
Long-read sequencing of an advanced cancer cohort resolves
rearrangements, unravels haplotypes, and reveals methylation
landscapes

Kieran O’Neill1*, Erin Pleasance1*, Jeremy Fan1*, Vahid Akbari1,5*, Glenn Chang1*, Katherine
Dixon1*, Veronika Csizmok1*, Signe MacLennan1,5,8*, Vanessa Porter1,5,8, Andrew Galbraith1,
Cameron J. Grisdale1, Luka Culibrk1, John H. Dupuis1, Richard Corbett1, James Hopkins1,
Reanne Bowlby1, Pawan Pandoh1, Duane E. Smailus1, Dean Cheng1, Tina Wong1, Connor
Frey2, Yaoqing Shen1, Luis F. Paulin3, Fritz J. Sedlazeck3, Jessica M.T. Nelson1, Eric Chuah1,
Karen L. Mungall1, Richard A. Moore1, Robin Coope1, Andrew J. Mungall1, Melissa K.
McConechy1, Laura M. Williamson1, Kasmintan A. Schrader4,5, Stephen Yip6, Marco A.
Marra1,5,8, Janessa Laskin7, Steven J.M. Jones1,5+

1 Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, Canada
2 Department of Medicine, University of British Columbia, Vancouver
3 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
4 Hereditary Cancer Program, BC Cancer, Vancouver BC, Canada
5 Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
6 Department of Pathology and Laboratory Medicine, University of British Columbia,
Vancouver BC, Canada
7 Department of Medical Oncology, BC Cancer, Vancouver, Canada
8 Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
*Contributed equally
+Corresponding author

Abstract
The Long-read POG dataset comprises a cohort of 189 patient tumours and 41 matched
normal samples sequenced using the Oxford Nanopore Technologies PromethION platform.
This dataset from the Personalized Oncogenomics (POG) program and the Marathon of
Hope Cancer Centres Network includes accompanying DNA and RNA short-read sequence
data, analytics, and clinical information. We show the potential of long-read sequencing for
resolving complex cancer-related structural variants, viral integrations, and
extrachromosomal circular DNA. Long-range phasing of variants facilitates the discovery of
allelically differentially methylated regions (aDMRs) and allele-specific expression, including
recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in
MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and
RAD51C is a likely driver behind patterns of homologous recombination deficiency where no
driver mutation was found. This dataset demonstrates applications for long-read sequencing
in precision medicine, and is available as a resource for developing analytical approaches
using this technology.
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Main

Cancer is a multifaceted, heterogeneous disease that arises from a diverse array of genetic
alterations. Comprehensive profiling methods have emerged as fundamental tools for
deciphering the distinct genetic landscape and biology of each tumour and identifying
therapeutic vulnerabilities1,2. While panel-based sequencing approaches have become
routine in clinical settings3,4, the significance of whole genome and whole transcriptome
analysis (WGTA) has progressively gained recognition, in both pediatric and adult
cancers5–8. WGTA reveals driver mutations, gene fusions, expression alterations and
genome signatures, significantly contributing to our understanding of cancer genome
landscapes and informing tailored therapeutic choices for patients9.

Cancer profiling has to date been predominantly reliant on short-read sequencing methods,
which while very successful have inherent challenges and constraints due to read length10.
More recently, long-read sequencing, exemplified by Pacific Biosciences and Oxford
Nanopore Technologies (ONT), can routinely produce reads of tens of thousands of bases,
which impacts complex structural variant calling and ultra-long variant phasing11. In contrast,
phasing to identify which variants occur on the same chromosome on the basis of short
reads alone requires parental genotypes or statistical inference from reference populations.
Another notable feature of sequencing native DNA using long-read technologies is the
simultaneous detection of 5-methylcytosine12,13. Short-read methodologies require separate
samples with an experimentally intensive assay for methylation detection (for example,
bisulfite sequencing). DNA methylation is a key driver of many cancers, and characterizing
DNA methylation has potential diagnostic, prognostic, and therapeutic applications14,15.
Explorations of long-read sequencing in small cohorts of adult and pediatric tumours have
proven fruitful, unveiling complex rearrangements, viral integrations, and tumour-specific
methylation alterations16–18.

To achieve the potential of long-read sequencing in cancer genomics, the development of a
comprehensive suite of analytical methods tailored explicitly for tumour analysis is
imperative. Existing tools are often unsuited for cancer analysis or have been tested solely
on cell-line data19,20. Patient-derived cancer samples encompass diverse features, including
tumour heterogeneity, normal cell contamination from distinct tissues, and variability in
mutation burden1,2, mandating analytical method refinement. To date, the absence of a
sizable cohort of patient-derived cancer cases subjected to long-read sequencing has
impeded progress in developing cancer-specific analytical approaches.

Here we present data from the Long-read POG cohort of 189 tumour samples obtained from
181 patients enrolled in the Personalized Oncogenomics (POG) program (NCT#02155621),
sequenced using an ONT PromethION as part of the Marathon of Hope Cancer Centres
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Network. Each case in this cohort has also been studied using Illumina short-read normal
whole genome sequencing (WGS), tumour WGS, and tumour RNA-seq. Our analyses
illustrate the broad potential utility of this dataset in personalized oncogenomics. All data
have been deposited in the European Genomics Archive as a resource for developers of
software for tumour characterization from nanopore long-read data.

Results

The Long-read POG Cohort

Samples for long-read sequencing, previous short-read sequencing data, and short-read
analysis were provided by the POG program, a precision medicine initiative that seeks to
integrate WGTA into the clinical care of advanced cancer patients2,6 (Supplementary Table
1). The criteria used to select samples for long-read analysis included mutations in
epigenetic modifiers, structural variant burden or homologous recombination deficiency
(HRD), and presence of human papillomavirus (HPV). This Long-read POG cohort consists
of 189 tumour samples from 181 patients. Of these, 43 tumour samples from 41 patients
have matched normal nanopore sequencing allowing for somatic variant detection from
long-read data. There were 26 cancer types represented, with the most common being
breast (n=38, 20%), sarcoma (n=27, 14%) and colorectal (n=22, 12%) (Figure 1a). The
majority of the tumours (n=144, 76%) were from biopsies of metastatic sites, frequently liver
(n=63, 33%) and lymph nodes (n=30, 16%), while the rest were local recurrences or
refractory disease (n=45, 24%). Patients received between zero and nine lines of systemic
therapy before sequencing, and had a median overall survival of 34 months from diagnosis
of advanced disease and 17 months from biopsy (Extended Data Figure 1a,b,
Supplementary Table 1). The tumour mutation burden (TMB) determined from short-read
variant analysis varied from 0.4 to 274 mutations per megabase (mut/Mb, median: 4.9), with
seven cases exhibiting microsatellite instability (MSI; Figure 1b). HRD, as measured by the
HRDetect score on short-read data, was considered high for 26 samples (14%), the majority
of which (14/26) were breast or ovarian cancers. The tumour content ranged from 21-100%
(median 67%).

Automated library construction and nanopore sequencing on the PromethION platform
(Figure 1c, Extended Data Figure 1c,d) yielded a median of 17.5-fold and 26-fold haploid
genome coverage for normal and tumour samples, respectively (Figure 1d). The reads had a
median N50 length of 31.3 kbp, with the longest read spanning 1,036,455 bp. Reads longer
than 20 kb accounted for 77.8% of the sequence data. Median base error (the edit distance
of aligned reads to the GRCh38 reference) was 4%. Chimeric artifacts were present in a
median of 4.1% of the reads. Assessment for microbial contamination showed fewer than
0.2% of reads matching microbial taxa in any sample, which is below the false-discovery rate
for the method used 21.
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Figure 1. Nanopore long-read sequencing of an advanced cancer cohort. (a) Tumour types (top)
and metastatic sites (bottom) for patient samples. Each patient is represented once; tissue groups
with fewer than 5 samples are shown under ‘other’. (b) Genomic features of tumours by type. TMB,
tumour mutation burden; mut/Mb, mutations per megabase; HRD, homologous recombination
deficiency; BRCA, breast; SARC, sarcoma; COLO, colorectal; PANC, pancreatic. Boxplots represent
the median, upper and lower quartiles of the distribution, and whiskers represent the limits of the
distribution (1.5xIQR). ‘Other’ tumour group includes all tumours not in five most common tumour
types, n=72. (c) Schematic overview of the laboratory methods and primary analysis for this cohort.
(d) Approximate fold coverage per sample sequenced, and per-flowcell quality control statistics.
Median yield of 68.4 Gbp per flowcell. Using BioBloom tools21, a median of 97.8% of reads matched
the human reference, while no sample showed more than 0.2% of reads matching microbial taxa.
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Nanopore sequencing reveals novel complex SVs

We sought to evaluate the potential of nanopore sequencing, combined with currently
available software, for detecting SVs in cancer samples. To this end, we applied four variant
callers, two with the ability to call somatic events and two without (Figure 2a, 2b,
Supplementary Table 3). We began by compiling a list of well-established oncogenic fusion
events that were previously identified using short-read sequencing in this cancer cohort22. Of
these, 8/8 were successfully identified in the nanopore sequencing data using a combination
of SV callers (Supplementary Table 2), despite lower median sequencing depth of 26X for
long-reads compared to short-reads typically at 80X.

We further compared somatic long-read calls with high-confidence somatic calls previously
made in short-read data2 (see Methods). Of those, 1,919 (54.1%) duplications, 1,943
(57.1%) inversions, 3,358 (37.6%) deletions, and seven (<1.0%) insertions were consistent
between the short- and long-read datasets (see Methods) (Figure 2c). To understand the
disparities between the calls made on the different platforms, we manually reviewed those
calls that overlapped cancer genes (Supplementary Table 5). The absence of calls in the
nanopore results were attributed to lower coverage in 3/4 (75%) of samples. Conversely, all
of the events unique to the nanopore calls (6/6) showed evidence in the underlying nanopore
sequence alignment, but not in the short-read. In 4/6 samples this difference was attributed
to low-complexity regions which could not be mapped with shorter reads. The remaining two
calls were complex variants that could not be fully resolved by the short-read callers.

We examined these two complex SVs in depth. The first was a loss-of-function inversion,
deletion and duplication in SMG1 in a colorectal adenocarcinoma sample (POG117, Figure
2d). The second was an inversion with multiple duplication events that predicted a frameshift
and likely loss of function of one allele of the tumour suppressor HIRA in a metastatic breast
cancer sample (POG279, Figure 2e). These complex SVs showed an overlapping
breakpoint in an L1MB4 LINE element and an AluY element respectively, underscoring the
capacity of long-read sequencing to resolve some SVs in repetitive regions.

The greatest disparity in somatic calls was a notably greater number of insertions called in
the nanopore data (Figure 2c). We manually reviewed the underlying sequence data for
those affecting cancer genes. Of these, 8/14 were identified as miscalls resulting from
difficult-to-map regions. The remaining 6/14 had underlying nanopore sequence evidence
but were missed or mischaracterized by short-read callers (Supplementary Table 4;
Supplementary Figure 1a,b). Notably, all 14 of these insertion calls were made by a single
SV caller, nanomonSV. This highlights the potential for long reads but also the need for
further development of nanopore somatic SV calling software.

Four samples exhibited clear outlier behaviour in terms of the number of SV calls of a
particular type (Extended Data Figure 2a). Two patients, POG884 and POG986, had tenfold
more insertion calls than the median, but only in the nanopore calls, accounting for
1,837/4,126 of the Nanopore-only insertion calls mentioned above. These were the only two
cases (of those with somatic calls) with MSI. On examining the insertions themselves, the
majority (71.5%) overlapped short tandem repeat regions, consistent with MSI repeat
expansions (Extended Data Figure 2b)23. Two other cases, POG111 and POG147, exhibited
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high nanopore-unique inversion frequencies. These showed copy number alteration (CNA)
and inversion profiles which have been previously characterised as “tyfonas”24 (Extended
Data Figure 3a,b,c).

Oncoviral integrations detected by long reads impact surrounding gene
expression

Human papillomavirus (HPV) infection is the driving cause of cervical cancer and implicated
in many head and neck and anogenital cancers. HPV integration into the host genome is
frequent, and integration events often involve a complex combination of structural alterations
and multiple copies of the 8 kb viral genome. This complexity makes mapping with short
reads difficult. We investigated the ability of long-read sequencing to reconstruct HPV
integration events and their effects.

We investigated five samples with HPV previously detected in short-read data and confirmed
in this study. Of these, four had HPV integration detected, each at a single host genome
location (Figure 2f, Supplementary Table 1). We identified three of these events as simple,
meaning that they were made up of only two integration breakpoints. The remaining event, in
POG109, was complex, incorporating seven HPV-to-host genome breakpoints within a 130
kb region in the 8q24 locus, 300 kb downstream (3’) of MYC and overlapping the
MYC-associated lncRNA PVT1 (Figure 2g). This event also overlapped several SVs and
oscillating copy number states, which resembled focal chromothripsis (Extended Data Figure
4b).

Three of the integration events were associated with elevated expression (≥85th percentile2;
Extended Data Figure 4a) of neighbouring cancer genes, including P3H2, MYC, CDKN2A
and CDKN2B. POG109 exhibited allele-specific expression (ASE) of PVT1, the gene it
overlapped, with higher expression from the haplotype containing the integration. POG785
(which had overexpression of CDKN2A and CDKN2B), exhibited ASE of CDKN2B, also with
higher expression from the haplotype containing the integration.
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Figure 2. Structural Variants. (a) Per-sample counts of all SV calls (including germline) by type for all tumours
(n=189). (b) Per-sample counts of somatic SV calls in samples with matched normal (n=43). (c) Concordance
between high quality somatic Illumina SV calls (I) and nanopore SV calls with at least 1 caller support (N),
summed across the cohort. (d) Schematic of a resolved complex foldback inversion affecting SMG1, including a
deletion of exons 26-38, detected only in the nanopore data. (e) Schematic of a resolved complex foldback
inversion affecting HIRA, including duplication of exon 16-17, detected only in the nanopore data. (f) Features of
HPV integration characterised using nanopore sequencing in the five tumours with HPV. (g) Diagram of a
complex rearrangement involving HPV integration sites in cervical cancer POG109.
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Long-range phasing enables resolution of double hits to tumour
suppressors

We assessed the ability of nanopore sequencing to enable long-range phasing, particularly
of tumour suppressor genes (TSGs). The biallelic inactivation of TSGs is an important
mechanism of tumour formation, with potential biological and clinical significance for
informing diagnosis, disease prognosis and/or response to therapy. We found that phase
block size was strongly correlated with read length (Spearman’s rho 0.72, P ≤ 2.2x10-16,
Figure 3a). Phasing was able to completely resolve the haplotypes of the majority of genes
in each sample, from promoter to 3’ end (median 85%, IQR 79.1-89.1%). This included most
putative and known tumour suppressor genes (Figure 3b), although longer genes were
completely phased less often (Spearman’s rho -0.65, P ≤ 2.2x10-16). However, several
notable tumour suppressors of modest size, including BRCA1, NF1 and RB1, could only be
phased completely in around half of tumours, suggesting other locus-related features may
reduce their phasing potential. Further investigation showed that this was due to lower
density of phasing SNPs and greater density of repetitive or paralogous sequences that may
not be fully resolved at modest read lengths (Extended Data Figure 5). In tumour genomes,
ploidy, genomic instability, loss of heterozygosity and somatic variation may further influence
global and local phasing.

Biallelic tumour suppressor inactivation may occur via different combinations of loss of
heterozyosity (LOH) and small mutations. When two small inactivating mutations are called
by short-read sequencing in the same TSG, it is often assumed that they are in trans. In the
Long-read POG cohort, cases with two or more small somatic variants in tumour suppressor
genes with potential biological and/or clinical significance were identified by retrospective
review of the genomic report issued at the time of POG analysis. There were 30 cases
identified with double somatic variants in at least one tumour suppressor gene. Among 33
pairs of variants (with three variants in one case), 19 pairs across 18 cases could be phased
by long reads (Table 1). Variants for which phase could not be confirmed included variants
supported by only one read, variants not within a phase block, and variants supported by
reads with conflicting haplotype assignments. The majority (n = 17) of pairs were found to
occur in trans, while two were found to occur in cis: double somatic variants in PTEN
(POG507) and KAT5 (POG446). Notably, the double somatic variants in PTEN were found to
occur on the opposite allele from a heterozygous somatic PTEN deletion, suggesting an
alternate mechanism of biallelic loss.
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Table 1: Phasing of tumour suppressor gene small variants.

Phase Origin Case ID Cancer Gene Allele A Allele B
In trans Germline &

somatic
POG1000 PANC ATM Exon 9 deletion (germline) c.3577-14_3585delinsC (somatic)
POG792 CHOL BRCA2 p.(Leu2092Profs*7) (germline) p.(Val2385Phefs*9) (somatic)
POG976 CHOL PALB2 p.(Lys353Asnfs*3) (germline) p.(Glu907*) (somatic)
POG604 BRCA TP53 p.(Arg213*) (germline) p.(Glu180*) (somatic)

Double
somatic

POG295 COLO APC p.(Cys417Valfs*37) p.(Tyr1376Cysfs*9)
POG720 COLO APC p.(Ala591Profs*19) p.(Pro1427Lysfs*44)
POG777 OV ARID1A p.(Gln1401*) p.(Met1595Val)
POG446 BRCA KAT5 p.(Ile37Met) &

p.(Ser135Phe)
POG130 COLO MLH1 p.(Glu297*) p.(Phe530Serfs*5)
POG581 SKCM NF1 p.(Ser879*) p.(Gln1188His)
POG239 SECR NOTCH1 p.(Ala1349Leufs*53) p.(Cys942Tyr)
POG777 OV PIK3R1 p.(Thr371Ilefs*5) p.(Lys459del)
POG352 UCEC PTEN p.(Arg130Gly) c.1026+1G>T
POG778 BRCA PTEN p.(Tyr27Asp) p.(Leu247Phefs*6)
POG958 BRCA PTEN p.(Ile32Asn) &

p.(Ala34Gly)
c.490_492+1del

POG884 ESCA RB1 p.(Arg255*) p.(Met484Valfs*8)
POG021 LUNG TP53 p.(Val272Leu) p.(Gly154Val)
POG680 HNSC TP53 p.(Pro82Leu) &

p.(Ser127Pro)
p.(Arg282Trp)

In cis Double
somatic

POG446 BRCA KAT5 p.(Ile37Met) &
p.(Ser135Phe)

POG507* BRCA PTEN p.(Pro38Ser) &
p.(Phe278Leu)

*Double somatic variants occurred in the context of copy loss of the other allele, consistent with biallelic events in PTEN.

Long-range variant phasing facilitates the detection of allele-specific
expression (ASE) and linkage to genomic events

ASE is an imbalance in expression between alleles of a gene, which is typically mediated by
CNA or cis-acting regulatory mechanisms25,26. Long-range phasing offers the potential to
more accurately determine ASE and link it to genomic lesions within the same or nearby
genes16,27. We used the IMPALA pipeline to examine ASE in the Long-read POG cohort.

We found ASE in an average of 26.5% of the phased genes within each sample (SD =
12.2%) (Figure 3c). CNAs have been identified as the primary drivers of ASE genes in
cancer cells28,29, and our results recapitulated this. Within this cohort, ASE genes tended to
overlap regions of LOH (P=6.3x10-115) and copy number imbalance (P=1.1x10-65) whereas
genes with biallelic expression (BAE) overlapped copy number balanced regions (P=0.02)
(Figure 3d). We further noted a significant positive correlation between the CNA allelic ratio
and the major expressed allele frequency (r=0.63, P≤2.2x10-16). ASE may also be due to
epigenomic dysregulation. Examining ASE in regions with balanced copy number, we found
a significantly greater proportion of genes with promoter allelic methylation (mean=0.16) than
BAE (mean=0.01) (P=3.5x10-23). Moreover, allelic promoter methylation was more commonly
found in trans with the major expressed allele (P≤2.2x10-16) (Figure 3e), indicating lower
expression of the methylated allele.
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ASE can be used to validate the downstream expression effects of aberrant cis-acting
regulatory mechanisms and further ascertain biallelic TSG inactivation. For example, PTEN
in POG041 shows ASE with major expressed allele frequency of 0.67. A frameshift and
missense mutation (rs121909241) were found on the minor and major expressed allele
respectively, which represents a double hit knockout scenario consistent with the gene’s
ASE (Figure 3f). ASE was also seen in POG976 with PALB2 somatic and germline variants,
confirmed by phasing to be opposite alleles. Consistent with loss of function of PALB2, this
cholangiocarcinoma was characterised by strong mutational signatures of HRD (Figure 3g).

The most frequent ASE gene in this cohort was DUSP22, in 122/135 samples in which it was
expressed and could be phased, with a median major expressed allele frequency of 0.95.
DUSP22 expression is associated with poorer survival in low-grade lymphomas30,31. It also
shows tissue-specific imprinting during brain development32,33. A survey of normal tissues
from GTEx showed that only 9.12% (542/5940) of DUSP22-expressing samples showed
ASE34. In the Long-read POG cohort, 63.11% of tumour samples with ASE in DUSP22
showed allele-specific promoter methylation in trans and 81.15% showed allele-specific
gene body methylation in cis with the major expressed allele (Extended Data Figure 6a).
Although allele-specific promoter methylation is found in both blood and tumour samples,
allelic loss of gene body methylation is a tumour specific phenomenon (P≤2.2x10-16,
Extended Data Figure 6a-c). This suggests that reactivation of tissue-specific imprinting of
DUSP22 may play a role in tumourigenesis.
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Figure 3. Phasing. (a) Correlation between read length, phase block size and phasing rate for Ensembl 100
protein-coding genes (plus promoters) across normal and tumour tissues. (b) Correlation between gene length
and phasing rate for protein-coding genes (percent of tumours in which a gene plus promoter could be fully
phased). (c) Summary of IMPALA results for the cohort, showing number of genes with sufficient expression to
be considered (<1 TPM), number with sufficient expression and at least one phasing SNP, and their final
classification as having allele-specific expression (ASE) or balanced allelic expression (BAE). (d). Percent of
genes in regions of the tumour genome with balanced copy number (CN), imbalanced CN, or LOH that were
classified as ASE or BAE. (e) Percent of genes with allele-specific promoter methylation by the relative phase of
the major expressed allele for ASE and BAE genes. Examples of biallelic variants in tumour suppressor genes
with ASE (f) and BAE (g). Reads are coloured by predicted haplotype from long read-based phasing, and reads
that could not be assigned to a haplotype are coloured in grey.
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DNA methylation derived from nanopore sequencing can reveal global
methylation patterns and reflect tissue of origin

We evaluated nanopore-derived DNA methylation calls within this study for their potential in
personalized oncogenomics. A comparison of DNA methylation detected using nanopore
sequencing with whole genome bisulfite sequencing (WGBS) calls from the same sample
showed good correlation (R=0.87, Figure 4a). In the Long-read POG cohort, tumours
displayed significant hypomethylation compared to normal WGBS data from best-match
tissue types (Figure 4b; see Methods). This hypomethylation was most distinct in repetitive
regions. Notably, these regions are more readily mappable with long-read alignment35. The
only genomic regions with hypermethylation in tumour samples compared to normal WGBS
data (P=1.4x10-5) were CpG islands (CGIs). These results are consistent with the
previously-described pattern of overall hypomethylation but focal hypermethylation in tumour
DNA36.

TET enzymes are involved in active DNA demethylation, and use α-ketoglutarate as a
cofactor, which is a product of IDH enzyme activity. TET and IDH mutations are recurrent in
cancer37 and can result in hypermethylation of tumour genomes. Within the cohort, 10/189
samples (18/181 cases) had IDH gain of function mutations or TET candidate inactivating
mutations detected using short-read sequencing (Supplementary Table 1). Compared with
other cases and normal tissue samples, cases with mutations in IDH and TET genes show
similar methylation patterns at all regulatory sites except for CGIs (Figure 4c). At CGIs,
mutated samples show slight hypermethylation compared to the rest of tumour samples and
WGBS normal samples. TET enzymes demonstrate sequence specificity toward CGIs37–39.
The slightly higher methylation only at CGIs in the mutated samples in our cohort highlights
the sequence specificity of TET enzymes and suggests that the genome-wide
hypomethylation in tumour samples is largely due to the passive DNA demethylation
pathway40–42.

Methylation patterns can distinguish tissue and tumour type43,44. We performed tSNE
analysis of methylation in this cohort as a coarse assessment of this. We observed that
samples tended to group by tumour tissue of origin, irrespective of metastatic biopsy site
(Figure 4d). This finding suggests the potential utility of nanopore-derived DNA methylation
for detecting or confirming tissue of origin in advanced and metastatic cancers, as an adjunct
or complimentary analysis to the RNA approaches currently in use45.

Patterns of allele-specific methylation in promoters and gene bodies are
uncovered by long-range phasing

As shown earlier in this study and elsewhere, long reads enable long-range phasing, which
extends to methylation information46. In this cohort, an average of 84% of the CpG sites
within each sample could be phased (median= 86%; SD= 7.1%). We define the term
“allelically differentially methylated regions” (aDMRs) to refer to genomic regions in which
clusters of CpG sites display differential methylation between alleles. We detected 4.46
million (mean=23.61K, SD=14.64K) aDMRs across all tumour samples, with around five-fold
more in tumour samples than their matched normals (mean=4.7K, SD=876; Extended Data
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Figure 7a). The majority (79%) of the aDMRs mapped to het-CNV and LOH regions (Figure
4e). The number of aDMRs in each sample was positively correlated with the fraction of the
genome in LOH regions (r=0.469, P=2.6x10-11), and negatively correlated with the fraction of
the genome in het-diploid regions (r= -0.38, P=1.4x10-7).

We examined aDMRs in het-diploid regions as potential sources of cancer-specific
epigenetic dysregulation. We excluded aDMRs associated with normal cell function (linked
to imprinting or random allele-specific methylation; see Methods), leaving ~462K
tumour-specific aDMRs. Most (76% of aDMRs) mapped to CGI, TF, promoter, enhancer or
polyA sites (Extended Data Figure 7b). We detected 2,854 genes (8,511 transcripts) with
recurrent aDMRs at their promoters, including the cancer genes RET and CDKN2A.
Transcription factor (TF) enrichment analysis of these genes demonstrated significant
enrichment for PRC1 and PRC2 complex protein subunits (adjusted P<0.05, Extended Data
Figure 7c).

We further examined the aDMRs affecting RET and CDKN2A. RET is a receptor tyrosine
kinase and a well-known oncogene47. The RET aDMR overlapped an intragenic CGI
alternate promoter (per Ensembl 100 transcript models) in 26 of the cohort samples (Figure
4f). Another 66 tumour samples showed methylation (>25% average methylation) at this
promoter. Those cases with intragenic promoter methylation (allelic or non-allelic) had
significantly greater overall RET gene expression than those without methylation (P=0.0071),
and normal GTEx tissues (P=2.2x10-6, Figure 4g).

CDKN2A is a well-known tumour suppressor gene that has a series of intragenic CGI
promoters, which showed recurrent aDMRs in nine samples (Figure 4g) and methylation
(>25% average methylation) in 140 samples. As for RET, cases with methylation (allelic or
non-allelic) at this intragenic promoter had significantly greater expression of CDKN2A
compared to those without methylation (P=6x10-9) and normal GTEx data (P<2.22x10-16,
Figure 4i). Despite CDKN2A being a tumour suppressor, it is sometimes upregulated in
cancers, with associated increase in immune cell infiltration48, (Extended Data Figure 8b),
suggesting that it may function as an oncogene. In both RET and CDKN2A, intragenic
promoter methylation may be a novel means of inducing overexpression of these genes as
part of tumourigenesis.
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Figure 4. Methylation. (a) Correlation of nanopolish methylation frequency with WGBS for POG044. (b) Average
methylation across tumours (T) compared with public WGBS methylation data from normal tissues and cells
(NT), genome-wide and at different genomic regions. (c) Average methylation at CGIs in POG cases with iether
IDH activating or TET-inactivating mutations (Yes) compared with the remainder of the cohort (No) and public
normal tissue (NT). (d) tSNE plots based on DNA methylation at regulatory regions, compared with tumour type
(left) and biopsy site (right). (e) aDMR distributions by copy number (CN). HetDip indicates CN balanced regions.
HetCNV indicates CNV regions with both parental alleles. Hom indicates LOH. (f) DNA methylation at RET
intragenic promoter CpGs, compared with patient blood and tissue normals (NT). (g) RET gene expression
compared with GTEx normal tissues in: Left: the whole cohort. Centre: samples with >25% intragenic promoter
methylation (IPM) vs other samples (IUM). Right: only those samples with an aDMR at the intragenic promoter
(IPASM). Only samples with TPM>1 were used for expression comparison. (h-i) The same analysis as (f-g) but
for CDKN2A. Note that in f and h the haplotags were swapped so that HP1 represents the hypermethylated
allele. All P-Values are Wilcoxon rank-sum test.
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Epigenetic inactivation of DNA repair genes

HRD is especially prevalent in breast and ovarian cancers49, and its presence is relevant for
therapeutic selection. HRD can arise due to inactivation of DNA repair genes by a
combination of mutations and promoter methylation. We evaluated the promoter methylation
frequencies of 51 homologous recombination (HR) genes in a combined breast (n=40) and
ovarian (n=8) cohort (see Methods). Three breast cancer samples showed BRCA1 promoter
hypermethylation (Table 2). RAD51C promoter hypermethylation was observed in one breast
and two ovarian cancer samples (Table 2). All six samples exhibited high HRDetect scores
(≥0.7; see Methods) consistent with an HRD phenotype (Figure 5a). No deleterious somatic
or pathogenic germline mutations were found in five HR genes (BRCA1, BRCA2, ATM,
PALB2, and RAD51C) in these samples, suggesting that silencing of BRCA1 and RAD51C
was likely the primary cause of the observed HRD (Figure 5a).

Compared to the rest of the cohort, samples with BRCA1 or RAD51C promoter
hypermethylation showed reduced gene expression. This is consistent with
methylation-induced transcriptional silencing (Figure 5b). Haplotype-specific methylation
data revealed that the methylation was confined to a single allele in the HRD tumours with
BRCA1 (Figure 5c) and RAD51C (Figure 5d) promoter hypermethylation. Together with the
observed loss of heterozygosity of the other allele, this is consistent with biallelic inactivation
of these genes. Matched blood was available for all three BRCA1 and one of the RAD51C
cases. In all instances the promoter alleles were unmethylated in the blood, suggesting that
the tumour promoter methylation was a somatic event (Figure 5c-d).

HRD is observed in other cancers, albeit at lower frequencies. However, BRCA1 and
RAD51C promoter hypermethylation have only been reported in sporadic breast and ovarian
cancer cases50,51. In this cohort we identified promoter hypermethylation of BRCA1 and
RAD51C in a further three cases each (Table 2). Two of the samples with BRCA1 promoter
hypermethylation showed LOH of BRCA1 and exhibited moderate HRDetect scores,
suggesting potential HRD. In the remaining four samples, the other allele was intact and
unmethylated, and the HRDetect score was low (Table 2), likely due to incomplete
inactivation of the gene (Extended Data Figure 9a-c).

Outside of Lynch syndrome, inactivation of mismatch repair (MMR) genes and consequent
microsatellite instability arises in sporadic cancers, usually from a combination of somatic
MMR gene mutations or somatic hypermethylation at the promoter region. However,
constitutional epimutations that result in germline promoter hypermethylation have been
reported52. Our cohort included a patient, POG986, with lung squamous cell carcinoma and
with multiple other previous primary cancer diagnoses, suggestive of Lynch syndrome.
Previous clinical hereditary cancer multigene panel sequencing was uninformative, but
targeted methylation testing of blood performed after short-read POG analysis showed
constitutional methylation of MLH1 confirming Lynch syndrome. Long-read sequencing data
from this study further confirmed monoallelic hypermethylation in the blood with no causative
sequence variants (Figure 5e). In the tumour, somatic LOH of MLH1 resulted in the loss of
the wild-type MLH1 allele, with hypermethylation on the remaining tumour allele (Figure 5e,f,
POG986). Another tumour, endometrial cancer POG041, showed hypermethylation on both
tumour alleles of MLH1 (Figure 5f). MMR deficiency was confirmed by immunohistochemical

15

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.20.24302959doi: medRxiv preprint 

https://www.zotero.org/google-docs/?nf30vB
https://www.zotero.org/google-docs/?d6TZo6
https://www.zotero.org/google-docs/?gejGex
https://doi.org/10.1101/2024.02.20.24302959
http://creativecommons.org/licenses/by/4.0/


testing. No matched blood sample was long-read sequenced, but the absence of a germline
mutation and the presence of biallelic methylation in the tumour suggest that the MLH1
promoter methylation was a somatic event in this case.

Table 2: Promoter methylation of HR genes in cases with HRD.

POGID Tumour type Analysis cohort Gene Fraction of
methylated

sites

LOH
status

HRDetect

POG425 BRCA breast & ovarian BRCA1 0.922 LOH 0.998
POG507 BRCA breast & ovarian BRCA1 0.951 LOH 0.999
POG804 BRCA breast & ovarian BRCA1 0.961 LOH 0.999
POG356 BRCA breast & ovarian RAD51C 0.739 LOH 0.992
POG846 OV breast & ovarian RAD51C 0.554 LOH 0.998
POG894 OV breast & ovarian RAD51C 0.587 LOH 0.999

POG277 LUNG other BRCA1 0.804 HET 0.007
POG1041 MISC other BRCA1 0.765 LOH 0.319
POG650 HNSC other BRCA1 0.657 LOH 0.635
POG785 HNSC other RAD51C 0.576 HET 0.032
POG266 CHOL other RAD51C 0.554 HET 0.103
POG044 CNS-PNS other RAD51C 0.552 HET 0.001

Genomic and epigenomic architecture of extrachromosomal DNA

We hypothesized that the added methylation and phasing information obtained from long
reads would enable the reconstruction of both the genomic and epigenomic structure of
extrachromosomal DNA (ecDNA). Using AmpliconArchitect53 on the short-read WGS data,
we predicted the presence of 76 ecDNAs in 42/189 (22.2%) samples (Supplementary Table
1). A total of 1,283 genes were detected on the ecDNAs in our cohort, with 262 (20.4%)
occurring on more than one ecDNA (Supplementary Table 6). Importantly, 97 of these genes
were oncogenes, 33 (34.0%) of which were recurrent in our cohort. ZNF703 recurred most
frequently, being present in ecDNAs in five samples. The presence of at least one ecDNA
correlated with an increased genomic complexity score (two-sided Student’s t-test; adjusted
P=5.17x10-7) and a trend toward an increased HRD score (two-sided Student’s t-test;
adjusted P=0.0548), which may be partially explained by the increased representation of
breast cancers in the ecDNA+ cohort (Extended Data Figure 10b).

We examined allelic methylation patterns within promoter regions for genes predicted to
reside on ecDNAs, as a potential mechanism of ecDNA-specific dysregulation. We identified
one breast cancer case with multiple aDMRs within an ~4 Mb ecDNA, surrounding NRG1.
Two aDMRs overlapped promoter regions for separate isoforms of the gene (Figure 5g).
NRG1 is a known cancer gene in breast cancer54–57. We were able to validate 4/5 of the
breakpoints predicted by AmpliconArchitect by manual review of the long-read data (see
Methods). We were further able to assign the ecDNA to a single haplotype based on the
nanopore long-range phasing, and to confirm that the entire event fell within one phase block
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(Figure 5h; see Methods). Both aDMRs in NRG1 promoter regions showed hypermethylation
of the amplified (ecDNA) allele. Furthermore, across the entire ecDNA region, the density of
aDMRs was significantly greater within NRG1 than any other region of the ecDNA (Figure
5i). Although NRG1 was expressed only from HP1, and was focally amplified in the genome,
it was not overexpressed relative to other breast cancer samples within the cohort (Extended
Data Figure 10d). This finding suggests a regulatory mechanism by which an
ecDNA-mediated amplification may be countered by promoter methylation of the amplified
gene.
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Figure 5. Integrative analyses. HRDetect scores (a) and expression values (b) for breast and ovarian samples
with or without promoter methylation in BRCA1 or RAD51C. Samples with deleterious alterations in five key HR
genes (BRCA1, BRCA2, ATM, PALB2, RAD51C) are coloured. Haplotype-specific DNA methylation frequencies
at the BRCA1/NBR2 (c) and RAD51C (d) promoter regions in HRD samples (HRDetect score>=0.7) with
promoter methylation. (e) Haplotype-specific DNA methylation at the MLH1 promoter in a lung squamous cell
carcinoma sample with MLH1 germline epimutation. (f) Haplotype-specific DNA methylation frequencies at the
MLH1 promoter region in a lung squamous cell carcinoma sample with MLH1 germline epimutation (top) and in a
uterine endometrioid carcinoma sample with somatic MLH1 promoter methylation (bottom). (g) Haplotype-specific
methylation and copy number for NRG1 in breast cancer sample POG816. The 3’ amplification was included
within an ecDNA. Promoter aDMRs are highlighted in yellow. (h) Haplotype-phased long reads mapped to the
ecDNA region. (i) Circos plot of the NRG1-containing ecDNA, highlighting DMRs and methylation states. Inner
track: gene annotations, with NRG1 highlighted. Outer tracks: binned counts of aDMRs, showing substantial
enrichment at the 5’ end of NRG1.
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Discussion

We present the Long-read POG Cohort, a set of 189 tumour samples of diverse tumour
types sequenced via the Oxford Nanopore Technologies sequencing platform. As the
samples in this cohort have accompanying short-read DNA and RNA sequence data and
associated clinical information, our study offers potential for advancing the understanding of
SVs, viral integration, DNA methylation, and allelic information pertinent to cancer
pathogenesis and diagnosis.

Long-read sequencing data enabled automatic calling of known oncogenic fusions, and
showed reasonable concordance with short-read SV calls genome-wide. When examined,
discordance was largely due to the much lower coverage of long reads, or inability to map
breakpoints in the short reads. Long-read data enabled reconstruction of complex SV events
that were undetected or mischaracterized in short-read data. Furthermore, long-read data
enabled the direct detection of MSI expansions as SVs22,23, as well as the detection of
“tyfona” signatures in sarcoma and melanoma as previously described24. Complex patterns
of HPV integration could also be deconvoluted, along with their impact on surrounding
cancer gene expression, as has been recently explored in cervical cancer58,59. Currently,
there is limited availability of somatic SV callers for the nanopore platform, but with the aid of
datasets such as the Long-read POG cohort, development of additional calling approaches
will allow for improvement in this area.

Long-range phasing of variants using long reads facilitates the coverage of the vast majority
of genes within single haplotype blocks. This enables phasing of double hits in tumour
suppressors to ascertain biallelic loss of function. Moreover, when combined with short-read
RNA data, phasing can link deleterious variants with ASE, providing further confirmation of
multiple hits to tumour suppressors. We observed widespread recurrent ASE across
tumours, as exemplified by the widespread ASE of DUSP22. The re-expression in tumours
of genes which are typically developmentally restricted, such as DUSP22, has been
suggested to be a potential source of neoantigen therapeutic targets60.

The ability of nanopore sequencing to provide methylation data within standard WGS without
additional sequencing or bisulfite conversion is a significant advantage. We showed that
methylation is associated with tissue of origin, suggesting the potential for tumour type
classification61. Long-range phasing of methylation facilitates the exploration of aDMRs.
Although we confirmed that the majority of aDMRs are driven by CNVs, we also observed
epigenetic dysregulation in copy-neutral regions. In rare cases, this can be due to germline
altered methylation, exemplified by the identification of germline inactivating MLH1
methylation in a patient with clinically confirmed Lynch syndrome. This phenomenon has
been described in both familial and sporadic Lynch syndrome patients, along with acquired
hypermethylation of MLH1 in endometrial cancers62. Long-read sequencing could be applied
to identify causative epigenomic alterations in Lynch and other syndromes.

We observed recurrent aDMRs in the intragenic promoters of RET and CDKN2A, with
methylation being associated with increased expression of the canonical transcript. The
effect of intragenic promoter methylation on transcription is complex and bidirectional63–65.
Gene bodies frequently become methylated during active transcription63,64, which may
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silence intragenic promoters via transcription interference63–65. Conversely, intragenic
promoter methylation can increase canonical transcript expression by reducing competition
for RNA Pol binding, or through regulating transcription elongation63, with evidence that this
methylation regulates some oncogenes in cancer66,67. Further analysis of intragenic promoter
methylation in RET and CDKN2A is needed to determine whether this change is a mere
consequence of active transcription or a key regulator of expression. Promoter methylation
in the oncogene NRG1 in one case was also notable for being ecDNA-specific, a
phenomenon which has not been well characterised to date73.

Our study expounds the significant role of gene promoter hypermethylation in HRD tumours,
which often lack a clear underlying causative mutation68,69. Notably, the presence of BRCA1
and RAD51C promoter methylation was associated with a clinically-relevant HRD
phenotype, when accompanied by a second hit, typically by LOH. Interestingly, BRCA1
promoter hypermethylation was observed in melanoma and head & neck cancer, in addition
to breast and ovarian cancers where it has been typically described50,51. This suggests that
HRD gene promoter methylation may be involved in a broader spectrum of tumours, a
clinically important finding as deficiency in HR is associated with sensitivity to platinum
chemotherapies and PARP inhibitor therapies70,71.

In conclusion, we present a comprehensive cohort of tumours sequenced on the nanopore
platform. Our initial findings suggest a role for long-read sequencing in personalized cancer
medicine through the phasing of somatic mutations, deconvolution of structural variation,
identification of tumours driven by HRD, and the discovery of allele-specific methylation of
tumour suppressors. The single long-read approach has advantages for clinical use
including providing both sequence and methylation information with comparatively simple
library preparation and rapid turnaround times74. Additional tumour long-read sequencing is
warranted as a complement to the established short-read sequencing paradigm to
understand its use in biomarker-driven clinical trials and identifying targeted treatment
options. We provide this dataset, complemented by clinical information and short-read
sequencing data, as a valuable resource for benchmarking, annotation, and fostering
continuous improvement in cancer research and clinical practice.

Data availability

Genomic and transcriptomic sequence datasets for long-read and short-read platforms have
been deposited at the European Genome-phenome Archive (EGA, https://ega-archive.org/)
as part of the study EGAS00001001159 with accession numbers as listed in Supplementary
Table 1. Processed data from Long-read POG, figure source data and accompanying
short-read variants can be downloaded from
https://www.bcgsc.ca/downloads/nanopore_pog/. Data on mutations, copy changes and
expression from tumour samples in the POG program are also accessible from
https://www.personalizedoncogenomics.org/cbioportal/. Code used to generate figures in this
manuscript is available in containerized, reproducible form at
https://github.com/bcgsc/long_read_pog. WGBS data, ENCODE accessions and samples
from GSE186458 that were used as normal tissues are included in Supplementary Table 7.
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Methods

Enrollment and clinical data collection

The POG program, registered under clinical trial number NCT02155621, was approved by
the University of British Columbia – BC Cancer Research Ethics Board (H12-00137,
H14-00681), and approved by the institutional review board. As described in Pleasance et
al6, patients were referred by their treating oncologist in British Columbia, Canada, and
enrolled based on criteria including locally advanced or metastatic cancer, predominantly
having received one or more lines of therapy in the metastatic setting, ECOG ≤ 1, life
expectancy >6 months, and the ability to undergo biopsy procedures. POG IDs (POGXXXX)
were assigned to each case as anonymous identifiers known only to the research group.
Samples with availability of sufficient nucleic acid material after short-read sequencing were
considered for nanopore sequencing.

Overall survival was evaluated from the date of advanced disease diagnosis, defined as the
date of incurable, advanced or metastatic disease as determined by radiology or clinical
finding if progression was documented with subsequent imaging, whichever was earlier.
Kaplan-Meier survival analysis was performed as of August 1, 2023 using the R packages
survival (v2.42.3) and survminer (v0.4.2).

Sample preparation and sequencing

Extraction and size selection

Nucleic acids for this study were obtained from previously purified samples from tissues
accompanied by tumour estimates as described in Pleasance et al2. Purification was
performed with an A-Line Evo-pure kit automated on a Hamilton Nimbus96 robot. The
overall workflow and automated steps are shown in Figure 1C and Extended Data Figure 1b.
Briefly, frozen tissue sections were immersed in 420 μL of RLT Plus buffer (QIAGEN)
containing tris(2-carboxyethyl)phosphine (a reducing agent; TCEP) and a unique sample
tracking DNA plasmid, and gently agitated overnight at room temperature. Lysates were
transferred from 2 mL tubes to wells of a 1.2 mL plate (Thermo Scientific, AB1127) to which
was added 400 mL of 5x bind buffer (80 mL beads in 320 mL isopropyl alcohol). Following a
5 minute incubation at room temperature lysates were cleared on a Magnum FLX magnet
place (Alpaqua Inc) for 6 minutes and the protein-containing supernatant removed. The
beads, with bound nucleic acids, were washed by pipetting 10 times in wash buffer and
returned to the magnet. Beads were washed three times in 70% ethanol then dried for 10
minutes. 40 mL nuclease-free water was added to the dried beads and returned to the
magnet. The eluted total nucleic acids were transferred to a 96-well storage plate and
aliquots taken for quantification using Invitrogen Qubit 4 Fluorometer (Thermo Fisher
Q33226)

For samples with concentrations below 166 ng/µL or in volumes greater than 30 µL, 5000 ng
of Total Nucleic Acid (TNA) was transferred to a 1.5 mL DNase/RNase free tube and
concentrated without heat on the Savant SpeedVac Plus (SC210A) to a maximum volume of
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30 µL. This 5000 ng sample in 30 µL was topped up with 10 µL of Qiagen Buffer EB
(Cat.19086). The samples were then run on the SAGE Science Blue Pippin instrument using
the High Pass Plus Cassette (BPPLUS 10) with a maximum of 4 samples per run. The start
range was selected at 15,000 base pairs and the end range was selected at 150,000 base
pairs yielding a targeted size of 82,500 base pairs. Following the run completion, each
sample was eluted in 80 µL and each sample elution well was then washed with 80 µL of 10
mM Tris, 1mM EDTA containing 0.1% Tween to maximize sample recovery. The total volume
of 160µL was then concentrated without heat to 50 µL using the SpeedVac Plus. Each
sample was then quantified using the Invitrogen Qubit 4 Fluorometer (Q33226) and
normalized to 2000 ng in 47.5 µL for PromethION genome sequencing.

Library construction and sequencing

Library construction and sequencing followed the Oxford Nanopore Technologies Genomic
DNA by Ligation (SQK-LSK110) protocol. DNA libraries starting with 2 µg of sample per
library. No shearing was performed. The NEBUltra-II kit, (New England Biolabs, Ipswich, MA,
USA, cat. no. E7646A) was used for end-repair and A-tailing. NEBNext quick ligase
(E6056S) was used to ligate the Oxford Nanopore sequencing adapter. A final size selection
of 0.4:1 ratio beads:library (PCRClean – DX Aline Biosciences L/N 06180316) was done to
select against smaller molecules. These library preparation steps were performed on
Hamilton Nimbus96 liquid handlers. An example deck layout, in this case for the bead
purification step, is shown in Extended Data Figure 1c. DNA libraries were loaded in R9.4.1
pore flow cells on PromethION 24 instrument running software version 19.06.9 (MinKNOW
GUI v4.0.23). Sequencing was carried out for 72 hours. DNase I (Invitrogen cat no. AM2222)
nuclease flush was performed after 24-48 hours by reloading the flow cell with the same
library mix.

Basecalling and Primary Analysis

Basecalling was performed using the guppy basecaller from Oxford Nanopore Technologies,
using the “super-accurate” model. Primary analysis was carried out using a NextFlow
workflow, which is provided at https://github.com/bcgsc/long_read_pog. Small variants were
called using clair375 (v0.1-r8) and phased using WhatsHap as included with clair3. Structural
variants were called using sniffles76,77 (1.0.12b) and cuteSV78 (1.0.12). Methylation (5-mC)
was called using nanopolish13 (0.13.3) and phased using nanomethphase79.

Short-read data analysis

Short-read data from the Illumina platform was generated as described in Pleasance et al2.
Reads were aligned to the human reference genome (hg38) using Minimap280 (v2.15).
Regions of copy number variation and losses of heterozygosity were identified using
Ploidetect (https://www.biorxiv.org/content/10.1101/2021.08.06.455329v1) (v1.3.0 and
v1.4.2). Tumour content (estimated proportion of DNA derived from tumour cells vs normal
cells in the sample) and average ploidy observed in the sequenced tumour were determined
based on manual review of Ploidetect results, copy number plots and allelic ratios. Two
measures of copy number complexity were computed: the fraction of the genome falling in
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non-ploidy copy segments, and the genome complexity which is the arithmetic mean of the
fraction non-ploidy and the fraction of the total genome size falling in non-ploidy segments,
computed based on Ploidetect copy number results with segments less than 10kb merged.
Somatic single nucleotide variants (SNVs) and small insertions and deletions (indels) were
identified using Strelka281 (v2.9.10) and Mutect2
(https://www.biorxiv.org/content/10.1101/861054v1) (in GATK v4.2.0.0). Events assigned
PASS by both callers were included, as well as indels called by Strelka2 only with QSS>=50.
Tumour mutation burden (TMB) was computed as total called somatic SNVs and indels per
megabase. Somatic structural variants (SVs) in DNA data were identified using
assembly-based tools ABySS (v1.3.4)82 and Trans ABySS (v1.4.10)82,83 and alignment-based
tools Manta (v1.6.0)84 and Delly (v0.8.7)85, with consensus calls merged using MAVIS86

(v2.2.1). SVs were filtered to exclude those with identical genomic breakpoints in multiple
samples, to remove from the somatic call set germline variants and some technical artifacts.
SV events were considered high quality (HQ) if they were called by more than one tool and if
a contig could be assembled that aligned across the candidate genomic breakpoint,
otherwise they were classed as low quality (LQ). Variants were annotated to genes using
SNPEff87 (v5.0) with the Ensembl database88 (v100). MSI samples were identified with
MSIsensor89 (v2.0.1). Microbial detection was performed using BioBloomTools (v2.0.11b)21.

RNA-Seq reads were aligned using STAR90 (v2.5.2b-XS and Sambamba 0.7.1) and
expression was quantified using RSEM91 (v1.3.0) based on gene models from Ensembl
v100.

Structural variation characterization

SV identification and processing
We conducted two distinct analyses. We performed tumour-only SV calling for all tumours
(n=189). For the subset of tumours with matched normal, (n=43), we performed somatic SV
calling. A literature review was conducted as of May 2023 of existing long reads somatic SV
callers, and callers were selected based on the criteria that they had detailed documentation
and were continually being maintained over the last year. We identified two somatic SV
callers meeting these criteria: SAVANA(v1.0.3) (https://github.com/cortes-ciriano-lab/savana)
and nanomonSV(v0.5.0)20. CuteSV(v1.0.12)78 and Sniffles(v2.0.7)76,77 were used as germline
SV callers for the tumour-only analysis. Callers were run with default parameters and a
minimum size threshold of 50 bp. Intrachromosomal breakend notation for SAVANA calls
were transformed to different SV type calls according to VCF4.2 conventions. Passing
SAVANA and nanomonSV events fulfilling a minimum tumour variant allele frequency (VAF)
of 0.05 with no event support in the matched normal were subsequently used for
downstream analysis.

Post-processing of SVs was conducted with MAVIS (v.3.1.0)86. We filtered SVs found in the
sex and unknown chromosomes, collapsed duplicate SVs, and merged/clustered SVs by
breakpoint proximity (100 bp) and type. Insertion end coordinates were calculated by adding
the length of the inserted sequence alongside the confidence interval range. SVs called
somatic but appearing in paired normals were categorised as false positives and filtered out.
SVs were annotated using events from the Database of Genomic Variants (DGV)92 and
frequent events seen in normal WGS using MAVIS. SVs were also annotated based on
RepeatMasker (v4.1)93.
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SV comparisons

Events were considered to match known fusions if the SV had both breakpoints within 10
bases upstream or downstream of the reported breakpoints and were classified as the same
SV type. Events selected for manual review were those that overlap a gene found in
OncoKB94 and which did not have breakpoints overlapping within a repetitive element in
RepeatMasker. To visualise somatic events in regions of interest, we took the SAVANA SV
calls alongside the Ploidetect(v1.3.0) copy number calls into ShatterSeek95.

Corresponding short-read somatic MAVIS post-processed SVs from BreakDancer, DeFuse,
Manta, Delly, Trans-ABySS, and ChimeraScan were compared to nanopore SVs. Somatic
cohort wide level calls were analysed for any SVs spanning coding elements of oncogenic
genes within OncoKB. SVs were considered similar if they clustered within 100 bp of each
other. To resolve complex events, we pulled out all reads surrounding the region of the
hypothesised event, and took the majority of the reads which supported a certain
interpretation. Afterwards, we conducted a local assembly of the reads involved in the
structural variants (determined by all reads that support an event in the proximal distance of
the complex event. Finally, we assessed whether the regions by subsetting for HQ Illumina
events and nanopore events, look for those which predict a non-synonymous coding change
from short reads and those events which overlap known tumour suppressors or oncogenes.
We manually reviewed the transcriptomic data for evidence of irregular splicing patterns and
expression profiles through sashimi plots.

Viral Integration
HPV viral breakpoints were detected as described by Porter et al96 and using the workflow
from GitHub (https://github.com/vanessa-porter/callONTIntegration). Briefly, Sniffles (1.0.12)
was used to call breakpoints as translocations between the human chromosomes and the
HPV genomes using a minimum of 5 consensus reads. Breakpoints were grouped together
into HPV integration events if they had one or more shared reads or mapped within 500 kb
of each other as measured using BEDTools (v. 2.30.0). Integration event structures were
determined using the read alignment patterns as described by Porter et al, 2023
(https://doi.org/10.1101/2023.11.04.564800). The multi-breakpoint event was analysed using
the workflow found here: https://github.com/vanessa-porter/comSVis, which sectioned the
event using the collection of all SV breakpoints that were phased within the event. The mean
depth between the breakpoints was then calculated using BEDTools (v. 2.30.0) for
visualisation.

Phasing
Individual phasing statistics were calculated for each phased VCF using WhatsHap stats.
Read N50 is the length at which reads of the same or greater length represent 50% of the
genome. To estimate the phasing rate across tumour suppressor genes, we determined the
number of protein-coding genes (GENCODE v43) that are contained within a single phase
block for each sample using bedtools intersect, restricting overlapping genes to those that
had a 100% overlap with a given phase block. Putative biallelic somatic variants with
potential biological or clinical significance were identified from the POG genomic reports.
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Tumour suppressor genes were defined by the COSMIC Cancer Gene Census. Long reads
were coloured by predicted haplotype using WhatsHap haplotag, and all candidate biallelic
variants were manually reviewed in IGV.

Allele Specific Expression

The IMPALA pipeline (github.com/bcgsc/IMPALA;
https://www.biorxiv.org/content/10.1101/2023.09.11.555771v1) was used to detect ASE
genes in the POG cohort (n=172), which uses tumour RNA-seq data and phased variants
generated from tumour long reads. STAR aligner90 (v2.7) is used to align the RNA reads to
the genome before performing variant calling using Strelka (v2.9). This generates allelic read
counts for each variant. Heterozygous SNPs are filtered for and annotated with haplotype
information and gene annotation using the phased variants and SnpEff87 (v5.0) respectively.
SnpSift (v5.1d) formats the allelic read count and annotations as preprocessing for ASE
detection. RSEM91 (v1.3) is used to quantify expression of RNA-seq data and filter out genes
with expression lower than 1 TPM.

MBASED97 (v1.34) is the main software used to calculate ASE. Biallelic genes are expected
to have an allelic read count ratio of 0.5. MBASED performs a beta-binomial test on each
phased SNP to assess the statistical deviation away from the expected 0.5 ratio. Afterwards,
MBASED utilises meta-analysis with haplotype information to aggregate SNP-level data to
gene-level major allele frequency data. P-value is adjusted with Benjamini-Hochberg
method. Genes with major allele frequency above 0.65 and adjusted p-value below 0.05 are
classified as allelically expressed.

Post-processing of the allele specific expression is done by integrating additional information
to determine the potential cause of the allele specific expression. CNV data from Ploidetect,
allelic methylation data from NanoMethPhase and somatic variant calls can be used as
optional inputs for IMPALA software. Bedtools (v2.23) intersect is used to intersect ASE data
with CNV states, allelic methylation and somatic calls. Additionally, SnpEff is used to
annotate and filter for nonsense variants in ASE gene as a potential genetic mechanism.
Lastly, bcftools (v1.15) consensus is used to generated consensus sequence of both allele
based on the phased variants and FIMO from the MEME suite (v5.4.1)98 detects transcription
factor binding sites on both alleles and find differences between the allele. Disruption of
transcription factor binding sites could lead to ASE. The final output of the workflow is a
summary table with allelic information in addition to the cis-acting elements which can be
used for downstream analysis to identify genes of interest.

Methylation analysis

For non-allelic methylation analysis we used nanopolish methylation frequency results. As
normal methylation data, 267 WGBS datasets from various tissue/cell types were gathered
from Epigenomics Roadmap99, ENCODE100, and Loyfer et al101 (GSE186458). To analyze
overall methylation at different genomic regions, we used bedtools intersect to overlap CpG
methylation frequency data to Repeats, TF binding sites (also includes CTCF binding sites),
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and CGIs from the UCSC table browser102, promoters (1500 bp upstream and 500 bp
downstream of TSS in Ensembl100 transcripts GRCh38.p1388), 500bp up and downstream
of polyA sites from PolyA_DB 3103, and enhancers from GeneHancer v5.14104. For tSNE, we
used CGIs, Promoters, CTCF binding sites, and Enhancers regions with standard
deviation≥0.2 of the mean methylation between tumour types or biopsy sites. For both
phased and unphased data, if the methylation was at strand level, for each CpG site we
aggregated the number of reads as methylated and number of all reads from both strands to
calculate consensus methylation frequency.
To detect aDMRs in each sample, the phased haplotype 1 and 2 results from
NanoMethPhase were used and DMRs were called in each sample using NanoMethPhase
dma module with default options with DSS R package version 2.46.079,105. Detected DMRs
were further filtered to keep DMRs with |diff.methyl (delta methylation)| ≥0.15. To filter
detected aDMRs in tumour samples and keep only tumour-specific aDMRs, in addition to
ignoring aDMRs that overlap to more than one matched blood sample, we excluded aDMRs
showing partial methylation in more than 1% of the normal WGBS samples. Partial
methylation is an indication of allelic methylation because only one allele is methylated and
overall methylation at the region will be ~50%. To explore partial methylation, for each
WGBS sample, we used CpGs with at least five mapped reads and at each detected aDMR
we counted the number of CpGs with partial methylation (methylation frequency between
0.35 and 0.65). An aDMR with 0.35–0.65 methylation is then considered partially methylated
if it had at least five CpGs in the WGBS sample and more than 60% of the CpGs showed
partial methylation. To overlap detected aDMRs to genomic regions we used bedtools
intersect -e -f 0.5 -F 0.5. TF enrichment for recurrent genes with aDMR at their promoter was
evaluated using the Enrichr ChEA 2022 database106 (https://maayanlab.cloud/Enrichr/).
CIBERSORT version 1.6.2 was used to infer immune infiltrate proportions using gene
expression data.

HRDetect and HR gene promoter methylation

We used HRDetect, a tool which aggregates different mutational signatures including single
base substitution signatures, structural variant signatures and microhomology-mediated
deletions, to predict HRD in our samples. HRDetect scores were computed from short-read
sequencing data using a logistic regression model with the same intercept and coefficients
as those reported in the previously trained model, without adjustment107. The intercept was
−3.364 and the coefficients were 1.611, 0.091, 1.153, 0.847, 0.667, and 2.398, respectively,
for the six HRD signatures: (i) SBS3, (ii) SBS8, (iii) SV signature 3, (iv) SV signature 5, (v)
the HRD index, and (vi) the fraction of deletions with microhomology. The contribution of
previously reported mutational signatures in the Catalogue of Somatic Mutations in Cancer
(COSMIC v3.1, https://cancer.sanger.ac.uk/cosmic/signatures) was calculated using Monte
Carlo Markov Chain (MCMC) sampling (https://github.com/eyzhao/SignIT). Short-read
MAVIS calls that were detected by more than one tool and for which the contig could be
assembled were included in the analysis and the contribution of the previously reported SV
mutational signatures was calculated using MCMC sampling
(https://github.com/eyzhao/SignIT)108. The HRD index was computed as the arithmetic sum
of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions
scores. The microhomology fraction was determined as the proportion of deletions which
were larger than three base pairs and demonstrated overlapping microhomology at the
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breakpoints70. All signatures were log transformed and normalized so that each feature had
a mean of 0 and standard deviation of 1107.

Promoter methylation of the following HR genes, selected based on their established roles in
homologous recombination repair, were investigated to examine associations with high
HRDetect score: BARD1, BLM, BRCA1, BRCA2, BRIP1, DNA2, EXO1, MRE11A, NBN,
PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RBBP8, WRN,
XRCC2, XRCC3, ATM, BAP1, CUL3, EME1, ERCC1, ERCC4, FBXO18, GEN1, HELQ,
MUS81, PARPBP, PCNA, POLD1, POLK, POLN, PSIP1, RAD51AP1, RECQL5, RIF1, RMI1,
RMI2, RPA1, RPA2, RPA3, RTEL1, SLX1A, SLX4, TOP3A, TP53BP1, and USP11. Promoter
is defined as 1500 bp upstream and 500 bp downstream from TSS. Methylation frequencies
from Nanopolish in the promoter regions of 51 HR genes in the tumours and in publicly
available matched tissues (https://epigenomesportal.ca/ihec/) were compared. 'Methylated’
site in the promoter is defined as that methylation of the site being >1 SD from the mean
normal methylation level in the matched tissue and then the fraction of methylated sites in
the gene promoter is computed.

Extrachromosomal DNA characterization
ecDNA detection and visualization

To identify potential ecDNAs from short-read WGS data, we ran PrepareAA (v0.1203.1) with
CNVkit109 (v0.9.10.dev0) for copy number calling followed by AmpliconArchitect53(v1.2) with
default settings (--gain 4.5 and --cnsize_min 50000). For ecDNA structure visualization, we
first used CycleViz (v0.1.2; github.com/AmpliconSuite/CycleViz) to obtain breakpoints
predicted by AmpliconArchitect for ecDNAs with only one predicted substructure, followed by
circos110 (v0.69.9), in which we overlaid additional methylation data obtained from long-read
WGS data.

ecDNAs and survival

For the 181 patients in the cohort, we used diagnosis and, if applicable, death dates to
construct Kaplan-Meier survival curves stratified on ecDNA presence using the survival111

(v3.5-5) and ggsurvfit112 (v0.1.0) packages in R (v4.0.2) with lubridate113 (v1.9.2) and
tidyverse114 (v2.0.0) for data preparation. A log-rank test was used to assess significance
between ecDNA+ and ecDNA- survival curves. A Fisher’s exact test was also used to
compare the number of surviving vs dead patients with cancers containing ecDNAs vs those
without ecDNAs.

Validation of ecDNA structure using long reads

To validate the structure of select ecDNAs predicted by AmpliconArchitect53, which uses
short-read WGS data, we manually reviewed supplementary reads from the long-read WGS
data in IGV115 (v2.14.1). Specifically, we looked for reads mapping to both sides of each
predicted breakpoint +/- 100 bp. We assigned an ecDNA to a specific haplotype based on
whether reads mapping to SVs associated with the ecDNA mapped to reads within the
haplotype-phased bam file. Specifically, we extracted SVs associated with the ecDNA from
the output of AmpliconArchitect, found these SVs in the long-read WGS data from Sniffles
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(v1.0.12b), and then mapped these reads to both tumour haplotype bam files. For further
validation of the assignment of an ecDNA to a specific haplotype, we viewed the ecDNA in
IGV to confirm amplified regions co-localized with the ecDNA regions of AmpliconArchitect.

Overlapping DMRs with ecDNAs

We used annotatr116 (v1.16.0) in R (v4.0.2) to extract gene promoters overlapping both
ecDNA regions and DMRs obtained from the allele-specific methylation pipeline prior to
filtering out CNVs (see also Allele-specific methylation). We selected NRG1 in a breast
cancer sample, for further analysis as it is a known cancer gene in breast cancer54–57, had
multiple DMRs falling within it, including two in promoter regions, and had >0.5 methylation
frequency for one haplotype and < 0.5 methylation frequency for the other haplotype for
each promoter DMR. Plots for NRG1 methylation were constructed in R with tidyverse114

(v2.0.0) and patchwork (v1.1.2.9000)117 functions with ggbio118 (v1.38.0) and
EnsDB.Hsapiens.v86 (v2.99.0) for gene annotation.

NRG1 expression analysis

We compared NRG1 and other genes within the NRG1 pathway (ERBB2, ERBB3, and
AKT1) between the sample containing the NRG1 ecDNA (n=1) to other breast cancers within
the cohort (n=39) in terms of RNA expression in TPM. Permutation tests were used to
assess significance between the ecDNA sample and the rest of the breast cancers in the
cohort using the coin119 (v1.4-2) package and Bonferroni multiple testing correction. We also
reviewed ASE results for NRG1 in the sample of interest (see also Allele-specific
expression).
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