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Abstract 1 

Background 2 

Left ventricular hypertrophy (LVH) is characterized by increased left ventricular myocardial 3 

mass (LVM) and is associated with adverse cardiovascular outcomes. Traditional LVH 4 

diagnosis based on rule-based criteria using limited electrocardiogram (ECG) features lacks 5 

sensitivity. Accurate LVM evaluation requires imaging techniques such as magnetic resonance 6 

imaging or computed tomography (CT) and provides prognostic information beyond LVH. 7 

This study proposed a novel deep learning-based method, the eLVMass-Net, together with sex-8 

specific and various processing procedures of 12-lead ECG, to estimate CT-derived LVM.   9 

 10 

Methods 11 

1,459 ECG-LVM paired data were used in this research to develop a deep-learning model for 12 

LVM estimation, which adopted ECG signals, demographic information, QRS interval 13 

duration and absolute axis values as the input data. ECG signals were encoded by a temporal 14 

convolutional network (TCN) encoder, a deep neural network ideal for processing sequential 15 

data. The encoded ECG features were concatenated with non-waveform features for LVM 16 

prediction. To evaluate the performance of the predicting model, we utilized a 5-fold cross-17 

validation approach with the evaluation metrics, mean absolute error (MAE) and mean absolute 18 

percentage error (MAPE). 19 

 20 

Results 21 

The eLVMass-Net has achieved an MAE of 14.33±0.71 and an MAPE of 12.90%±1.12%, with 22 

input of single heartbeat ECG waveform and lead-grouping. The above results surpassed the 23 

performance of best state-of-the-art method (MAE 19.51±0.82, P = 0.04; MAPE 24 

17.62%±0.78%; P = 0.07) in 292(±1) test data under 5-fold cross-validation. Adding the 25 
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information of QRS axis and duration did not significantly improve the model performance 26 

(MAE 14.33±0.71, P = 0.82; MAPE 12.90%±1.12%; P = 0.85). Sex-specific models achieved 27 

numerically lower MAPE for both males (-2.71%, P=0.48) and females (-2.95%, P=0.71), 28 

respectively. The saliency map showed that T wave in precordial leads and QRS complex in 29 

limb leads are important features with increasing LVM, with variations between sexes. 30 

 31 

Conclusions 32 

This study proposed a novel LVM estimation method, outperforming previous methods by 33 

emphasizing relevant heartbeat waveforms, inter-lead information, and non-ECG demographic 34 

features. Furthermore, the sex-specific model is a rational approach given the distinct habitus 35 

and features in saliency map between sexes.  36 

 37 

Clinical Perspectives 38 

What is new? 39 

⚫ The eLVMass-Net used ECG encoders with lead grouping, a unique feature that more 40 

properly reflects the electrical orientation of left ventricle. 41 

⚫ The sex-specific deep learning model is able to discriminate inter-gender differences of 42 

ECG features as shown by saliency maps. 43 

What are the clinical implications? 44 

⚫ The eLVMass-Net outperforms current state-of-the-art deep learning models for 45 

estimating left ventricular mass. 46 

⚫ A more accurate estimation of left ventricular mass could improve quality of care for 47 

comorbidities such as hypertension from easily accessible ECG. 48 

  49 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.19.24303061doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.19.24303061
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

 

Abbreviations 50 

CNN: convoluted neuron network 51 

LVH: left ventricular hypertrophy 52 

LVM: left ventricular myocardial mass 53 

MAE: mean absolute error 54 

MAPE: mean absolute percentage error 55 

ML: machine learning 56 

MLP: multilayer perceptron 57 

SOTA: state of the art 58 

TCN: temporal convoluted network 59 

  60 
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Introduction 61 

Left ventricular hypertrophy (LVH) is defined by an increased left ventricular myocardial 62 

mass (LVM), usually secondary to conditions with higher left ventricular afterload, such as 63 

hypertension or aortic stenosis. LVH is a dynamic pathophysiological phenomenon with 64 

concomitant changes in cardiomyocytes and interstitial fibrosis.
1,2

 Further progressions in LVH 65 

are associated with diastolic dysfunction, arrhythmia as well as cardiac death.3-5 Traditionally, 66 

the diagnosis of LVH relies on various rule-based criteria, mainly focusing on QRS voltage 67 

presented on individual electrocardiogram (ECG), which is a low-cost and convenient test.6 68 

Nonetheless, most of these criteria concentrate more on the features of R/S amplitudes, QRS 69 

duration, and qualitative ST and T wave changes, which often fall short of sensitivity.7-9 It is 70 

not surprising considering the fact that magnetic resonance imaging (MRI)-based studies 71 

showed that commonly used criteria such as Sokolow-Lyon or Cornell indices are negatively 72 

correlated to the degree of left ventricular fibrosis.10 It is thus necessary that comprehensive 73 

ECG features, as well as interactions between individual leads, be considered in order to 74 

encompass the electrophysiological traits.11 75 

More precise evaluation of LVH typically requires accurate imaging evaluation of LVM. 76 

Both cardiac MRI and computed tomography (CT) are recommended as accurate measurement 77 

modalities of LVM and are able to provide additional prognostic value beyond LVH.12,13 78 

However, these imaging modalities are either time-consuming or flawed by radiation and 79 

contrast exposure. Also, such information provides anatomical rather than electrophysiological 80 

features.  81 

In the past, machine learning (ML) models have been applied to ECG features generated 82 

through rule-based algorithms, but these methods have limitations in producing high-quality 83 

ECG features. To address this issue, some works employed learning-based techniques, 84 
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specifically deep learning models, to replace rule-based algorithms in ECG feature extraction. 85 

A few studies have made progress in LVM evaluation using ECG amplitude data or auto-86 

segmented features.14-16 Some studies take advantage of convolutional neural networks for 87 

heart disease (e.g., LVH) prediction.17,18 The ecgAI model used a deep-learning model to 88 

automatically segment raw ECG signals into non-overlapping intervals and durations to 89 

generate ECG features.14 This approach allowed for a more comprehensive analysis of the ECG 90 

signal, resulting in more accurate and reliable features. Furthermore, the LVM-AI model 91 

utilized an end-to-end training pipeline to estimate LVM using ECG signals and demographic 92 

data.16 By incorporating demographic data in the analysis, they were able to improve the 93 

accuracy of LVM prediction. These deep learning methods that discriminate LVH may 94 

improve risk stratification and prompt early pharmacological intervention.19  95 

Previous studies utilized full-length ECG signals and demographic data as the input for 96 

their models. However, it is difficult to ensure that the model is able to focus specifically on 97 

the waveform features that are related to LVM values or to extract inter-lead information such 98 

as the heart axis. In this study, to solve this problem, we developed a deep-learning model for 99 

LVM estimation based on the Taiwan CVAI dataset, which includes cardiac CT exams of over 100 

3,500 patients from major medical centers in Taiwan. We accessed demographic data, 12-lead 101 

ECG, and CT-derived LVM values, utilizing these data to construct an LVM estimation model. 102 

Meanwhile, we conducted a series of experiments to analyze the impact of sex, ECG 103 

preprocessing methods, and groupings for 12-lead ECGs according to different characteristics 104 

of model performance. 105 

Methods 106 

Data Acquisition 107 
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The dataset utilized in this study was obtained from the National Taiwan University 108 

Hospital and was approved by the institutional review board previously. This study was further 109 

approved by the Institutional Review Board of National Taiwan University Hospital (NTUH-110 

REC No. 202012128RINA). The dataset consists of 12-lead ECG signals, recorded at a 111 

sampling rate of 500 Hz for 10 seconds and downloaded in XML format. The XML files also 112 

contain non-waveform information automatically generated by the ECG device, including heart 113 

axis and QRS duration, which are further integrated into input features. Pertinent demographic 114 

data such as age, sex, height, and weight are included. Figure 1 shows the overall data 115 

collection and cleansing process. The LVM values were first obtained, and subsequently, the 116 

ECG XML file that was closest to the LVM measurement was selected as the corresponding 117 

ECG signal. Patients with bundle branch block, paced rhythm, or atrial fibrillation were 118 

excluded from the research.  119 

The ground truth of LVM values was inferred from auto-segmentation of left ventricular 120 

wall from cardiac CT images, by using the Intellispace Portal Software (Philips Healthcare, 121 

The Netherlands). A threshold-based method was used to determine epicardial and endocardial 122 

borders, and the left ventricular myocardium was calculated automatically after obtaining both 123 

total ventricular volume and ventricular cavity volume. Mass value was further acquired after 124 

multiplying myocardial density by 1.05 g/mL. The results of left ventricle segmentation were 125 

verified by a senior radiologist (W.-J.L.) who is specialized in cardiac CT images and with 126 

more than 20 years’ experience. 127 

 The dataset is divided into non-overlapping subsets for cross-validation. K-fold cross-128 

validation was employed as a robust validation process to prevent sampling bias. In each 129 

iteration, a single fold was reserved as the test set (n=292±1), while a percentage of the 130 

training set (n=1051±1) was selected as the validation set (n=116±1) to assess model 131 

performance. The selection of the optimal model was based on the performance observed 132 
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during the validation stage. The final evaluation of the model was obtained by averaging the 133 

test results across all folds. All experiments in this research undergo validation using 5-fold 134 

cross-validation, which is stratified based on the LVM values. For sex-specific models, the 135 

original data splitting policy was followed, and the samples of the target gender were 136 

extracted to form the sub-datasets for training and evaluation. 137 

 138 

Data Processing 139 

We included demographic information (age, sex, height, and weight), and automatically 140 

derived numeric ECG values (P-axis, R-axis, T-axis, and QRS duration) for analysis. These 141 

data were represented as scalar values, resulting in a total of 8 scalar inputs for this task. Our 142 

research aimed to leverage both the ECG signals and non-ECG data to estimate the 143 

corresponding LVM value. cr data were addressed through an imputation method, with 144 

numerical data imputed with the median and binary categorical data with 0.5.  145 

The ECG signals were in the form of a 12-lead signal with a shape of (L, D * Fs), where 146 

L represents the number of leads, D represents the signal duration in seconds, and Fs represents 147 

the sampling rate. This study improved the quality of 12-lead ECG signals through various 148 

preprocessing steps. The signals underwent a band-pass filter to eliminate high-frequency noise 149 

and baseline wandering. R peaks were then detected, and the middle heartbeat segment was 150 

selected to avoid incomplete segments caused by recording borderlines. 151 

 152 

eLVMass-Net   153 

This study has developed a novel deep learning-based method, the eLVMass-Net, which 154 

can accurately estimate LVM values using ECG and demographic information. The overview 155 

of the proposed framework is depicted in Figure 2. There are ECG feature extractors (i.e., the 156 

encoders for input data embedding) followed by a multilayer perceptron (MLP) layer. The 157 
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number of ECG encoders utilized in the model is dependent on the number of lead groups. The 158 

encoded ECG features from each ECG encoder were concatenated, and a projection layer was 159 

utilized to aggregate these features. The scalar features such as demographic data, axis, and 160 

QRS duration were passed through their own MLP layer. These two feature vectors were 161 

subsequently concatenated and fed into an MLP regressor to estimate the LVM value. To obtain 162 

ECG features, we took advantage of the Temporal Convolutional Networks (TCN) to encode 163 

ECG signals. Throughout the process of model training, the mean absolute error (MAE) was 164 

employed as the chosen loss function. The Adam optimizer, with a learning rate of 0.001, was 165 

utilized for model optimization. And with a maximum of 100 epochs, the model with the lowest 166 

validation loss was selected for testing to avoid overfitting. 167 

Besides TCN, we also used EfficientNet for comparison to validate the performance of 168 

the convolutional neural network (CNN)-based methods with different characteristics. 169 

EfficientNet and TCN are two popular models used for image and signal processing. 170 

EfficientNet is proposed based on a CNN architecture, which has demonstrated exceptional 171 

performance in image classification tasks and even on ECG signals.20-22 These models are 172 

designed using a compound scaling method that optimizes the network's depth, width, and 173 

resolution. The EfficientNet architecture also employs advanced techniques like squeeze-and-174 

excitation modules and swish activations, which further enhance its performance. Meanwhile, 175 

TCN is a type of deep neural network that is ideal for processing sequential data, such as time-176 

series signals. TCNs use dilated convolutions, enabling the network to capture long-term 177 

dependencies in the input sequence while maintaining a compact architecture. Our preliminary 178 

experiments revealed that EfficientNet-based ECG encoders had a tendency towards 179 

overfitting. 180 

 181 

Exploring ECG Pre-processing and Grouping Methods 182 
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We explored the use of preprocessing techniques to guide the model to learn ECG 183 

features. We employed two preprocessing techniques, namely random length crop and single 184 

heartbeat extraction. The random length crop approach involves randomly selecting a segment 185 

of the ECG signal of varying lengths and using it as input to the model. This approach enables 186 

the model to learn features that are specific to different parts of the ECG waveform, which may 187 

be useful in capturing subtle changes in the signal. On the other hand, the single heartbeat 188 

extraction approach involves segmenting the ECG signal into individual heartbeats and using 189 

each beat as input to the model. This approach may help the model to focus on capturing 190 

features that are specific to the heartbeat waveform, instead of inter-beat waveform variances. 191 

      Furthermore, we investigated the use of lead grouping as a preprocessing technique for 192 

improving the prediction accuracy of ECG signals. Specifically, we applied lead grouping on 193 

the 12-lead ECG signals based on their electrical orientation or anatomical location. For 194 

electrical orientation, 12-lead ECG signals are grouped into 2 separate groups based on 195 

horizontal and frontal planes (i.e., precordial and limb leads). For anatomical location, we 196 

formed 4 groups based on the distribution of coronary artery branches within the heart. Leads 197 

V1-V4 were grouped as leads related to the left anterior descending artery. Leads I, aVL, V5, 198 

and V6 were grouped as leads related to the left circumflex artery, whereas leads II, III, and 199 

aVF and lead aVR were related to the right coronary artery and the left main coronary artery, 200 

respectively. 201 

 202 

Feature Importance 203 

     To better understand how different input data contribute to the overall prediction 204 

performance of our model, we designed three input combinations in our study. The first input 205 

set included only raw ECG signals, which is a commonly used and simple setting that can be 206 

applied to any 12-Lead ECG device and dataset. This setting served as a baseline for 207 
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comparison with more complex input sets. Demographic data was added to the second input 208 

set, as this information can provide a general description of physiological conditions that may 209 

affect electric conductance from the heart and heart functions. Demographic data are widely 210 

available in most clinical fields, making it a useful addition to the input set. Lastly, we included 211 

ECG axis and QRS duration information extracted from the XML files of ECG devices. 212 

However, this input combination may not always be available, as not all ECG devices provide 213 

this information.  214 

By comparing the performance of the three input combinations, we were able to identify 215 

the contributions of each input data type to the overall prediction performance of our model. 216 

This allowed us to determine which input combinations were most effective for predicting 217 

LVM. 218 

 219 

Performance Analysis 220 

To evaluate the performance of the predicting model, mean absolute error (MAE) and 221 

mean absolute percentage error (MAPE) were utilized. These widely accepted metrics are 222 

commonly employed in regression analysis to gauge the accuracy of predicted values in 223 

comparison to actual values. MAPE calculates the absolute percentage difference between 224 

predicted and actual values and averages them over the dataset, while MAE measures the 225 

average absolute difference between the predicted and actual values. 226 

We also used the saliency maps from the proposed framework to assess the importance 227 

of different ECG segments. Saliency maps are a type of visualization tool that can be generated 228 

from deep learning models to help understand how the model is making its predictions. These 229 

maps highlight the most important regions of input data that the model focuses on when making 230 

its prediction. In our case, saliency maps can be used to visualize which parts of the ECG signal 231 

are most important for the model's prediction. For the illustration of saliency maps, the ECG 232 
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signal was divided into non-overlapping segments, including the PR interval, QRS interval, ST 233 

segment, T-wave, and TP interval (Figure S1). Subsequently, the significance of each segment 234 

was determined by calculating the summation of their respective significance scores, which 235 

represent the overall segment significance. 236 

Results 237 

Patient Characteristics 238 

      The sex-specific patient characteristics are summarized in Table 1. Compared with 239 

female patients, male patients generally had wider QRS segments and more leftward axis, while 240 

also having higher LVM and LVM index. The correlation between LVM values and 241 

demographics, QRS duration, or axis is shown in Figure S2. 242 

 243 

Effect of ECG Grouping and Preprocessing Methods 244 

For the assessment of ECG preprocessing, data from both sexes were utilized as the 245 

training data, and electric orientation-based grouping was employed, whereas single-heartbeat 246 

extraction was utilized as the pre-processing technique for the assessment of different lead 247 

grouping methods. 248 

The results of using different ECG preprocessing techniques are shown in Table S1. We 249 

found that the synchronized single heartbeat extraction can better improve the performance of 250 

the deep learning model in predicting LVM. Meanwhile, the experiments on lead grouping 251 

suggested that grouping based on electrical orientation had a significant impact on the 252 

performance of the model (Table S2). 253 

 254 

Feature Importance 255 
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The results of different input combinations are shown in Table 2. Demographic data 256 

played a crucial role in predicting LVM using our model. The inclusion of demographic data 257 

significantly improved the prediction performance compared to using only raw ECG signals 258 

by 25.1% (P<0.01). Furthermore, the addition of the heart axis and QRS duration information 259 

provided an insignificant performance improvement (by an absolute difference of 0.7%, 260 

P=0.82). In the real clinical setting, while demographic data are typically accessible, the 261 

availability of heart axis and QRS duration relies on the specific ECG device being used. 262 

Therefore, in the following experiments, both models were compared. The first model, named 263 

eLVMass-Net model 1, is trained using ECG and demographic data within the proposed 264 

framework. On the other hand, eLVMass-Net model 2 represents the proposed model trained 265 

with ECG, demographic data, heart axis, and QRS duration, encompassing a more 266 

comprehensive set of input features. 267 

 268 

Comparison with The State-of-The-Art Methods and Sex-Specific Analysis 269 

We conducted performance comparisons using two different feature sets. The first 270 

setting followed the original configuration of the state-of-the-art (SOTA) methods, which 271 

involved specific method designs that were incompatible with our proposed eLVMass-Net. 272 

And in the second setting, all available features (ECG signals, demographic data, heart axis, 273 

and QRS durations) are used, showcasing the advantages of our approach while improving the 274 

SOTA methods as well.  275 

For the non-sex-specific models, the performance metrics of our proposed method and 276 

the other SOTA methods are summarized in Table 3.  As can be seen from the table, the 277 

proposed method has achieved the lowest mean absolute error (MAE) of 14.33 and mean 278 

absolute percentage error (MAPE) of 12.90% among all the methods. On the other hand, the 279 

SOTA methods have MAE and MAPE of 19.51 and 17.62%, respectively.  280 
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In the sex-specific analysis, each sex-specific model was trained and evaluated on sex-281 

specific data subsets. The performance metrics for the sex-specific models with the proposed 282 

method and the other SOTA methods are summarized in Table 4. It’s observed that all methods 283 

are able to achieve a lower MAPE on the sex-specific dataset. Both eLVMass-Net Model 1 and 284 

eLVMass-Net Model 2 outperform the SOTA method (LVM-AI) by at least 3.68% (P < 0.01) 285 

and 2.21% (P = 0.20) in terms of MAPE for males and females, respectively. The results also 286 

indicated that models tend to have higher MAE for males and lower MAE for females 287 

compared to the MAE for the overall test set. This observation can be attributed to the higher 288 

average LVM value of males compared to females. When compared to the non-sex-specific 289 

model, the sex-specific model demonstrates a relative improvement of 2.71% in terms of 290 

MAPE for males (P = 0.30), and a relative improvement of 2.95% for females (P = 0.10). 291 

(Table S3) 292 

 Samples (n=5 for each) of low, medium, and high LVM values were selected. The mid 293 

part of the T wave in precordial leads and the QRS segment in limb leads are highlighted as 294 

important features with increasing LVM. Table 5 presents a non-sex-specific summary of the 295 

segment-wise significance of the input ECG. It shows that the importance is mainly 296 

concentrated in QRS interval and T-wave. Furthermore, the importance of precordial leads 297 

decreased as the LV mass value increased (62.16% for the low LVM group and 40.02% for the 298 

high LVM group).  299 

The segment-wise importance for sex-specific model is shown separately in Table 6. 300 

The saliency map for sex-specific model is illustrated in Figure 3. Notably, the importance of 301 

T waves experiences a proportional augmentation for males with increasing LVM values 302 

(3.36% for low LVM to 25.44% for high LVM). This trend has not been observed in females 303 

(0.84% in low LVM to 0.66% in high LVM). Conversely, female presented with persistently 304 
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higher significance of the precordial QRS segment (62.26% in low LVM to 54.32% in high 305 

LVM). 306 

Discussion 307 

The eLVMass-Net was trained on CT-derived LVM values, 12-lead ECG, and 308 

demographic information of around 1,500 individual patients. Our study showed that this ECG-309 

grouping-based and demographic-inclusive model outperforms other state-of-the-art deep 310 

learning models for LVM estimation. The addition of scalar ECG features such as QRS 311 

duration and axis provided insignificant improvement for model performance. Additionally, 312 

the sex-specific eLVMass-Net model showed tendency towards better prediction performance 313 

than the non-sex-specific model. The alterations in both QRS and T wave voltages associated 314 

with increasing LVM may be disparate between both genders. 315 

      Our proposed method is effective in predicting LVM values using ECG signals and 316 

demographic data as inputs. In the case of the LVM-AI model, the observation of overfitting 317 

during training suggests that the model may be too complex or not regularized enough for the 318 

size of the dataset used in training. It means that the model has learned to fit the training data 319 

very well but needs to generalize better to new data. Compared with the performance between 320 

our proposed method and LVM-AI, ours improved by 27% for MAE and MAPE. On the other 321 

hand, the ECG segmentation labels are necessary for the ecgAI training pipeline, which is not 322 

available in the original XML files. When applying ecgAI on other datasets, additional effort 323 

is needed to label ECG segments or the model for the segmentation task. The LVM estimation 324 

task will be trained on separate datasets. The experimental results suggest that using a separate 325 

dataset for training the ECG segmentation model may have contributed to the low performance 326 

of the ecgAI model on our dataset. It may be due to differences in data distribution, recording 327 
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devices, or preprocessing steps between the two datasets. Therefore, our proposed method 328 

shows a relative improvement of 33% for MAE and MAPE compared to ecgAI.  329 

The results of this study are to be further interpreted in the clinical context. First, our 330 

proposed model focuses more on the QRS interval of limb leads and T wave in precordial leads 331 

with increasing LVM. It is proposed that a hypertrophied heart grows disproportionately 332 

towards the inferior, leftward, and posterior axes.23,24 Also, T-wave abnormalities may reflect 333 

the severity of left ventricular hypertrophy. Respectively integrating both precordial- and limb-334 

lead features by individual encoders may further increase the diagnostic accuracy.25,26 Second, 335 

previous studies indicated that sex difference exists in QRS duration and voltage regardless of 336 

baseline body size or left ventricular mass.16,27 Even with similar comorbidities or disease 337 

severity, there are significant differences in terms of left ventricular mass and extent of 338 

myocardial fibrosis between sexes.28,29 The sex-specific model revealed notable improvement 339 

in terms of MAPE for predicting LVM compared with the non-sex-specific model. There were 340 

distinct differences in segment-wise importance associated with increasing LVM between men 341 

and women. Likewise, it was demonstrated that the presentation of either T wave inversions in 342 

men or increased precordial voltage in women is associated with heart failure hospitalization.30 343 

It is possible that currently developed deep learning algorithms are able to detect important 344 

sex-specific pathophysiological differences.31  345 

     Despite the promising results and contributions of this study, the notable limitation is 346 

the absence of external validation data. Although we conducted rigorous experiments and 347 

evaluations using carefully curated datasets, the lack of external validation hinders the 348 

generalizability of our findings to different populations or datasets. External validation data 349 

would provide a valuable opportunity to assess the performance and robustness of our 350 

proposed method on unseen and diverse datasets, ensuring its applicability in real-world 351 
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scenarios. Future research should focus on obtaining and incorporating external validation 352 

data to further validate and enhance the reliability and generalizability of our approach. 353 

Conclusions 354 

Accurate assessment of LVM is crucial in diagnosing and managing cardiovascular 355 

diseases. We proposed eLVMass-Net as a novel approach that includes relevant heartbeat 356 

waveforms, inter-lead grouping, and demographic information for LVM estimation. Our model 357 

architecture incorporates pre-processing techniques that focus on synchronized heartbeat 358 

waveforms and ECG groups based on different projection planes to improve the understanding 359 

of their relationships. For sex disparities, the sex-specific model is able to discriminate 360 

important ECG features associated with left ventricular mass. 361 
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 450 

Figure Legend 451 

Figure 1. Overview of the dataset collection. The CT data and corresponding XML files were 452 

collected independently. Therefore, a matching process was carried out based on the 453 

requirement that both measurements be taken within six months. Patients with bundle branch 454 

block (BBB), paced rhythm, and atrial fibrillation (AF) were excluded due to distorted ECG 455 

waveforms. Additionally, ECG recordings that did not have a one-to-one paired LVM 456 

measurement were also excluded. As a result, a total of 1,459 valid data points were included 457 

in this study. 458 

Figure 2. Overview of the proposed LVM estimation framework. The proposed LVM 459 

prediction model consists of separate encoders for the limb leads and chest leads of the 12-460 

lead ECG, followed by a multilayer perceptron (MLP) layer. Additionally, scalar features 461 

such as demographic data, heart axis, and QRS duration are passed through their own MLP 462 

layer. The encoded ECG features and scalar features are then concatenated and fed into the 463 

prediction layer to estimate the LVM. 464 

Figure 3. Saliency maps of the proposed prediction module. Three samples were selected to 465 

represent low, middle, and high LVM values for both males and females. 466 
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Tables 468 

 Male (n = 940) Female (n = 519) P value 

LV mass (g) 123.29 (±29.88) 85.21 (±21.41) <0.01 

LV mass index (g/m2) 67.43 (±14.71) 52.98 (±13.02) <0.01 

Age 60.29 (±11.29) 62.99 (±11.15) <0.01 

Height 168.59 (±6.12) 158.16 (±6.39) <0.01 

Weight 72.86 (±11.53) 60.47 (±9.36) <0.01 

QRS-Duration 93.86 (±10.74) 86.26 (±9.63) <0.01 

P-Axis 49.52 (±20.76) 49.85 (±23.30) 0.78 

R-Axis 28.45 (±35.37) 36.79 (±34.21) <0.01 

T-Axis 40.29 (±32.98) 43.47 (±33.05) 0.08 

Table 1. Characteristics for the dataset. 469 

  470 
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Feature Combinations MAE P-Value MAPE P-Value 

 MAE 
Relative 

Improvement 
 MAPE 

Relative 

Improvement 
 

ECG 
19.22  

(±0.91) 
- <0.01 

17.39%  

(±1.39%) 
- 0.02 

ECG + Demographics 

(eLVMass-Net model 1) 

14.56  

(±0.53) 
24.2% 0.82 

13.03%  

(±1.00%) 
25.1% 0.85 

ECG + Demographics + Axis 

(eLVMass-Net model 2) 

14.33  

(±0.71) 
25.4%   

12.90%  

(±1.12%) 
25.8% - 

Table 2. LVM prediction performance using different input combinations. The relative 471 

improvements were computed by comparing the results obtained from the multimodal models 472 

with those of the ECG-only model. Furthermore, the P-values were calculated by comparing 473 

these methods to the outcomes of eLVMass-Net model 2. 474 
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 MAE P-Value MAPE P-Value 

Model Name 
Original 

Setting 
All Features 

 Original 

Setting 
All Features  

ecgAI 
29.62 

(±0.93) 

21.28  

(±0.36) 
<0.01 

26.85%  

(±1.15%) 

19.12%  

(±0.56%) 
<0.01 

LVM-AI 
19.58 

(±0.94) 

19.51  

(±0.82) 
0.04 

17.52%  

(±1.25%) 

17.62%  

(±0.78%) 
0.07 

eLVMass-Net model 1  

(ECG + Demographics) 
- 

14.56  

(±0.53) 
0.82 - 

13.03%  

(±1.00%) 
0.85 

eLVMass-Net model 2 

(ECG + Demographics + Axis) 
- 

14.33  

(±0.71) 

 
- 

12.90%  

(±1.12%) 
- 

Table 3. The performance of the proposed prediction module and the SOTA models (testing 476 

sample n = 292±1). The P-values were computed by comparing these methods to the results 477 

of eLVMass-Net model 2. 478 
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 MAE 
 

MAPE 
 

Model Name 
Non-sex-

specific 
Male Female 

P-Value 

(Male 

/Female) 

Non-sex-

specific 
Male Female 

P-Value 

(Male 

/Female) 

ecgAI 
21.28 

(±0.36) 

23.93 

(±0.29) 

15.92 

(±1.13) 
<0.01 / 0.02 

19.12%  

(±0.56%) 

19.34% 

(±0.28%) 

18.42% 

(±1.34%) 
<0.01 / <0.01 

LVM-AI 
19.51 

(±0.82) 

21.13 

(±1.06) 

13.33 

(±1.45) 
0.02 / 0.22 

17.62%  

(±0.78%) 

16.42% 

(±0.98%) 

14.85% 

(±1.20%) 
<0.01 / 0.20 

eLVMass-Net 

Model 1 

14.56 

(±0.53) 

16.41 

(±0.63) 

11.12 

(±0.63) 
0.78 / 0.83 

13.03%  

(±1.00%) 

12.74%  

(±0.68%) 

12.64% 

(±0.53%) 
0.74 / 0.77 

eLVMass-Net 

Model 2 

14.33 

(±0.71) 

16.05 

(±0.75) 

11.02 

(±0.71) 
- 

12.90%  

(±1.12%) 

12.55% 

(±0.88%) 

12.52% 

(±0.34%) 
 

Table 4. Sex-specific model performances of proposed prediction module and SOTA models 480 

(testing sample n = 292±1). The P-values were computed by comparing these methods to the 481 

results of eLVMass-Net model 2. 482 

 483 
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 Non-sex-specific 

LV mass Low Middle High 

 Limb-leads 
Precordial-

leads 
Limb-leads 

Precordial-

leads 
Limb-leads 

Precordial-

leads 

PR interval 3.52% 0.52% 3.16% 0.06% 3.90% 0.00% 

QRS interval 34.32% 42.90% 37.96% 41.78% 53.28% 17.52% 

ST segment 0.00% 11.08% 0.00% 16.62% 0.04% 0.08% 

T wave 0.00% 6.52% 0.00% 0.00% 2.76% 22.42% 

TP interval 0.00% 1.18% 0.48% 0.00% 0.00% 0.00% 

Total 37.84% 62.16% 41.58% 58.42% 59.98% 40.02% 

Table 5. ECG-segment-wise importance for each segment from saliency maps from the non-485 

sex-specific model. The percentages were the averages from 5 samples. 486 
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 Male Female 

LV mass Low Middle High Low Middle High 

 Limb-leads 
Precordial-

leads 
Limb-leads 

Precordial-

leads 
Limb-leads 

Precordial-

leads 
Limb-leads 

Precordial-

leads 
Limb-leads 

Precordial-

leads 
Limb-leads 

Precordial-

leads 

PR interval 1.0% 0.0% 0.5% 0.0% 0.2% 0.0% 0.0% 0.0% 4.4% 0.0% 1.5% 0.4% 

QRS interval 34.8% 53.7% 39.0% 22.8% 49.2% 9.2% 36.5% 49.2% 34.5% 30.8% 54.7% 26.3% 

ST segment 0.0% 10.5% 0.0% 7.4% 0.0% 0.0% 0.0% 0.0% 0.0% 8.4% 0.0% 1.2% 

T wave 0.0% 0.0% 0.0% 30.3% 7.0% 34.5% 0.0% 14.3% 0.0% 21.9% 0.0% 16.0% 

TP interval 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Total 35.8% 64.2% 39.5% 60.5% 56.4% 43.6% 36.5% 63.5% 38.9% 61.1% 56.2% 43.8% 

Table 6. ECG-segment-wise importance for each segment from saliency maps from the sex-488 

specific models. The percentages were the averages from 5 samples. 489 
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Figures 491 

 492 

Figure 1. 493 
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495 

Figure 2. 496 
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