gene alone is not sufficient to explain the severe clinical presentation. Case 14 has a history 357 

of acute neuropsychiatric decompensation consistent with PANS, who initially responded to 358 

treatment with corticosteroid bursts and IVIg and further stabilized on Anakinra. Case 15 initially 359 

presented with anxiety but has regressed substantially, developing a seizure disorder and 360 

autoimmune encephalitis (AE) that has partially responded to Rituximab, glucocorticoids, and 361 

IVIg. Anakinra has not been effective. MRI indicates atrophy. The siblings also have an ultrarare 362 

missense mutation adjacent to a splice acceptor site in DOCK8, which has been implicated in 363 

immune deficiency and autoimmune disorders65, 99. Both also share a variant in MEFV (pyrin), 364 

an inflammasome regulator gene that is commonly mutated in autoinflammatory disorders100-103. 365 

Finally, they both have an ultrarare variant in RMRP, a noncoding RNA that functions as the 366 

RNA component of mitochondrial RNA processing endoribonuclease. This is a very intriguing 367 

candidate according to our DNA repair model as it acts as an inhibitor of p53104, 105. A 368 

comparison between wild-type and mutant alleles using RNAfold shows differences in the 369 

secondary structure, suggesting that it could be functional (Supplementary Figure). 370 

 371 

FANCA Fanconi Anemia, Complementation Group A 372 

Case 16 is a previously healthy and neurotypical child who presented with abrupt-onset OCD, 373 

eating restriction, severe irritability, hyperactivity, aggression, mood swings, sensory 374 

amplification, and headaches. Physical exams showed truncal instability, subtle choreiform 375 

movements, folliculitis, and findings consistent with enthesitis and arthritis (confirmed on joint 376 

ultrasound). Labs indicate persistently elevated vasculitis markers (high vWF Ag and D-dimers 377 

after COVID-19), persistently elevated C4, and persistent microcytic anemia thought to be 378 
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secondary to chronic inflammation. The patient has had a secondary progressive course with 379 

relapses coincident with infections (influenza, mycoplasma, COVID-19, and sinusitis) with partial 380 

improvement after bacterial infections were treated. Psychotropics and CBT have been 381 

minimally helpful. The patient did not tolerate oral or IV steroids, IVIG, or immunomodulation 382 

aimed at treating arthritis and systemic inflammation (e.g., methotrexate, sulfasalazine, and 383 

azathioprine). There has been a partial response to NSAIDs, and more recently, a solid 384 

trajectory of improvement since introducing colchicine. An ultrarare pathogenic variant 385 

(according to AlphaMissense) was found in FANCA. In addition, ultrarare variants were found in 386 

five other genes that have effects on innate immune function, but no direct effect on DNA repair. 387 

The most important is a pathogenic variant in UNC93B1, a regulator of nucleic acid-sensing toll-388 

like receptors (e.g., TLR3, TLR7, and TLR8) and interferon and STING signaling, suggesting a 389 

synergistic interaction with FANCA-related DNA repair defects106-108. The others are ultrarare 390 

variants of unknown significance in NLRP1, TICAM1, TYK2, and TCN2. NLRP1, TICAM1, and 391 

TYK2 have regulatory effects on the innate immune system, including nucleic acid sensing, and 392 

have been implicated in autoimmune disorders109-112.  393 

First-degree relatives have migraines, recurrent sinusitis, recurrent pancreatitis, and 394 

spondylarthritis. First-degree family members also have anxiety, OCD, ADHD, and depression. 395 

 396 

Discussion 397 

Sixteen cases were identified with ultrarare variants in protein-coding genes related to p53 and 398 

FC DNA repair pathways: PPM1D, ATM, ATR, 53BP1, FANCE, FANCI, FANCP/SLX4, and 399 

FANCA. These were often accompanied by additional rare variants related to DNA repair and/or 400 

immune deficiencies. Most individuals in this study have an underlying neurodevelopmental 401 

disorder, with approximately half diagnosed with ASD. The unifying feature for these cases is 402 

the distinct, acute onset change in behavior, severe psychiatric symptoms, and loss of function 403 

in association with infections and other stressors. Many cases have symptoms consistent with 404 

PANS, while others had acute, severe neuropsychiatric decompensation (e.g., mutism, 405 

behavioral regression, loss of previously learned skills, cognitive dysfunction) that did not meet 406 

clinical criteria for PANS. Co-morbid inflammatory conditions were common, including vasculitis 407 

signs (n=2), enthesitis and/or arthritis (n=3), thyroiditis, and/or elevated thyroid antibodies (n=3). 408 

Inflammatory conditions were also common among first-degree family members. Three cases 409 

had abnormal MRI scans (cases 5, 9, and 15), and one (case 3) had a normal study. 410 

Pleocytosis and moderately elevated anti-GAD antibodies were found in case 12. Clinical 411 

improvement was observed in most cases following the resolution of infections and the 412 
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application of immunomodulation (NSAIDS, corticosteroids, IVIg, Rituximab, colchicine, etc.). 413 

The findings are congruent with our previous work and provide further support for our 414 

hypothesis that DNA repair deficits are a vulnerability factor for neuropsychiatric 415 

decompensation. 416 

The DNA repair hypothesis first emerged from our original genetic analysis in which 417 

three out of the five immune genes we identified have strong connections to this process: 418 

PPM1D, CHK2, and RAG11. The idea that DNA repair deficits underlie PANS and acute 419 

decompensation in NDD is novel, although studies linking DDR to behavior have been 420 

described. For example, postmitotic genome instability in neurons can lead to behavioral 421 

alterations and neurodegenerative disorders, and genetic studies show that DNA repair genes 422 

are involved in genetic subgroups of ASD and NDDs including most of the genes described in 423 

this report (e.g., PPM1D, ATM, ATR, 53BP1, FANCE, FANCI, and FANCP/SLX4)113-120.  424 

The two major gene families affecting DNA repair described in this paper code for 425 

proteins involved in the p53 and FC pathways. So far, between the current study and our 426 

previous report, we have found ultrarare variants in five protein-coding genes that directly affect 427 

p53: PPM1D, ATM, CHK2, ATR, and 53BP1. Among these genes, pathogenic mutations were 428 

found in PPM1D, ATM, and, in our previous study, CHK2. The ultrarare ATR and 53BP1 429 

variants described in this paper, however, are variants of unknown significance that will require 430 

replication and functional validation. Remarkably, we also found an ultrarare variant in the long 431 

non-coding RNA gene, RMRP, a p53 inhibitor104, 105. RMRP expression is induced by immune 432 

activators and is increased in autoimmune/autoinflammatory disorders121. As described in the 433 

results section, structural differences between the mutant and wild-type alleles were predicted 434 

by RNAfold, but again, functional validation would be needed to determine whether the RMRP 435 

variant we identified affects p53 function and DNA repair.  436 

Ultrarare variants were found in four different FC genes: FANCE, FANCP/SLX4, FANCI, 437 

and FANCA. Among these, all are predicted to be pathogenic, except the FANCP/SLX4 438 

variants. However, the fact that two different ultrarare variants were found in this gene in three 439 

cases from two families increases the likelihood they are playing a role. Interestingly, FC 440 

proteins interact with components of the p53 DDR pathway, including ATM and ATR (Figure 441 

2)122-125.  442 

Some researchers have suggested that autoimmune and/or autoinflammatory processes 443 

underlie the development of behavioral regression in PANS and in a subgroup of individuals 444 

with ASD35, 126-128. Impaired DDR may be one mechanism for these associations as it can lead to 445 

leakage of nuclear DNA into the cytosol, which can trigger the cGAS-STING pathway, a key 446 
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component of the type I interferon (IFN-I) anti-viral innate immune response, especially following 447 

an infectious disease trigger66, 129-131. Mitochondrial DNA breaks and oxidized mitochondrial DNA 448 

released into the cytosol can also trigger cGAS-STING132-134. AIM2 inflammasome signaling, 449 

which leads to the induction of IL-1β and IL-18, is also triggered by cytosolic DNA135, 136.  450 

Physiological activation of cGAS-STING is central for the response to foreign viral DNA, 451 

and perhaps viral RNA as well41. However, studies show that over-activation can lead to 452 

autoimmune, autoinflammatory, and neurodegenerative disorders137-140. For example, increased 453 

IFN-I responses mediated by cGAS-STING due to abnormal clearance of cytosolic DNA and 454 

RNA have been implicated in the pathogenesis of autoimmune disorders including SLE and 455 

aggressive rheumatoid arthritis141-144. Circulating type I IFN levels are elevated in approximately 456 

50% of patients with SLE and IFN receptor inhibition is an approved therapy145, 146. A substantial 457 

fraction of SLE patients have neuropsychiatric symptoms147, 148.  It has also been proposed that 458 

some neurodegenerative disorders involve cGAS-STING signaling, including Alzheimer’s 459 

Disease (AD), Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's 460 

disease (HD), and multiple sclerosis (MS)149-151. Markers for neurodegenerative disorders are 461 

elevated in 27% of patients with psychiatric disease preselected for suspected immunological 462 

involvement and phenotypes including catatonia, agitation, and acute onset of symptoms similar 463 

to the cases described here, although the genetic data is not available 464 

(https://doi.org/10.21203/rs.3.rs-3491787/v1). Early immunological interventions may mitigate 465 

some damage, but this needs to be confirmed in clinical trials. However, other forms of damage 466 

may accumulate over time that are not responsive to immunological interventions. 467 

In addition to nuclear DNA, disruption of mitochondrial integrity can also lead to the 468 

release of mitochondrial DNA into the cytoplasm, which is a potent cGAS-STING trigger132-134. A 469 

few of the genes described in this report have effects on mitochondria (e.g., MTO1, SLC13A5, 470 

RMRP). Some FC proteins also regulate mitochondrial DNA replication fork stability that can 471 

activate the mtDNA-dependent cGAS/STING response when dysfunctional, and FANCI has 472 

been found to regulate PRKN-mediated mitophagy152, 153. 473 

 A large number of cases had more than one DNA repair gene mutation. This could be 474 

due to ascertainment bias since most of the cases we studied had severe symptoms and 475 

accompanying neurodevelopmental problems, which could have prompted genetic testing by 476 

their physicians. Gene panels rather than WGS per se were performed in many cases, which 477 

could cause ascertainment bias due to the selection of genes represented on the commercially 478 

available gene panels (Table). However, the histories of autoimmune disorders from both 479 

parents in many cases suggest true bilineal inheritance of risk variants. 480 
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The current paper explores a genetic subgroup linked to impaired DNA repair with acute 481 

onset of severe psychiatric symptoms or regression in children associated with infections. It is 482 

important to note that non-infectious cellular stressors can also induce DNA damage and 483 

activate cGAS-STING, such as cellular injury, heat shock, and oxidative stress154, 155. In 484 

addition, recent studies suggest that faulty DNA repair could disrupt several cellular processes 485 

beyond an innate immune response, such as autophagy, senescence, and apoptosis156-158.  486 

Clinically, if our findings are confirmed, they could lead to specific diagnostic tools and 487 

new treatments for infection-associated psychiatric episodes and behavioral decompensation in 488 

PANS, ASD, and other NDDs in those with DNA repair mutations, targeting putative over-489 

stimulated immune pathways (e.g., type I interferons and AIM2 inflammasomes). To validate our 490 

findings, more studies are needed to integrate longitudinal clinical data, genetics, and 491 

immunophenotypes. Functional studies on immune cells from patients, and microglia from 492 

animal models and induced pluripotent stem cells (iPSCs) are also needed. Studies using iPSC-493 

derived microglia with genetic variants in DNA repair genes are ongoing. 494 
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Figure Legends 910 

Figure 1. p53 DNA repair pathway. A simplified depiction showing the regulation of p53 tumor 911 

suppressor activity by phosphorylation triggered by ATM, ATR, CHK1, and CHK2 kinases, and 912 

dephosphorylation by PPM1D. P53 activation can induce apoptosis or cell cycle arrest, which 913 

will eliminate DNA-damaged cells or provide an opportunity to repair the damage, respectively. 914 

Loss of function mutations in ATM or gain of function mutations in PPM1D, such as those found 915 

in patients with acute neuropsychiatric decompensation in cases 1-7, would be expected to lead 916 

to a decrease in p53 activity.  917 

Figure 2. Fanconi Core Complex. The Fanconi Core Complex of proteins repairs interstrand 918 

crosslink breaks (Figure adapted from reference 49). The letters are abbreviations for the 919 
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Fanconi complex proteins (i.e., “A” is FANCA; “E” is FANCE, etc.). Monoubiquitinated (Ub) 920 

FANCD2 and FANCI form a dimer that binds to crosslink repair sites, which leads to the 921 

recruitment of nucleases that repair the DNA lesion (reference 53). All of the Fanconi complex 922 

genes described in this paper are depicted in bold type (FANCE, SLX4, FANCE, and FANCA). 923 

Interactions between Fanconi proteins with ATM/ATR are shown. The image was generated 924 

using biorender https://www.biorender.com/). 925 

Figure 3. Protein-Protein Interaction Network: STRING. A connectivity network was 926 

generated for the candidate genes using IPA software. Central to the network are ATM and p53. 927 

Genes described in the paper that do not fit into the connectivity network are not shown (C7, 928 

DBH, SLC13AS, SRPK3, NLRX1, MTO1, CACNA1H, CACNA1S, CLPB, AHNAK2). SLX4 = 929 

FANCA/SLX4, TP53=p53, and TP53BP1 = 53BP1. 930 

Supplementary Data 931 

Supplementary Methods. An expanded description of the methods and primers used for 932 

Sanger DNA sequencing. 933 

Supplementary Table. Description of additional gene variants found upon whole exome 934 

sequencing or the analysis of gene panels.         935 

Supplementary Figure. RMRP secondary structures. The RNAfold web server was used to 936 

predict secondary structures for wild-type and mutant (c. C126T) RMRP RNAs. Differences 937 

between the two, especially in the centroid secondary structures, are seen.  938 

 939 
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Table. Description of all primary DNA repair variants. *Age range at diagnosis; Dx: diagnosis (JdVS: Jansen de 
Vries Syndrome, AR: acute regression, PANS: pediatric acute-onset neuropsychiatric syndrome, AE: 
autoimmune encephalitis, DD: developmental delay, CVID: common variable immune deficiency); variant 
shows the cDNA and amino acid changes; type shows how the mutation affects gene function; CADD: 
Combined Annotation score; N/A not available. ClinVar is the predicted pathogenicity based on the ClinVar 
database; AlphaMissense is the predicted pathogenicity based on amino acid change (see main text); 
Inheritance pattern shows that the variant in question was either de novo or transmitted from a parent. The sex 
of the parent was omitted to maintain anonymity; MAF: Minor allele frequency; Map position shows coordinates 
of variants based on hg38 build; rs number is based on SNP database; Additional variants were found in each 
case (see Supplemental table for descriptions; Genome sequencing shows the genetic analysis that was 
carried out; validation by Sanger sequencing         

Case Family Age* Gene Dx Variant Type CADD ClinVar AlphaMissense Inheritance MAF Map position hg38 rs number Additional rare and ultrarare variants Genome sequencing validation

1 N/A 16-20 PPM1D JdVS, AR, PANS c.1535delA; p.Asn512fsXs frameshift N/A pathogenic N/A de novo 0.00002 chr17:60663013 rs763475304 CSNK1a1, SRPK3, SLC13A5, CACNA1S GeneDx (WES) yes

2 N/A 6 to 10 PPM1D JdVS, AR c.1573G>T; p.Glu525Ter nonsense 39 uncertain significance N/A de novo 7E-06 chr17:60663307 rs759850701 none reported NHS North West (NDD panel) no

3 N/A 11 to 15 ATM PANS c.7517_7520 del; p.Arg2506fs frameshift N/A pathogenic N/A parent 8E-06 chr11:108331342-108331548 rs587781905 CACNA1H, AHNAK2 Balor Genetics (WES) no

4 1 6 to 10 ATM ASD, AR, PANS c.8418+5_8418+8delGTGA splice donor N/A pathogenic N/A parent 4E-06 chr11:108343272-108343479 rs730881295 RNASEH2B, RAG2,  C7,  NOD2, SP110 Invitae (Immunodeficiency Panel) yes

5 1 11 to 15 ATM ASD, AR, PANS c.8418+5_8418+8delGTGA splice donor N/A pathogenic N/A parent 4E-06 chr11:108343272-108343479 rs730881295 RNASEH2B, RAG2, NOD2 (rs529640892) Sanger sequencing of case 4 variants yes

6 1 6 to 10 ATM ASD, AR, PANS c.8418+5_8418+8delGTGA splice donor N/A pathogenic N/A parent 4E-06 chr11:108343272-108343479 rs730881295 RNASEH2B, C7, NOD2 (rs529640892) GeneDx (WES) yes

7 1 6 to 10 ATM ASD, AR, PANS c.8418+5_8418+8delGTGA splice donor N/A pathogenic N/A parent 4E-06 chr11:108343272-108343479 rs730881295 RAG2, NOD2 (rs140716236), SP110 Sanger sequencing of case 4 variants yes

8 2 0-5 ATR ASD, PANS AE c.2507A>T; p.Asp836Val missense 24 not found benign, 0.095 parent unknown chr3:142,553,850 novel CENPJ, NLRX1, DBH, CACNA1S, CLPB Courtagen Diagnostics Laboratory (WES) yes

9 2 0-5 ATR ASD, PANS, AR c.2507A>T; p.Asp836Val missense 24 not found benign, 0.095 parent unknown chr3:142,553,850 novel CENPJ, NLRX1, DBH, CACNA1S, CLPB Courtagen Diagnostics Laboratory (WES) yes

10 N/A 0-5 53BP1 DD, AR, PANS c.G3307T; p.Asp1103Tyr missense 21.7 not found benign, 0.1176 unknown 0.00002  chr15:43432462 rs551038749 MED1, KMT2D, MTO1 Einstein Epigenetics Shared Facility (WES) yes

11 3 0-5 FANCE CVID, PANS c.127G>A; p.Gly43Ser missense 23.1 uncertain significance ambigous, 0.4766 parent unknown chr6:35452572 rs892819655 VPS13B Invitae (Immunodeficiency Panel) yes

12 3 0-5 FANCE CVID, DD,AE c.127G>A; p.Gly43Ser missense 23.1 uncertain significance ambigous, 0.4766 parent unknown chr6:35452572 rs892819655 VPS13B, THRAP3,  NOD2 Invitae (Immunodeficiency Panel) yes

13 N/A 11 to 15 FANCI AE, PANS c.1461T>A; p.Tyr487Ter nonsense 37 pathogenic/likely pathogenic N/A unknown 0.00003 chr15:89281149 rs769248873 FANCP/SLX4, LIG4 Invitae (Immunodeficiency Panel) no

14 4 6 to 10 FANCP CVID, PANS, AE c.2623 G>A; p.Glu875Lys missense 14.15 not found benign, 0.0771 unknown 1.6E-05 chr16:3590914 rs924446221 RMRP, MEFV, TNFRSF13B, DOCK8 Invitae (Immunodeficiency Panel) no

15 4 6 to 10 FANCP CVID, AE c.2623 G>A; p.Glu875Lys missense 14.15 not found benign, 0.0771 unknown 1.6E-05 chr16:3590914 rs924446221 RMRP, MEFV, TNFRSF13B, DOCK8 Invitae (Immunodeficiency Panel) no

16 N/A 6 to 10 FANCA PANS c.1771C>G; p.Arg591Gly missense 21.9 uncertain significance pathogenic, 0.6394 unknown 0.00006 chr16:89778848 rs753980264 UNC93B1, NLRP1, TICAM1, TYK2,  TCN2 Invitae (Immunodeficiency and Ciliary Dyskinesia Panels) no
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