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Abstract 

Background: Big data has the potential to revolutionize echocardiography by enabling 

novel research and rigorous, scalable quality improvement. Text reports are a critical 

part of such analyses, and ontology is a key strategy for promoting interoperability of 

heterogeneous data through consistent tagging. Currently, echocardiogram reports 

include both structured and free text and vary across institutions, hampering attempts to 

mine text for useful insights. Natural language processing (NLP) can help and includes 

both non-deep learning and deep-learning (e.g., large language model, or LLM) based 

techniques. Challenges to date in using echo text with LLMs include small corpus size, 

domain-specific language, and high need for accuracy and clinical meaning in model 

results. 

Methods: We tested whether we could map echocardiography text to a structured, 

three-level hierarchical ontology using NLP. We used two methods: statistical machine 

learning (EchoMap) and one-shot inference using the Generative Pre-trained 

Transformer (GPT) large language model. We tested against eight datasets from 24 

different institutions and compared both methods against clinician-scored ground truth. 

Results: Despite all adhering to clinical guidelines, there were notable differences by 

institution in what information was included in data dictionaries for structured reporting. 

EchoMap performed best in mapping test set sentences to the ontology, with validation 

accuracy of 98% for the first level of the ontology, 93% for the first and second level, 

and 79% for the first, second, and third levels. EchoMap retained good performance 

across external test datasets and displayed the ability to extrapolate to examples not 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.20.24302419doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.20.24302419


3 

 

initially included in training. EchoMap’s accuracy was comparable to one-shot GPT at 

the first level of the ontology and outperformed GPT at second and third levels. 

Conclusions: We show that statistical machine learning can achieve good performance 

on text mapping tasks and may be especially useful for small, specialized text datasets. 

Furthermore, this work highlights the utility of a high-resolution, standardized cardiac 

ontology to harmonize reports across institutions. 

 

Keywords: natural language processing, machine learning, large language models, 

echocardiography report, ontology 

Abbreviations: Natural language processing (NLP), machine learning (ML), large 

language model (LLM), generative pre-trained transformer (GPT), named entity 

recognition (NER) 
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Introduction 

Big data has the potential to revolutionize echocardiography by enabling novel research 

and rigorous, scalable quality improvement1. Echocardiogram text reports are a key 

component of such analyses, serving as the prime means of communication for imaging 

findings 2 and as a source of data labels for machine learning research. 

Currently, echocardiogram reports include both structured and free text and vary across 

institutions, hampering attempts to mine text for useful insights. Alternatively, mapping 

report text to a standardized ontology can help harmonize reports across institutions, 

languages, and imaging modalities3. 

Several medical ontologies exist 4–7. The Unified Medical Language System (UMLS)4 is 

supported in some natural language processing (NLP) software packages, but it is 

focused on describing terms found in clinical notes rather than the structure and 

attribute details important in echocardiogram reporting. Radlex6, developed and 

maintained by the Radiological Society of North America (RSNA), is not as well 

supported by NLP software but contains additional attributes, for example on patient 

status and study protocol, that may be useful for echocardiography as well. To date, 

however, neither echocardiogram nor radiology report text is routinely mapped to an 

ontology in clinical practice. 

Similarly, NLP research to date has focused not on mapping text to ontology but on 

extracting particular numerical values or concepts of interest from medical report text. 

Many published methods for extraction of multiple values use tailored regular 

expressions and rule- or pattern-based algorithms8–12. These approaches are an 

effective use of small datasets, but they can require considerable human effort to 
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develop and can be poorly generalizable to additional concepts or institutions outside 

the training set. Most did not test externally9–12, and one that did showed recall near 

50% on the external test set8. 

Machine learning has been used on clinical reports but not specifically for extraction of 

concepts from echocardiogram reports. Many have used various implementations of 

BERT (Bidirectional Encoder Representations from Transformers), an early large 

language model (LLM), to extract radiographic clinical findings13, mentions of devices14, 

study characteristics15, and result keywords16 from radiology or pathology reports. 

However, performance of these models is often lower than what would be required 

clinically without additional feature engineering13,15 or fine-tuning on thousands of 

manually-derived labels14,16 specific to the task. This likely reflects the fact that medical 

report text has specific structure and meaning while comprising only a small proportion 

of the general language used to train these models. Newer, larger LLMs like GPT hold 

greater promise for one-shot inference17,18 (making predictions without the need for 

transfer learning or fine-tuning) so that all curated data may be used for testing. To our 

knowledge these models have not been applied specifically to echocardiogram report 

text. 

In this work, we use NLP to extract all qualitative components of an adult transthoracic 

echocardiogram (TTE) report and map them to a standardized hierarchical ontology in a 

way that accommodates both free and structured text from across institutions. We 

compare a statistical ML model we developed, EchoMap, against one-shot inference 

using GPT.  
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Methods 

Ontology construction. We developed a three-tier ontology for the echocardiographic 

anatomic structures, functional elements, and descriptive characteristics in adult 

transthoracic echocardiograms. UCSF’s structured echocardiogram report data 

dictionary (standard phrases that populate structured reporting, n=951 sentences) was 

used as a starting point. Structures or attributes not mentioned in UCSF dictionaries 

were added, and all terms were mapped to UMLS 

(https://uts.nlm.nih.gov/uts/umls/home) and RadLex (https://radlex.org/) identifiers 

where available.There were 260 distinct ontology terms across all three levels of the 

ontology (five terms are found in both Level 2 and Level 3 of the ontology). Table 1 

provides an example. 

Datasets. Training and validation. The UCSF data dictionary (n=951 sentences) was 

split into a training set (n=723 sentences) and separate validation set (n=228 

sentences). 

Testing. Data dictionaries from the University of Arizona (n=1202), Indiana University 

(n=2143), University of Washington (n=504), University of Pennsylvania (n=2024), and 

University of Pittsburgh (n=966) medical centers were used as five external test sets. 

Two additional test sets were derived from patient echocardiogram reports. First, all 

patient echo reports from 1995-2021 were obtained from UCSF in accordance with the 

UCSF IRB and de-identified. 102 reports in the UCSF system had come from eighteen 

outside hospitals and were used for an “outside hospital” dataset (n=483 unique 

sentences). Second, UCSF patient reports had data dictionary sentences removed so 

that only free-text sentences were remaining (n >250,000 sentences). A random sample 
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of these free-text sentences (1500 minus 32 sentence fragments removed, n = 1468 

unique sentences) became the UCSF free-text dataset. 

All training and test datasets were labeled with ontology terms by clinicians, to serve as 

ground truth. 

Text processing. Sentences were delimited, spell-corrected, abbreviations were 

expanded, and made lowercase. 

Feature engineering. For input into the statistical ML model, feature engineering was 

performed on each sentence as follows. For each sentence, negation detection 

(https://pypi.org/project/negspacy/) was performed to tag sentences with negation 

detection absent vs present (0 vs 1). UMLS entities were extracted from each sentence 

(https://pypi.org/project/scispacy/ named entity recognition (NER), and principal 

component analysis (PCA) (https://scikit-learn.org/) was used to reduce this result into a 

25-element vector. Finally, Jaccard indices (a measure of overlap) were calculated 

between the sentence and each ontology term (257 terms) using tri-grams. The final 

input feature to the Level 1 statistical model was 53 elements (negation + 25-element 

UMLS + 27 Level1 Jaccard indices). The final input feature to the Level 2 statistical 

model was 284 elements (negation + UMLS + 27 Level1 Jaccard + 230 Levels 2 and 3 

Jaccards + Level1 prediction). The final input feature to the Level 3 statistical model was 

285 elements (Level2 features + Level2 prediction).  

Additional features calculated, but not used in the final model, include a 25-element 

embedding from position of speech tagging ("en_core_web_sm" model from scispacy, 

then reduced to 25 elements with PCA) and a 25-element embedding from the 
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BioWordVec large language model19 (“BioWordVec_PubMed_MIMICIII_d200.vec.bin” 

from scispacy, reduced with PCA (Supplemental Table 2). 

For inference using GPT 3.5 (OpenAI), the OpenAI API was accessed using scikit-llm 

(https://pypi.org/project/scikit-llm/ ). For input into GPT3.5, raw sentences were used 

without feature engineering. 

Model architectures, training, and inference. For the statistical ML model, random forest 

(RF) classifiers were used (https://scikit-learn.org/) for classification at each of the three 

ontology levels. GridSearch was used to help determine optimal parameters for each 

classifier. The first RF classifier had a maximum depth of 25 and 100 estimators. The 

second classifier had max depth 40, number of estimators 120. The third classifier had 

max depth 25, number of estimators 100. All classifiers used the class balance option to 

mitigate class imbalance among different ontology terms. 

For the large language model (LLM) classifier, OpenAI’s GPT 3.5 (a pre-trained model) 

was accessed via scikit-llm Python package (https://pypi.org/project/scikit-llm/; the zero-

shot GPT classifier and multi-class zero-shot GPT classifiers were used, respectively, 

for one classification at a time vs multi-class predictions). 

Statistical analysis. Model predictions were compared to ground-truth labels, and 

percent correct was calculated both by ontology level and overall. One-sample t-test, 

Friedman 𝛸2, and Nemenyi post-hoc comparisons were used to perform statistical 

comparison across groups.  

Data and code availability. Code will be made available at 

github.com/ArnaoutLabUCSF/CardioML/ upon publication. Patient report data cannot be 
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made available. The UCSF data dictionary can be made available upon reasonable 

request for non-commercial use and with approval.  
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Results 

An ontology was created from the UCSF data dictionary as a proof-of-concept ontology 

designed to capture most relevant TTE descriptors within three or fewer hierarchical 

levels (Table 1). We then tested the ability of (i) a hierarchical statistical machine 

learning model, termed “EchoMap,” trained on a small corpus of echocardiogram 

sentences and (ii) one-shot inference from GPT to map echocardiogram report 

sentences to the ontology. Overall, EchoMap outperformed single-shot GPT. 

 

Structured reporting text varies across institutions, and existing medical 

ontologies do not contain all terms relevant to echocardiography 

Despite all adhering to clinical guidelines, there were notable differences by institution in 

what structural and functional information was included in structured reporting. Our 

proof-of-concept TTE ontology (that captures all concepts in the UCSF data dictionary) 

captured only 57-68% of concepts in the data dictionaries from the other institutions in 

our test set (Table 2). 

Additionally, mainstream ontologies like UMLS and Radlex contained some, but not all, 

of the echo-specific terms from the TTE ontology (Table 3). At each level of our 

ontology, UMLS contained a higher proportion of terms than Radlex did (while Radlex 

includes additional terms describing radiology study quality and protocol, those are not 

part of the current TTE ontology). Level 1 of the ontology, containing more common 

cardiac structures, was best covered in both UMLS and Radlex, followed by Level 2, 

and then Level 3, which each contain structures and observations successively more 

specific to echocardiogram findings.  
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Machine learning can map echocardiography report text to an ontology 

We tested two machine learning models for mapping echocardiogram report sentences 

to our TTE ontology. The first was EchoMap, a statistical machine learning model 

trained on a portion of the UCSF data dictionary (see Methods). The second was single-

shot inference using GPT. We used GPT in two ways: (i) single-shot inference to predict 

all three ontology terms at once (multi-class inference), and (ii) single-shot inference to 

predict Level 1, Level 2, and Level 3 terms separately (Figure 1). 

For EchoMap, the balance of the UCSF dictionary served as a validation dataset, and 

seven additional datasets served as test datasets. These included the data dictionaries 

from the University of Washington, the University of Pennsylvania, the University of 

Pittsburgh, Indiana University, and the University of Arizona, as well as free text 

sentences from UCSF reports, and report sentences from a group of 18 outside 

hospitals incidentally found in the UCSF database. Because GPT was used “out of the 

box” rather than fine-tuned on any of our echocardiogram text, the UCSF data dictionary 

also served as a test set with respect to GPT. 

EchoMap’s validation accuracy was 98% for the first level of the ontology, 93% for the 

first and second levels together, and 79% for the first, second, and third levels (Figure 

2A). Notably, Level 1 contained the fewest different ontological terms (n=27) with the 

most representation in UMLS, and was therefore the least difficult task. Levels 2 and 3 

were more complex (containing 102 and 150 distinct terms, respectively) and contained 

less representation in UMLS, as mentioned above (Table 3). 

EchoMap retained good first-level performance across test datasets, with a mean of 

82±4% correct on Level 1 (range 78-89%), 61±7% cumulatively on Levels 1 and 
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2(range 54%-74%), and 39±5% cumulatively on all three levels (range 32-46%, Figure 

2A). Level 1 performance on the test datasets was lower than performance on the 

validation dataset (one-sample t-test p<0.001). For Levels 1 and 2 together, and for all 

three levels together, test dataset performance was also statistically significantly 

different from performance on the validation dataset (p<0.001, p<0.001 respectively). 

 

A small, statistical machine learning model was superior to single-shot inference 

from a large language model 

Given the rapidly improving capabilities of newer LLMs for myriad language tasks, we 

also tested the ability of GPT to map echocardiogram text to the TTE ontology. Using 

one-shot inference allowed us to leverage the power of GPT without sacrificing any of 

the small echocardiogram dataset for training or fine-tuning; one-shot inference has 

recently been shown to meet or beat fine-tuned performance at some medical tasks20. 

GPT was used in two different ways. First, level 1, level 2, and level 3 were each 

predicted independently for each test sentence. Second, all three levels were predicted 

simultaneously for each sentence. 

Using the independent classification approach, GPT gave 85±5% correct for Level 1 

(range 79%-91%), 41±7% correct for Levels 1 and 2 (range 26%-46%), and 11±5% 

correct for all three levels (range 1%-15%). Using simultaneous classification for all 

three levels, performance was 64±5% for Level 1 (range 57%-72%), 19±5% for Levels 1 

and 2 (range 10%-23%), and 11±4% for all three levels (range 5%-16%). These results 

are shown in Figure 2. 
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We compared test performance across the three methods: EchoMap, GPT with 

individual classifications, and multi-class GPT(Figure 1).  EchoMap was statistically 

superior to GPT at all three ontology Levels (Friedman’s 𝛸2 p < 0.01 at Level1, p < 

0.001 at Levels 1 and 2, and p < 0.01 at Levels 1, 2, and 3) (Figure 3). Only at Level 1, 

independent classification GPT, but not multi-class GPT, was statistically similar to 

EchoMap (pairwise p = 0.6 for individual GPT vs. EchoMap; p < 0.05 for multi-class 

GPT vs. EchoMap). At Levels 1, 2, and 3 together, both methods for GPT inference 

performed poorly and were statistically indistinguishable from each other (pairwise p = 

0.9). 

 

EchoMap performance relies most on UMLS entities and simple text overlap 

In the development of the EchoMap statistical ML model, different engineered features 

were tested (see Methods). In addition to negation, Jaccard similarities, UMLS named 

entity recognition, and hierarchical predictions, all used in the final EchoMap model, 

position of speech embedding as well as BioWordVec embedding were also evaluated 

against the validation dataset for Level 1, Level 2, and Level 3 of the ontology 

(Supplemental Table 2). 

Simple Jaccard indices between sentences and ontological terms worked well. Overall, 

UMLS named entity recognition was the most useful embedding compared to position of 

speech or BioWordVec. UMLS embeddings were more useful for L1 performance than 

for L2 or L3, likely consistent with the fact that fewer ontological terms from L2/L3 are 

currently represented in UMLS (Table 3). 
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ML models displayed the ability to extrapolate to ontological combinations not 

initially included in training 

Across all 7 external test sets, there were 2076 sentences where each level of Level 1, 

Level 2, and Level3 were able to be mapped using a rearrangement of existing ontology 

terms, even though that particular L1-L2-L3 combination was not present in the TTE 

ontology. EchoMap demonstrated an ability to map sentences not originally included in 

the training, mapping 359 of these sentences correctly. Multi-class GPT performed 

similarly, correctly mapping 354 of these sentences, while GPT making independent 

predictions per level performed worse, only mapping 128 correctly.  
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Discussion 

Harmonizing echocardiogram report text is critical to leverage it for cross-institutional 

big-data research. In this study, we provide proof of concept for how to apply NLP to 

harmonize echocardiogram report text. 

Importantly, the models in this study do not just extract certain information from text but 

seek to map all echo report text to an ontology – a framework for knowledge. An 

ontology is key because, as Meta Chief AI Scientist Yann LeCun says, “there is a limit 

to how smart [language models] can be and how accurate they can be because they 

have no experience of the real world, which is really the underlying reality of 

language21.” The finding that eight different accredited hospitals operating according to 

echocardiography guidelines have such different data dictionaries is important in and of 

itself and demonstrates the need for greater harmonization. 

One reason echocardiography report text has not been mapped to an ontology to date 

is the technical challenges inherent in doing so – challenges we address in this proof-of-

concept study. Regular expressions-based text extraction is tedious and brittle, while 

the corpus of echo text is so small that ML is hard to implement – especially those large 

language models that seem to excel at more general language tasks. We show that a 

small statistical ML model, EchoMap, trained on a small amount of the echo report 

corpus can actually outperform one-shot inference from prevailing LLMs. 

With EchoMap, we see a relationship between each level’s performance and the 

number of ontology terms present in UMLS; this suggests that further investment of 

adding echo-specific terms to UMLS (or alternatively, Radlex with greater software 

support for feature embeddings) could pay dividends both in improving EchoMap and in 
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achieving greater representation of echocardiography concepts in more general medical 

ontologies. 

 

Limitations 

There are several limitations of the current study, which we see as areas for future 

improvement. 

A major limitation is that the echo ontology developed must be improved and expanded. 

The ontology used in the current study was created from only one institution’s data 

dictionary (along with clinical domain knowledge), so that other institutions’ dictionaries 

could be reserved for testing. An improved ontology could start with more data 

dictionaries, and could expand to all areas germane to echo reporting, including study 

quality, patient status, pediatric congenital heart disease, stress and transesophageal 

echocardiography, and more. With more institutional sharing of data dictionaries, the 

ontology can be improved. 

Second, despite testing of several versions of EchoMap and two versions of GPT, more 

ML model exploration and improvement may further improve performance and 

generalizability.  
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Conclusions: 

Mapping echocardiographic report text to a standardized ontology can aid in data 

mining efforts for both quality improvement and machine learning research. While LLMs 

have risen in popularity, small statistical machine learning models also perform well and 

may be especially useful for small, specialized text datasets where clinical meaning is 

important. These results highlight the utility of continuing to develop an open-source, 

high-resolution, standardized cardiac ontology to harmonize reports across institutions. 

One can envision a future where an optimized ontology is developed and maintained by 

the echocardiography community, with investment into depositing all terms into UMLS 

or similar general medical ontologies, and where all institutions can map their data 

dictionaries to this central and comprehensive resource. 
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Tables 

Table 1. Example sentences from TTE reports and representative ontology 

mappings. 

 In TTE Ontology Not in TTE Ontology 

 In UMLS/Radlex Not in UMLS/Radlex  

Example 
Sentence 

LV systolic function 
appears hyperdynamic. 

Small VSD is seen in the 
perimembranous 

septum. 

There is no aortic valve 
mass present. 

L1 LEFT VENTRICLE 
INTERVENTRICULAR 

SEPTUM 
AORTIC VALVE 

L2 FUNCTION DEFECT MASS 

L3 HYPERDYNAMIC 
SMALL 

PERIMEMBRANOUS 
NONE 
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Table 2. Sentences in external data dictionaries represented by TTE ontology. 

Data Sets 
Sentences represented in 

TTE ontology 

UCSF Validation (n=228) 228 (100%) 
UCSF Free Text (n=1178) 914 (77.6%) 

UCSF Outside Hospital (n=338) 260 (76.9%) 

UPITT (n=777) 485 (62.4%) 

IU (n=906) 585 (64.6%) 

UAZ (n=825) 557 (67.5%) 

UPENN (n=1558) 891 (57.2%) 

UW (n=445) 259 (58.2%) 
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Table 3. TTE ontology concepts represented in existing ontologies. 

 UMLS Radlex 

Overall (n=260)* 189 (72.7%) 84 (32%) 

UCSF Ontology Level   

                 Level 1 (n=27) 24 (89%) 18 (67%) 

Level 2 (n=102) 88 (86%) 39 (38%) 

Level 3 (n=150) 95 (63%) 39 (26%) 
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Supplemental Table 1. Extrapolation performance on term combinations outside 

TTE ontology. 

 Echomap GPT GPT Multi-Class 
UCSF (n=0) n/a   

PITT (n=292)    

L1 237 (81%) 260 (89%) 199 (68%) 
L1, L2 118 (40%) 184 (63%) 91 (31%) 

L1, L2, L3 32 (11%) 9 (3%) 64 (22%) 

IU (n=321)    

L1 233 (73%) 266 (83%) 215 (67%) 
L1, L2 137 (43%) 186 (58%) 71 (22%) 

L1, L2, L3 46 (14%) 22 (7%) 45 (14%) 

UCSF-OSH (n=78)    

L1 41 (53%) 61 (78%) 38 (49%) 
L1, L2 25 (32%) 34 (44%) 15 (19%) 

L1, L2, L3 8 (10%) 6 (8%) 9 (12%) 

UAZ (n=268)    

L1 176 (66%) 222 (83%) 188 (70%) 
L1, L2 90 (34%) 131 (49%) 62 (23%) 

L1, L2, L3 46 (17%) 35 (13%) 46 (17%) 

UCSF-FREE (n=264)    

L1 152 (58%) 177 (67%) 137 (52%) 

L1, L2 87 (33%) 87 (33%) 34 (13%) 
L1, L2, L3 35 (13%) 16 (6%) 21 (8%) 

UPENN (n=667)    

L1 554 (83%) 607 (91%) 500 (75%) 

L1, L2 272 (41%) 407 (61%) 267 (40%) 
L1, L2, L3 149 (22%) 40 (6%) 160 (24%) 

UW (n=186)    

L1 136 (73%) 112 (60%) 82 (44%) 

L1, L2 92 (49%) 52 (28%) 22 (12%) 
L1, L2, L3 43 (23%) 0 (0%) 9 (5%) 
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Supplemental Table 2. Iterations on statistical ML model features. Bold indicates 

the highest performance at each level. EchoMap is represented as the final entry in the 

table. 

 Features used 

Validation 
performance, 

% correct 

Model Brief Description Neg Jac 
Hier-
archy 

POS 
(PCA)* 

BWV 
(PCA)* 

UMLS 
(PCA)* L1 L2 L3 

No Jaccard used X  X X (25) X (25) X (25) 90 87 57 

Only embedding used is UMLS; 
no Jaccard X  X   X (25) 91 83 54 

No embeddings used X X X    92 92 81 

Only embedding used is POS X X X X (25)   95 90 80 

No UMLS embedding used X X X X (25) X (25)  95 92 81 

Only embedding used is BioWordVec X X X  X (25)  95 92 81 

Only embedding used is UMLS; 
only 10 PCA elements X X X   X (10) 96 90 83 

No negation used  X X X (25) X (25) X (25) 97 91 81 

No POS embedding used X X X  X (25) X (25) 97 91 81 

UMLS, Jaccard, and Hierarchical only  X X   X (25) 97 92 80 

UMLS, and Jaccard only  X    X (25) 97 92 80 

All features X X X X (25) X (25) X (25) 97 93 82 

No BioWordVec embedding used; 
no hierarchical pred X X  X (25)  X (25) 98 92 79 

No BioWordVec embedding used X X X X (25)  X (25) 98 93 81 
Only embedding used is UMLS; 

no hierarchical pred X X    X (25) 98 93 81 

Only embedding used is UMLS 
(EchoMap) X X X   X (25) 98 93 83 

 
*indicates the number of principal components used 
PCA, principal components analysis. Neg, negation detection. Jac, Jaccard indices. 
Hierarchy, Hierarchical predictions across levels. POS, position of speech tag embedding. 
BWV, BioWordVec embedding. UMLS, UMLS named entity recognition embedding. 
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Figure Legends 

 
Central Illustration. (A) Echocardiography report text is a small, highly specialized 

corpus of text used to communicate echocardiography findings, and it includes both 

structured and free text that varies among institutions. (B) Mapping such text to a 

centralized ontology (C) for harmonization can improve quality improvement, big-data 

research, and cross-institution collaboration (D). We tested the ability of natural 

language processing (NLP) to map echocardiography text to ontology, evaluating both a 

small statistical machine learning (ML) model as well as a large language model (LLM). 

 

Figure 1. Workflow for the three machine learning approaches evaluated. Data 

(structured dictionaries and free text from echo reports) were preprocessed, then 

passed to each of three model types: (A) Hierarchical Random Forest statistical 

machine learning model, which included additional engineered features and used each 

level’s prediction to inform the subsequent level, (B) Zero-shot GPT making 

independent predictions per level of ontology, (C) Zero-shot GPT making multi-class 

prediction. GPT, Generative Pre-trained Transformer. RF, Random Forest. UMLS, 

Unified Medical Language System. L1, L2, L3, Level 1, Level 2, Level 3, respectively. 

 

Figure 2. Correctness by ontology level, by dataset. Validation (UCSF) and test set 

(outside hospitals) performance for each of three model architectures: (A) Echomap, (B) 

Zero-shot GPT, (C)  Multi-class zero-shot GPT. UCSF, University of California, San 

Francisco. PITT, University of Pittsburgh. IU, Indiana University. UCSF-OSH, outside 

hospital reports in the UCSF system. UAZ, University of Arizona. UCSF-FREE, free-text 
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sentences from UCSF reports. UPENN, University of Pennsylvania. UW, University of 

Washington. 

 

Figure 3. Aggregate performance across all datasets evaluated, by each mapping 

model and by ontology level. Box plots represent performance of all eight validation 

and test datasets in order to illustrate differences among mapping models. 
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