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Abstract 

Objective 

Clinical note section identification helps locate relevant information and could be beneficial 

for downstream tasks such as named entity recognition. But the traditional supervised 

methods suffer from transferability issues. This study proposes a new framework for using 

large language models for section identification to overcome the limitations. 

Materials and methods 

We framed section identification as question-answering and provided the section definitions 

in free-text. We evaluated multiple LLMs off-the-shelf without any training. We also fine-

tune our LLMs to investigate how the size and the specificity of the fine-tuning dataset 

impacts model performance. 

Results 

GPT4 achieved the highest F1 score of 0.77. The best open-source model (Tulu2-70b) 

achieved 0.64 and is on par with GPT3.5 (ChatGPT). GPT4 is also found to obtain F1 scores 

greater than 0.9 for 9 out of the 27 (33%) section types and greater than 0.8 for 15 out of 27 

(56%) section types. For our fine-tuned models, we found they plateaued with an increasing 

size of the general domain dataset. We also found that adding a reasonable amount of section 

identification examples is beneficial. 

Discussion 

These results indicate that GPT4 is nearly production-ready for section identification, and 

seemingly contains both knowledge of note structure and the ability to follow complex 

instructions, and the best current open-source LLM is catching up. 

Conclusion 
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Our study shows that LLMs are promising for generalizable clinical note section 

identification. They have the potential to be further improved by adding section identification 

examples to the fine-tuning dataset. 
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section identification; large language models; ChatGPT; GPT4; fine-tuning; 

1 Introduction 

Clinical notes are a rich component of electronic health records (EHR) and natural language 

processing (NLP) methods can help extract useful information from notes and assist clinical 

reasoning and knowledge finding1,2. Clinical notes are organized by sections and 

automatically identifying sections can benefit downstream tasks such as named entity 

recognition3, cohort discovery4 and symptom negation5. For instance, identifying the social 

history section can be helpful for the extraction of social determinants of health 6. 

Many previous methods for section identification relied on training machine learning models 

on human annotated data,  usually for a specific note type with a predefined list of section 

types.7–9 They achieve F1 scores as high as 0.90 in the source healthcare institution where 

they were annotated but usually drop significantly (as low as 0.6 F1) when transferred to 

another healthcare institution. Part of this could be due to the note taking differences between 

healthcare institutions. In addition, these models are highly restricted by the annotation 

schema, making it difficult to apply trained models to different note types or the same note 

type but written with a different structure. For example, a model trained on discharge 

summaries would have difficulty in applying to progress notes, because some section types 

(e.g., “overnight progress”), are usually not found in discharge summaries. Lastly, per-section 

type accuracy could be dependent on the number of annotations available10. For section types 

that are scarce, supervised learning models tend to have a lower accuracy due to insufficient 

annotated examples. 
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Recent studies that applied large language models (LLM) such as ChatGPT11 and GPT412 to 

healthcare domains achieved promising results13. LLMs use little or no annotated data and 

function in a question-answering way. It answers after receiving a human written instruction 

which can be rewritten or revised for different scenarios. However, like other deep learning 

models, LLMs lack interpretability 13, which makes their application in high-stakes domains 

like medicine riskier. 

 

 
Figure 1. A discharge summary with sections identified by GPT4, with date and age censored. 
 

2 Objective 

In this study, we experiment with applying LLMs to section identification with two goals. 

First, we measure state-of-the-art LLMs performance for section identification with different 

accessibility (open-sourced and closed-sourced) and with varying parameter sizes. Second, 

we seek to better understand LLMs by analyzing their behavior on section identification, 
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which is a comprehensive task that involves clinical knowledge understanding, verbatim 

copying, label assignment, and output formatting. 

3 Method 

3.1 Dataset 

We refer to the evaluation dataset we use in this study as discharge9, which consists of 

discharge summaries from the Partners HealthCare and Beth Israel Deaconess Medical 

Center and was originally released through the i2b2 challenge. The dataset consists of 92 

notes with 29 section types, which we map to 27 section types to remove redundant 

categories (See Supplementary Appendices). We selected 50 notes for the test set, ensuring 

that, when combined with the prompt, each input to the LLM is at most around 3500 tokens, 

so there is enough room for the model (context window at 4096 tokens) to generate responses. 

This helps for making comparisons between the LLMs -- although the version of GPT4 we 

use allows for a context window of 8k tokens, the other models are limited to 4k tokens. The 

rest of the notes are used for development. 

To better understand factors that impact LLM on section identification, we also collected two 

datasets for training customized models. We used progress,10,14,15 which consists of 765 

progress notes with 17 section types, which we reduce to 15 section types by mapping several 

categories to “Unknown.” (See Appendices Table 2) from Beth Israel Deaconess Medical 

Center and is released as a part of MIMIC-III. We converted the progress notes into question-

answer pairs for instruction tuning as described in future sections. 

We also used ORCA16,17, an instruction tuning dataset that contains question-answer pairs 

collected from ChatGPT/GPT4 using self-instruct. Self-instruct18 is the technique composing 

questions from existing annotated datasets and using them to query ChatGPT/GPT4 to create 

high-quality answers. The ORCA dataset used in our study contains 0.5 million question-

answer pairs created using GPT4. 
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3.2 Model 

3.2.1 Off-the-shelf model 

We evaluated GPT3.5 (ChatGPT) and GPT411,12, which are the state-of-the-art closed-source 

models. We also evaluated state-of-the-art open-source models with 13 billion or 70 billion 

parameters, Llama2-13b-chat19, Vicuna-13b20 (v1.5), Llama2-70b-chat19, and Tulu2-70b21 

(with direct policy optimization22 applied). The Llama2 models are developed by Meta19. 

Vicuna-13b is developed by researchers in UC-Berkeley LMSYS group and is a state-of-the-

art 13 billion model. Tulu2-70b is developed by Allen Institute for AI and is reported to be 

competitive against ChatGPT21.  

All open-source models are tuned on the top of Llama2-13b-base or Llama2-70-base19. 

Llama2-13b-chat and Llama2-70b-chat are instruction tuned followed by reinforcement 

learning-based techniques for aligning with human preferences (i.e.,  reinforcement learning 

from human feedback -- RLHF). Vicuna-13b is trained on human-ChatGPT conversations 

users shared online23. Tulu2-70b is trained with a large and diverse instruction dataset 

followed by direct policy optimization (DPO), a technique with a similar objective as RLHF 

but removing the need of doing reinforcement learning21.  

GPT3.5 has 4096 token context window size (maximum input token limit). GPT4 allows 

8192 tokens but we limited it to 4096 for fair comparison. For GPT3.5 and GPT4, we are 

using them in a HIPAA-compliant environment provided through the Microsoft Azure cloud 

computing platform. Both GPT3.5 and GPT4 are accessed using the API version “2023-03-

15-preview”. The open-source models have a context window size of 4096 tokens and their 

querying is handled by FastChat24, which is an open-source LLM hosting platform 

deployable locally that allows querying LLM in a way similar to GPT3.5/GPT4 by internally 

handling each model’s special input format. 

3.2.2 Customized model 
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To better understand factors that impact LLM performance on section identification, we also 

train our own LLM on top of Llama2-13b-base. Similar to how Vicuna-13b is trained on 

Llama2-13b-base, we perform instruction tuning on Llama2-13b-base using the ORCA 

and/or progress dataset. We also try continued instruction tuning on top of Vicuna-13b. Due 

to hardware limitations, we employed LoRA25 for model training. LoRA is a parameter-

efficient training technique that tunes only a small number of model parameters. When tuning, 

we used a batch size of 16, epoch size of 1, learning rate of 0.0004, rank of 16, alpha of 16, 

dropout of 0.05 and LoRA modules of gate, down and up,  following the set up in Lee et al26. 

When training our customized model, we also vary the size and ratio of the ORCA and 

progress dataset. We train with ORCA, with its size varying from 25k, 50k, 100k, 250k to 

500k. We also train with progress, with its size varying from 25, 50, 100, 250 to 500, and 

they are combined with an additional 25k ORCA examples. In preliminary experiments, we 

found that without any general-domain data (e.g., ORCA), the training was less stable and 

the model seemed to overfit to the progress dataset’s section types. We also tried continual 

instruction tuning on top of Vicuna-13b. We tuned it with 500 examples from progress 

and/or 25k question-answer pairs sampled from ORCA. Table 1 s summarizes the 

customized models trained in this study. 

Table 1. Name, base model, and instruction tuning dataset size of the customized models in 
this study. 
 

Customized 
model name 

Base model ORCA 
sample size 

progress 
sample size 

Llamao-25k 

Llama2-13b-base 
 

25k 

0 
 

Llamao-50k 50k 

Llamao-100k 10k 

Llamao-250k 250k 

Llamao-500k 500k 

Llamao-25k, p-25 
25k 

 
25 
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Llamao-25k, p-50 50 

Llamao-25k, p-100 100 

Llamao-25k, p-250 250 

Llamao-25k, p-500 500 

Vicunap-500 
Vicuna-13b 

0 
500 

Vicunao-25k, p-500 25k 

 
3.3 Prompt design 

The model prompt is a central part to evaluating LLMs. In this study, we designed the prompt 

following common practices in LLM querying as well as bypassing some known LLM 

limitations to make it suitable for applying to section identification. Figure 2 shows the 

prompt template used in this study. 

 

 
Figure 2. Overview of the prompt (input) provided to the large language models for section 
identification. 
 
Our prompt contains four components: system message, task description, section definitions, 

and clinical note. An example of the prompt, as well as the example output, is provided in  
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Supplementary Appendices. The system message is a high-level instruction to LLMs about 

how it should behave. In our case, the system message is provided as “You are a helpful 

assistant. You are an experienced clinician and you are familiar with writing and 

understanding clinical notes.”  

Then, we provide the task description (section identification) to the LLM – “A clinical note 

contains multiple sections like family history, allergies and history of present illness. Given a 

clinical note as an input, please separate the notes into sections and output their section 

names. Also specify where the section starts and ends. Use section names from one of the 

following:”. 

Following the task description, we provide section definitions. They contain the section name, 

the definition and example section headings. Since the discharge and progress datasets did 

not provide them, we derived them by inspecting the clinical notes from the non-test set. An 

example definition for the section type “Admit date” is “Admit date: the date of the patient’s 

admit, example section headings include ‘admission date’, ‘date of admission’.” We created a 

section type “Unknown” for section types that could cause confusion to the model, such as 

“Subsection”. We also modified some of the originally provided section labels to make them 

more understandable, such as changing “Physical” to “Physical examination.” The section 

mappings and definitions are included in the Appendices.  

Following the section definitions, we provide two example output sections to show the LLM 

how to format the extracted sections. We found in preliminary experiments that they are 

useful for models to produce consistent and desired output formats. We instruct the LLM to 

format sections to begin with a section index and a section name, then the beginning text of 

the section, and the end text of the section. Ideally, the LLM should output the start and end 

character index for the section directly, but LLMs do not natively reason in character offset 

space and have been shown to perform poorly at generating such outputs27,28. Alternatively, 
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LLMs are good at verbatim copying of text29,30. Following the section definitions, we provide 

the LLM with a clinical note followed by an “Output:” prompt which signals the LLM to 

output the response. 

3.4 Output postprocessing 

Even with the output format included in the prompt, our models occasionally generated 

unstructured outputs during development. To avoid these, we employ a mechanism that 

retries the generation when it does not give the desired output format at the minimum, in 

other words, retry when the extracted section output is not like “Section [number]: [some text] 

Starts at: [some text] Ends at: [some text]”. 

When the format is correct, there are also content errors such as invalid section names and 

section start/end text. With this observation, we design an output postprocessing algorithm to 

convert the output to section names and character spans for evaluating against the gold 

annotations. Assuming that, when given a clinical note, the LLM extracts a list of sections in 

the predefined format, and each section contains three pieces: section name, section start text 

and section end text, we take the following steps. 

        1. Remove sections that do not have a valid section name. A valid section name is 

defined to be exactly matching one of the section names as described in the section 

description part of the prompt. 

        2. Remove sections that do not have a valid section start text. A valid section start text is 

defined to be having an exact match in the clinical note. 

        3. For the remaining sections, use the section start text to locate the section’s beginning 

character index. 

        4. Sort sections in the order of the section beginning character index. 

        5. Define a (tentative) section end character index as the next section’s beginning 

character index - 1. 

        6. Find a section’s end text in between the section’s beginning and end character index. 

If a match is found, use that as the section’s new end character index. 
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An advantage of this postprocessing method is it can still locate a section even when its 

section end text is incorrectly generated by the LLM, as long as the section start text is valid.  

Sometimes LLMs make errors in verbatim copying the section name and section start/end 

text. We experiment with two variations of the above algorithm to mitigate them.  

 Section name ignore case match: In step 1 when we are matching section names, 

instead of exact match, we use case insensitive match when finding valid section names. 

 Fuzzy section start/end match: In steps 2 and 6, when we are matching section 

start/end text within the clinical note, we use fuzzy match instead of exact match. The fuzzy 

match lists all possible sequences in the clinical note and finds the sequence most similar to 

the start/end text. The similarity is scored based on Levenshtein distance31, which measures 

the similarity between two sequences as the length-normalized minimum number of single-

character edits between them, and it ranges from 0 to 100. We define that a match occurs if 

the similarity score is greater than or equal to 90. 

3.5 Evaluation 

Due to budget limitations, we evaluate GPT4 and GPT3.5 for 3 repetitions and report the 

mean and standard deviation. For the open-source and customized models, we repeat the 

evaluation 5 times. We report micro-F1 scores instead of macro-F1 because section types are 

not evenly distributed. 

Traditional supervised learning section identification methods used BIO tagging for 

evaluation9. Limited by the computational complexity, they made sentence level prediction 

and evaluated based on that. However, large language models generate characters one by one 

and do not have this concern. It is more suitable to evaluate with a span-based approach. 

Inspired by Beeferman et al.32, which uses an asymmetric function for evaluating section 

boundaries, and nervaluate33 on evaluating named entity recognition, we proposed a span-
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based evaluation method for section identification. This method considers both section span 

coverage and section label correctness. 

We define an algorithm, Evaluate (L1, L2), for calculating L1’s accuracy and match ratio 

against L2. L1 and L2 are both a list of sections with a span indicating the start and end 

character index of the section, and a section type. The algorithm is shown below. L1 can be 

either the predicted sections or the target sections. R is a list of section match ratio (r) for the 

matched L1 sections. Ncorrect is the number of sections in L1 with a correct match in L2. Note 

that r is calculated for every section in L1. This helps us understand the model’s span finding 

capability directly.  

Algorithm: Evaluate (L1, L2) 

Input: L1, L2 

Output: Accuracy and match ratio from evaluating L1 against L2 

Steps: 

1.  Ncorrect = 0 

2.  R = {} 

3.  for each S1 in L1 

4.          for each S2 in L2 

5.                  save S2': the S2 that overlaps most with S1 by section span 

6.          r = S1 and S2' section span overlap’s length / S1 section length 

7.          R = R ⋃ {r} 

8.          if S1 and S2' have the same section type: 

9.                  Ncorrect  = Ncorrect + 1 

10.  accuracy = Ncorrect  / L1 size 

11.  match ratio = the average of R 
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Following the general definition of precision and recall, we define for section identification: 

 precision, prediction match ratio = Evaluate (L1=predicted sections, L2=target 

sections) 

 recall, target match ratio = Evaluate (L1=target sections, L2=predicted sections) 

 F1 = 2 * precision * recall / (precision + recall) 

 match ratio = (prediction match ratio + target match ratio) / 2 

4 Results 

4.1 Models 

4.1.1 Off-the-shelf model 

Table 2 shows the results of each system on the discharge dataset. GPT4 has the highest 

performance (F1=0.77) while GPT-3.5 and Tulu2-70b score similarly with F1=0.64. All 

other models score are not competitive. In terms of the stability over runs, the GPT models 

are most stable, while open-source models have lower stability. 

Table 2. The F1 and match ratio of the open-sourced and closed-sourced models, with 
sequential ablations of the fuzzy start/end text match and then case insensitive section name 
match techniques. 

 
GPT4 GPT3.5 

Llama2-13b-
chat 

Vicuna-13b 
Llama2-70b-

chat 
Tulu2-70b 

F1 (std) / 
Match ratio 
(std) 

0.77(0.003)/ 
0.91(0.003) 

0.64(0.005)/ 
0.82(0.011) 

0.39(0.014)/ 
0.59(0.014) 

0.42(0.03)/ 
0.7(0.019) 

0.46(0.012)/ 
0.69(0.012) 

0.64(0.008)/ 
0.79(0.009) 

  - Fuzzy 
start/end text 
match 

0.77(0.003)/ 
0.91(0.003) 

0.64(0.006)/ 
0.83(0.006) 

0.13(0.028)/ 
0.46(0.018) 

0.33(0.032)/ 
0.63(0.015) 

0.03(0.008)/ 
0.35(0.031) 

0.39(0.043)/ 
0.64(0.043) 

  - Case 
insensitive 
section name 
match 

0.77(0.003)/ 
0.91(0.003) 

0.63(0.003)/ 
0.82(0.007) 

0.02(0.009)/ 
0.26(0.039) 

0.27(0.042)/ 
0.57(0.035) 

0.02(0.007)/ 
0.33(0.051) 

0.38(0.043)/ 
0.63(0.043) 

 
We performed ablation studies by sequentially removing the two postprocessing 

enhancement techniques: fuzzy start/end text match and case-insensitive section name match. 

We found this had very little impact to GPT3.5 and GPT4 but enormous impact for the open-

source models. Removing fuzzy start/end text match led to a substantial F1 score decrease 

(0.25) for Tulu2-70b as well as higher variations across runs, making it no longer competitive 
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with GPT3.5. Other open-source models had similar large performance decreases. The F1 

decreases to as low as 0.02 for Llama2-70b-chat. 

Removing case-insensitive section name match further has the biggest impact on Llama-13b-

chat, decreasing the F1 score from 0.12 to 0.02. Vicuna-13b’s F1 score decreases by 0.06. 

Little impact was observed for the 70b models. 

4.1.2 Customized model 

Table 3 (top row) shows F1 scores for the customized LLMs instruction tuned on top of 

Llama2-13b-base using the ORCA and progress datasets. We found that F1 improves from 

0.291 to 0.38 when changing the number of ORCA dataset size from 25k to 50k. The F1 

remains stable with additional instances.  

Table 3. The F1 and match ratio of customized models. 

Model Llamao-25k Llamao-50k Llamao-100k Llamao-250k Llamao-500k 

F1 (std) / 
Match ratio(std) 

0.29(0.007)/ 
0.6(0.023) 

0.38(0.025)/ 
0.61(0.029) 

0.36(0.03)/ 
0.61(0.023) 

0.38(0.02)/ 
0.64(0.019) 

0.37(0.009)/ 
0.63(0.007) 

Model Llamao-25k, p-25 Llamao-25k, p-50 Llamao-25k, p-100 Llamao-25k, p-250 Llamao-25k, p-500 

F1 (std) / 
Match ratio(std) 

0.31(0.034)/ 
0.61(0.019) 

0.36(0.041)/ 
0.62(0.026) 

0.35(0.028)/ 
0.65(0.01) 

0.32(0.023)/ 
0.63(0.015) 

0.3(0.018)/ 
0.63(0.013) 

Model Vicunap-500 Vicunao-25k, p-500    

F1 (std) / 
Match ratio(std) 

0.26(0.015)/ 
0.65(0.018) 

0.33(0.015)/ 
0.68(0.006) 

   

 
In Table 3 (bottom row), when adding domain-specific instructions to the dataset, adding 25 

section identification examples from progress in addition to the 25k ORCA samples 

increased the F1 score slightly from 0.29 to 0.31. And increasing the number of instances to 

50 and 100 further improved the F1 to around 0.35. Increasing the size of the examples to 

100, 250 and 500 resulted in a F1 drop until 0.3. 

In experiments where we tried to continue instruction tune on top of Vicuna-13b, a model 

already instruction tuned on top of Llama2-13b-base, we found that both continuous 

instruction tuning methods (Vicunap-500 and Vicunao-25k, p-500) resulted in a performance drop.  

5 Discussion 
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5.1 Analysis of GPT4 results 

We take an in-depth look into GPT4’s behavior to gain more insight about LLMs in section 

identification. We randomly selected one run for analysis. Table 4 shows the F1 scores by 

section types. There are 27 section types in total and we observed that 9 (33%) have an F1 

score greater than 0.9, and 15 (56%) have an F1 score greater than 0.8. These are often 

common and important section types such as “Social history” and “Past medical history.”  

Table 4. The detailed performance values of one randomly selected GPT4 run after breaking 

down into section types, sorted by F1 scores. 

Section type Precision Recall F1 
Prediction 

section count 
Prediction 
match ratio 

Target  
section count 

Target 
match ratio 

Social history 1 1 1 15 1 15 0.98 
Family history 1 1 1 8 1 8 0.98 
Gynecologic 
history 1 1 1 3 1 3 0.98 
Admit date 0.98 0.98 0.98 50 1 50 0.56 
Past medical 
history 0.96 0.96 0.96 27 1 28 0.91 
Other 
diagnosis 0.95 0.95 0.95 20 0.98 20 0.74 
Past surgical 
history 1 0.89 0.94 8 1 9 0.98 
Discharge 
condition 0.89 0.96 0.92 27 1 25 0.96 
Allergies 0.92 0.92 0.92 24 1 24 0.74 
Discharge date 0.98 0.81 0.89 50 0.97 57 0.38 
Discharge 
medications 0.87 0.89 0.88 38 1 36 0.75 
History of 
present illness 0.86 0.86 0.86 29 1 29 0.99 
Admission 
medications 0.9 0.79 0.84 21 1 24 0.98 
Patient 
procedures 0.85 0.84 0.84 33 0.95 31 0.86 
Hospital 
course 0.7 1 0.83 47 1 37 0.95 
Physical 
examination 0.64 0.96 0.77 25 0.91 25 0.93 
Lab studies 1 0.58 0.74 16 1 24 0.74 
Discharge 
diagnosis 0.87 0.64 0.73 23 1 33 0.86 
Admission 
diagnosis 0.61 0.83 0.7 31 1 23 0.81 
Patient 
comments 0.8 0.6 0.69 10 0.99 15 0.78 
Reason for 
admission 0.75 0.62 0.68 12 0.89 13 0.98 
Patient service 0.85 0.56 0.68 13 1 16 0.73 
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Attending 
physician 0.44 0.79 0.57 34 0.98 19 0.51 
Follow-up 0.63 0.49 0.55 32 0.99 43 0.58 
Discharge 
instructions 0.56 0.45 0.5 25 0.98 29 0.71 
Admitting 
physician 0.05 1 0.1 19 1 1 0.25 
Unknown 0.25 0 0 4 1 61 0.62 

 
Nevertheless, we found GPT4 still scores below or equal to 0.1 F1 for two section types (7%). 

The lowest performing section type for GPT4 is “Unknown” with F1 being 0. There are four 

predictions and 61 gold annotations. When matching the predictions against gold annotations, 

only one section was matched with correct section name. When matching the gold 

annotations against predictions, no section was matched with correct section names. This 

might be due to the different interpretations of “Unknown.” The gold annotations tend to 

make the header of the note as “Unknown” sections, while GPT4 tends to label it for sections 

that have contents that it could not understand, following what the prompt defines. Another 

low-performance section type is “Admitting physician” (F1=0.1). GPT4 made 19 predictions 

for “Admitting physician” and the gold annotations only have one instance annotated. We 

find that GPT4 tended to consider the sections that start with “Dictated by”/“Dictating for” 

and contains a physician name as the “Admitting physician” section. Those sections are also 

usually ignored in the gold annotations, resulting in the F1 prediction and gold annotation 

mismatch that we observed. 

 

 
Figure 3. An example of “Admitting physician” annotation difference between the human 
annotator (left) and GPT4 (right), censoring name and date. 
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Additional qualitative assessment shows that GPT4 might be better than what the F1 score 

suggests. Sometimes GPT4’s misclassification comes from it interpreting section definition 

differently from the gold annotation. The gold annotation tends to annotate the whole note, 

and GPT4 tends to only annotate the parts that it is sure about. For example, on the left of 

Figure 4 is the gold annotation, and it annotates two “Discharge date” sections, in contrast to 

one section from GPT4 but essentially the same information. Both sections from the gold 

annotations are wider than what’s annotated by GPT4, but it is difficult to say that GPT4 is 

wrong, and it depends on the use case.  

 

 
Figure 4. Comparing human (left) and GPT4 (right) annotated clinical notes on discharge 
dates, with date censored. 
 
When GPT4 does not match the gold annotations, it is sometimes an annotation error. In the 

below example, the gold annotation misannotated the “Discharge medication” as “Admission 

medication”, while GPT4 annotated it correctly. 

 

 
Figure 5. An example of the “Discharge medication” section that is annotated wrongly by 
human but correctly by GPT4. 
 
Traditional supervised learning models’ accuracy for each section type tends to be higher if 

more annotations are available, and lower when fewer annotations are available10. For GPT4, 
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we found that the model does not have a clear association with a section’s annotation counts 

(Figure 6). 

 

Figure 6. An illustration of non-dependent relationship between section counts (left y-axis) 
and F1 scores (right y-axis) for GPT4’s predictions. The x-axis is the section types. 
 

5.2 Open-source models are closing the performance gap 

All open-source models experienced a large performance drop when removing the fuzzy 

section start/end match in postprocessing; however, it is worth noticing that Vicuna-13b has 

the least performance drop across the open-source models. Vicuna-13b differs from the other 

three in that it only performs instruction tuning, without following RLHF or DPO. This might 

indicate that a second tuning stage based on human preference has the potential of reducing a 

model’s verbatim copying ability. An explanation might be the so-called “Alignment tax34”, 

where fine-tuned LLMs lose performance on language modeling tasks due to aligning with 

human preferences for better performance in chat applications. When removing the case-

insensitive section name match further so that the models are evaluated without any 

postprocessing, both 13b models’ performance continue to decrease, but not for the 70b 

models. When comparing Tulu2-70b to the 13b models, this might indicate that larger models 
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are better at copying the provided section names while keeping the original upper and lower 

cases. 

Since the release of ChatGPT in the end of 2023, the LLM research community has been 

working towards reproducing it with open-source efforts, and the competitive performance of 

Tulu-2-70b against GPT3.5 in section identification is encouraging. However, we do notice 

that this is achieved with noticeable postprocessing efforts. Both accuracy and stability of 

Tulu-2-70b decreased without postprocessing while GPT3.5 and GPT4 still perform 

consistently.  

5.3 Comparing between open-source models 

When comparing between the open-source models, we found the two Llama-chat models are 

consistently underperforming from their same size equivalence. There are many differences 

in model development that could explain these results, but one important factor to keep in 

mind is that the Llama models were released earlier and the later-released models may have 

learned from their predecessors19–21.  

5.4 Efficient training of customized models 

When training the customized LLMs with an increasing size of general domain dataset 

(ORCA), we found the resulted F1 score improves at the beginning, but the gain becomes 

diminishing afterwards. Alternatively, we experimented with training the LLM with a small 

amount of section identification examples, and found they are effective in improving the F1 

score. In the future, when people are trying to train LLMs for section identification, a cost-

effective approach might be to train the model with a modest amount of general domain 

dataset and some section identification examples combined. It is also worth noticing that one 

should be careful about balancing the ratio of general domain dataset and section 

identification examples, as our experiments found that adding too many section identification 

examples can lead to a decreased model performance, likely due to overfitting. 
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Applying continued instruction tuning on top of already instruction-tuned LLM (Vicuna-13b) 

led to decreased model performance. This indicates that this approach could be sensitive to 

overfitting despite the strong initialization point. The performance drop of Vicunao-25k, p-500, 

however, is lower than that of Vicunap-500. This might be because Vicunao-25k, p-500 is trained with 

an additional 25k general domain instances, alleviating the overfitting.  

5.5 Limitations 

Our study shows the effectiveness of LLM in section identification; however, due to 

hardware limitation, we only experimented with applying off-the-shelf models on discharge 

summaries, or training 13b models with parameter efficient training techniques (LoRA25) on 

progress notes. To better understand LLM in section identification, future studies can 

consider extending the methodology to other types of clinical notes such as radiology reports, 

as well as training larger models and using full fine-tuning. Second, our study limits models’ 

input token size to 4096 to enable straightforward comparisons between LLMs. GPT4 has a 

longer input limit and more expensive versions of GPT3.5 supports longer input. There are 

also open-sourced models that allow for longer inputs35–37. Understanding LLM’s section 

identification performance for longer notes, or multiple notes in concatenation, could be a 

meaningful area. 

6. Conclusions 

We evaluated the use of LLM for section identification under a highly transferrable 

framework. Our experiments show that GPT4 performed the best and achieved scores of 0.9 

F1 or better for one third of the section types on a discharge summary dataset. Experiments 

suggest that the customized LLMs plateaued with an increasing number of the general 

domain instructions, and adding a reasonable amount of section identification examples is 

effective for improving model’s performance. 
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