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Abstract 1 

Background  2 

Neuroinflammatory responses reflecting disease progression are 3 

believed to be closely associated with the severity of prognosis in post-4 

stroke.  5 

Purpose 6 

This study developed a combined predicted model of inflammation-7 

derived biomarkers and clinical-based indicators using machine learning 8 

algorithms for differentiation of the functional outcome in patients with 9 

subacute ischemic stroke. 10 

Methods 11 

Clinical blood samples and patient data from individuals with subacute 12 

ischemic stroke were collected at admission. Based on activities of daily 13 

living assessments followed by a 3-month recovery, patients were 14 

categorized into two groups: those with little effective recovery (LE) and 15 

those with obvious effective recovery (OE). Serum samples underwent 16 

proteomic testing for initial candidates. Subsequently, multidimensional 17 

validation of candidates in models of ischemia-reperfusion at protein and 18 

mRNA levels was performed. T-test, Receiver Operating Characteristic 19 

(ROC), and LASSO analysis in an additional cohort were performed to 20 

confirm the clinical variables and candidate biomarkers in the 21 

discriminatory sensitivity and specificity between the LE and OE groups. 22 

Finally, models were developed based on candidates in the training 23 

dataset and predicted stroke recovery outcomes in another new dataset 24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.18.24303013doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.18.24303013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

 

using ten standard two-categorical variable algorithms in machine 1 

learning. 2 

Results 3 

We identified higher tissue inhibitor metalloproteinase-1 (TIMP1) and 4 

LGALS3 levels were positively correlated with the severity of prognosis 5 

after ischemic stroke rehabilitation. TIMP1 (AUC=0.904, 0.873) and 6 

LGALS3 (AUC=0.995, 0.794) were confirmed to address superior 7 

sensitivity and specificity in distinguishing ischemic stroke from healthy 8 

control and LE group from OE group. The TIMP1 and Lgals3 expression 9 

exhibited an evident increase in microglia following ischemia-reperfusion. 10 

In addition, inflammation-derived biomarkers (TIMP1, LGALS3) 11 

coupled with clinical-based indicators (HGB, LDL-c, UA) were built in a 12 

combined model with random forest to differentiate OE from LE in 3-13 

month follow-up with high accuracy (AUC = 0.8). 14 

Conclusion 15 

Our findings provided evidence supporting the critical prognostic 16 

potential and risk prediction of inflammation-derived biomarkers after 17 

ischemic stroke rehabilitation in complementary to current clinical-based 18 

parameters. 19 

Keywords: Ischemic stroke, recovery biomarkers, TIMP1, LGALS3, 20 

neuroinflammation.21 
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1. Introduction 1 

Ischemic stroke, which accounts for 87% of all strokes, is a leading 2 

cause of death and long-term disability worldwide. Approximately 1300 3 

million surviving patients with ischemic stroke suffer from different 4 

degrees of disability, which is a substantial burden on the aging 5 

population of China
1
. Rapid reperfusion with thrombolysis and/or 6 

thrombectomy for ischemic stroke continues to advance
2
, and more 7 

attention is focused on how to improve stroke rehabilitation and decline 8 

the disability rate. Potential biomarkers of stroke recovery provide 9 

knowledge of both therapeutic targets and correlate with the disease 10 

severity of rehabilitation. However, there are no biomarkers that have 11 

addressed sufficient specificity, sensitivity, and reliability to be applied in 12 

the clinical management of patients with stroke, thus highlighting the 13 

need for additional study. 14 

Circulating molecules serve as clinically applicable indicators of 15 

disease state and progression, reflecting underlying molecular/cellular 16 

processes that can be utilized to predict treatment response and stroke 17 

recovery. Those molecules may encompass biological markers (blood, 18 

genetics), neurological repair markers (electrophysiological activity, 19 

tissue remodeling, or neuroinflammation), and clinical test indices (blood 20 

routine or urine routine). Multilevel omics have yielded a wealth of 21 

promising biomarkers, which serve as clinically relevant indicators for 22 

disease state and progression. It has been reported that high-density 23 

lipoproteins
3
, phenylacetylglutamine

4
, and serum cytokines

5
 could 24 
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represent independent prognostic markers and inform on stroke 1 

recuperation. The variety of promising predictors regarding which ones 2 

possess superior predictive value is also confusing. The emergence of 3 

machine learning algorithms may offer non-invasive approaches to 4 

further screen for more valuable variables and construct combined 5 

models, effortlessly incorporating a vast number of variables. These 6 

characteristics make machine learning remarkably efficient and shiny to 7 

apply in the medical domain. 8 

The inflammatory response has been implicated in the development of 9 

brain ischemic pathology and plays a pivotal role in tissue remodeling 10 

and repair during stroke recovery. The acute stage of cerebral ischemic 11 

injury and reperfusion, lasting approximately one week, triggers an 12 

inflammatory cascade mainly characterized by inflammatory cell 13 

infiltration, inflammatory mediators release, blood-brain barrier damage, 14 

extracellular matrix degradation, oxidative stress, and excitotoxicity. 15 

These factors further contribute to neurovascular unit (NVU) damage and 16 

death. In the subacute stage (within six months) after ischemic stroke, 17 

microglia play both neurotoxic and protective roles that account for the 18 

complexity of the immune response
6
. Ischemic stimulation leads to the 19 

alterations of microglia activation and proliferation with M1-liker 20 

polarization releasing pro-inflammatory factors such as TNF-α, NOS, 21 

CXCL10, MMP9, and M2-liker polarization releasing anti-inflammatory 22 

factors such as IL-10, Arginase-1, CD206, IL-4, IL-13, and IL-33
7
. 23 

Preclinical studies have demonstrated significant changes in specific 24 
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genes of different types of cells within the NVU following middle 1 

cerebral artery occlusion (MCAO) through single-cell sequencing 2 

analysis, among which 60% are microglia-specific genes
8, 9

. Targeting the 3 

central immune role of microglia may hold promise as a critical 4 

therapeutic approach for regulating neuroimmunity in post-stroke 5 

rehabilitation. 6 

In this study, we hypothesized that ischemic stroke induces 7 

characteristic molecular changes associated with inflammatory responses 8 

and predicts functional recovery from stroke events. Thus, we aimed to 9 

develop a combined model of inflammation-derived biomarkers and 10 

clinical-based parameters model using machine learning algorithms to 11 

predict ischemic stroke rehabilitation.  12 

2. Methods 13 

2.1 Study design and participants 14 

This study was conducted at the Rehabilitation Department, Shenzhen 15 

Second People's Hospital. All the cases of 52 male patients with ischemic 16 

stroke and 20 male healthy controls were collected from June 2020 to 17 

June 2022. The recovery effect of the enrolled patients with ischemic 18 

stroke in daily activity ability was assessed by the Longshi Scale and 19 

Barthel index (BI) after the patients had received conventional 20 

rehabilitation for 3 months. Longshi Scale, a supplement for modified 21 

Rankin Scale (mRS) and BI, divided disabled people into Bedridden, 22 

Domestic, and Community groups according to the person's daily activity 23 

ability and activity range
10

. The group of little effect recovery (LE) 24 
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defined in a status of from Bedridden (at admission) to Bedridden (3 1 

months after discharge) group and obvious effect (OE) recovery from 2 

Bedridden (at admission) to Domestic group (3 months after discharge) 3 

were assessed by the Longshi Scale as previously discribed
10

. Patients 4 

with severe systematic or mental diseases, other causes of brain injury, or 5 

sharp, blunt direct action on the head caused by organic brain tissue 6 

damage were excluded from this study. 7 

In brief, 30 LE patients with poor prognosis and 22 OE patients with 8 

good prognosis were qualified, together with 18 healthy controls. 9 

Subjects were divided into discovery groups, validation groups, and new 10 

test prediction groups, schematically summarized in Figure 1. 11 

2.2 Collection of serum samples 12 

The blood samples of patients enrolled were obtained on the second 13 

day after hospitalization at the Department of Rehabilitation Medicine. 14 

The samples were promptly processed according to the standardized 15 

protocol recommended by the HUPO Plasma Proteome Project. Briefly, 16 

blood was drawn into plastic K2EDTA tubes (BD), gently inverted 17 

manually ten times, and stood at room temperature for 1 hour. 18 

Subsequently, the blood samples were centrifuged at 4°C and 1000 × g 19 

for 10 minutes, and serum sample aliquots were stored at -80°C until 20 

further proteomic analysis or ELISA. 21 

2.3 LC-MS/MS and bioinformatic analysis of serum proteomic 22 

The serum samples of a discovery cohort were transported with dry ice 23 

to Jingjie PTM BioLab (Hangzhou) Co. Ltd. for standardized proteomic 24 
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sample pretreatment and four-dimensional label-free quantification of 1 

Liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) 2 

as the previous described
11

. After removal of high-abundant proteins 3 

using Pierce™ Top 14 Abundant Protein Depletion Spin Columns Kit 4 

(Thermo Scientific), trypsin digestion of the proteins was dissolved in 5 

solvent A (0.1% formic acid in water) and separated with a gradient 6 

solvent B (0.1% formic acid in acetonitrile). The gradient settings were: 7 

4%-6% solvent B in 2 min; 6%-24% solvent B over 68 min; 24%-32% 8 

solvent B in 14 min; 80% solvent B in 3 min; then holding at 80% for the 9 

last 3 min, all at a constant flow rate of 300 nL/min on a nanoElute ultra 10 

high-performance liquid chromatography (UHPLC) system (Bruker 11 

Daltonics). The peptides were subjected to a capillary source followed by 12 

the timsTOF Pro (Bruker Daltonics) mass spectrometry (1.60 kV 13 

electrospray voltage) in parallel accumulation serial fragmentation 14 

(PASEF) mode. Precursors and fragments were conducted an MS/MS 15 

scan (100 to 1700 m/z) at the TOF detector. Precursors with charge states 16 

(0 to 5) were selected for fragmentation, and 10 PASEF-MS/MS scans 17 

were acquired per cycle. The dynamic exclusion was set to 30 seconds. 18 

The MS/MS data were retrieved by the Proteome Discoverer 19 

(v2.4.1.15). A human database was searched by 20 

Homo_sapiens_9606_PR_20201214.fasta (75777 protein sequences). The 21 

decoy database antilibrary was used to reduce the false-positive rate 22 

(FPR). The FDR was adjusted to <1%, and the minimum score for 23 

modified peptides was set to >40. Differentially expressed proteins (DEPs) 24 
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were considered separately with log2|foldchange| ≥1.0 between the LE, 1 

OE, and HC groups. Based on the protein sequence alignment method, 2 

the protein domain functions were defined by InterProScan 3 

(http://www.ebi.ac.uk/interpro/). Principal Component Analysis (PCA) 4 

was performed using the FactoMineR (version 2.4) and factoextra 5 

(version 1.0.7) packages in R to reduce dataset dimensionality and 6 

visualize relationships among variables and samples.  7 

2.4 Total transcriptome sequencing and bioinformatics analysis 8 

The transcriptome sequencing of cerebral ischemic stroke was 9 

conducted by reusing a previously published study
12, 13

, in which our co-10 

first author (You Cai. PhD) played a key role. The transcriptome 11 

sequencing data has been published and can be found in the Genome 12 

Sequence Archive with accession numbers CRA001143 and CRA001432.  13 

All expressed and differentially expressed genes (DEGs) were 14 

determined based on |log2FoldChang|>0 and a p < 0.05. Overlaps of the 15 

DEPs of plasma proteomic and DEGs in mice with middle cerebral artery 16 

occlusion (MCAO) at day 3 and day 7 were obtained with a Venn 17 

diagram. Protein-protein interaction of the overlaps was visualized and 18 

analyzed with Cytoscape. Gene Ontology (GO) annotation analysis was 19 

executed with the clusterProfiler R package (version 4.2.2) applying 20 

parameters such as 'pAdjustMethod = BH, p-value < 0.05, and simplify 21 

cutoff = 0.5'. At the same time, default settings were maintained for the 22 

remaining parameters. ROC analysis was performed using the pROC R 23 

package (version 1.18.0). 24 
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2.5 MCAO modeling and 2,3,5-Triphenyl Tetrazolium Chloride (TTC) 1 

Staining 2 

Male C57BL/6J mice (6-8weeks) were purchased from Guangdong 3 

Weitong Lihua Experimental Animal Technology Co., Ltd. Guangzhou, 4 

China, and housed under specific pathogen-free conditions with 5 

22°C ± 2°C and a 12-light/dark cycle. All procedures were approved by 6 

the Experimental Animal Welfare and Ethics Committee of Shenzhen 7 

Institute of Translational Medicine, Shenzhen Second People’s Hospital. 8 

A silicon-coated tip (Jialing Biotech, China) and C57BL/6 male mice 9 

(25-30 g) at 12 weeks were applied to establish a mouse model of 10 

ischemic stroke, according to a previous study
13

. In brief, mice were 11 

anesthetized with 1-2% isoflurane and maintained using Small Animal 12 

Anesthesia Machine R500 (RWD Life Science, China). During MCA 13 

occlusion surgery, a silicon-coated tip was introduced from the proximal 14 

end of the external carotid artery to the distal end of the external carotid 15 

artery. The tip was kept in place for 1 hour (occlusion), then removed and 16 

sutured (refill). The sham operation mice were treated with similar 17 

surgery, except the tip was not inserted. After mice regained full 18 

consciousness, neurological severity scores were assessed using a five-19 

point scale according to a previous study
14

. 20 

TTC stain was performed to evaluate the ischemic areas of the MCAO 21 

model. Mice were anesthesia with intraperitoneal injection of 1% 22 

pentobarbital sodium 24 hours after the MCAO surgery. Then, the intact 23 

brain was isolated, rapidly frozen at -20℃ for 10 min, placed in a mouse 24 
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meningeal capsule, and prepared for seven coronal (1mm ) per mouse. 1 

Subsequently, brain sections were stained with 2% TTC solution (Cat. 2 

T8877, Sigma-Aldrich) at 37℃ away from light for 15 min.  3 

2.6 Cell culture and Oxygen-glucose deprivation/ reoxygenation 4 

(OGD/R)  5 

The human brain microvascular endothelial cell line (hCMEC/D3) was 6 

purchased from Sepkon (iCell-h070). It was cultured normally in 7 

Endothelial Cell Medium (ECM) (Cat. 1001, ScienCell) supplemented 8 

with Endothelial Cell Growth Supplement (ECGS, Cat #1052, ScienCell) 9 

and 5% fetal bovine serum (FBS). The mouse microglial cell line (BV2) 10 

was presented from Northeastern University and cultured in 11 

DMEM/HIGH glucose medium containing 10% FBS. In control, the two 12 

cell lines were cultured in a conventional medium and placed in an 13 

incubator with an atmosphere of 5% CO2/95% air. 14 

For OGD/R, the cells were seeded into a 6-well plate at 3 × 10
5 

/well 15 

and grew approximately 70-80% confluency; the medium was replaced 16 

by MEM medium without glucose (Cat#A1443001, Gibco). Then, cells 17 

were placed into a humidified 37℃ incubator with a gas mixture of 1% 18 

O2, 5% CO2, and 94% N2 at the control of ProOx C21 (Biospherix, 19 

USA). After 6 hr exposure to hCMEC/D3 and 4 hr exposure to BV2, the 20 

cells were cultured with reperfusion of oxygen and nutrients.  21 

2.7 Real-time PCR Analysis  22 

The cortex tissues or cells were collected, and total RNA was extracted 23 

with TRIzol reagent (Cat.15596026, Invitrogen) following the 24 
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manufacturer’s instructions. One µg of total RNA from each sample was 1 

reverse transcribed to cDNA with RevertAid RT Reverse Transcription 2 

Kit (Cat.K1691, Thermo Scientific™). qPCR was performed with SYBR 3 

Green Mix (Cat.QPK-201, Toyobo). Results were collected with Bio-Rad 4 

CFX Connect Real-Time system and presented as linearized values 5 

normalized against β-actin in triplicate. Suzhou Hongxun Biotechnology 6 

synthesized the primers (Table S1). 7 

2.8 Immunofluorescence of brain tissue 8 

Mice subjected to MCAO operation on day 7 were perfused with 0.9% 9 

saline flush and 4% paraformaldehyde (PFA) after cardiac blood 10 

collection. Intact brain tissue was isolated and fixed with 4% PFA for 24 11 

h, then dehydrated with 20% sucrose and 30 % sucrose. Brain tissue was 12 

placed in O.C.T. media and froze at -20℃. Contiguous coronal sections 13 

taken across the hippocampus were performed for double-14 

immunofluorescence using a rabbit polyclonal antibody for Iba1 15 

(WFD6884, 1:500) and Timp1(sc-21734,1:100) or Galectin3 (sc-32790, 16 

1:100) mouse monoclonal antibody. The immunofluorescence in brain 17 

slices from the cortex and the hippocampus was visualized by confocal 18 

microscopy (KEYENCE BZ-X, Japan). 19 

2.9 Validation study of targeted biomarkers with ELISA analysis 20 

For the validation study, 100 μL serum was separated from the 21 

collected sample. The levels of targeted proteins in serum were detected 22 

according to the manufacturer’s instruction by corresponding kits of 23 

enzyme-linked immunosorbent assays, such as TIMP1 (RDR-TIMP1-Hu, 24 
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Reddot Biotech) and TGFB1 (EK981, MULTI SCIENCES) LGALS3 1 

(EK1126, MULTI SCIENCES). Serum samples were diluted by a factor 2 

of 10. 3 

2.10 Machine learning in constructing a predictive model integrating 4 

biomolecules and clinical indicators  5 

The Lasso algorithm was employed for the initial screening of 6 

predictor variables for machine learning. Variables identified by Lasso 7 

underwent further screening, with those exhibiting high covariance 8 

excluded one by one using logistic regression to identify features with p-9 

values < 0.05. A total of 10 different machine learning classification 10 

algorithms for distinguishing dichotomous variables were utilized, 11 

including Naive Bayesian Classifier (nb), Decision Tree Algorithm 12 

(C5.0, AdaBag, and Random Forest), Support Vector Machine 13 

(svmRatial, svmPloy, and svmLinear), Logistic Regression (glmnet), K-14 

Nearest Neighbor (kknn), Artificial Neural and Network (nnet). These 15 

algorithms were integrated within the caret (version 6.0.92) (74) R 16 

package. 17 

2.11 Statistical Analysis 18 

The statistical analysis is detailed in the Data Processing and Analysis 19 

sections. All other clinical and laboratory data statistical analyses were 20 

conducted using GraphPad Prism (v8.0). Results of normally distributed 21 

parameters are expressed as mean ± SEM. Data were compared by a two-22 

tailed unpaired Student’s t-test or one-way analysis of variance for 23 

multiple comparisons. When necessary, experimenters were blinded to 24 
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group allocation prior to data acquisition. Significance levels of p-values 1 

are provided in the corresponding figure legends. In general, differences 2 

were considered statistically significant at p-values < 0.05 in all cases. 3 

“*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 4 

0.001, and “****” for p-values < 0.0001.  5 

3. Result 6 

3.1 Inflammation-derived biomarkers robust increasing after ischemia-7 

reperfusion injury  8 

To obtain reliable candidates for differentiation severity of functional 9 

outcome, serum proteomics of patients with ischemic stroke and RNA 10 

sequence of MCAO animals were applied and integrated to screen 11 

differential molecules in this study as schematically summarized in 12 

Figure 2A. 5 patients with LE, 5 patients with OE, and 6 HC were 13 

selected as listed in Table 1 and Table S2. The serum was collected from 14 

the enrolled and subjected to tryptic digest with high abundance removal, 15 

followed by proteomics with LC-MS/MS analysis. Based on a shotgun 16 

proteomics approach, 1533 proteins were identified from 9422 unique 17 

peptides with a maximum false positive rate (FPR)<1%, among which 18 

948 proteins (Figure 2B) at a quantifiable level were used for principal 19 

component analysis (PCA) (Figure 2C). The detailed annotation 20 

information of 1533 proteins were shown in Table S2. 194 DEPs varied in 21 

the LE compared to the HC and 174 DEPs in the OE compared to the HC 22 

according to p-value < 0.05 (Table S3). On the other hand, the RNA 23 

sequence of the ischemic core of the cortex in mice with MCAO at Day 3 24 
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and Day 7 was analyzed, and DEGs were taken p-value < 0.05 as the 1 

standard (Table S4). We found 27 overlaps (Figure 2D) between the DEPs 2 

and DEGs. According to the standard of more than 5 interactions, 8 target 3 

molecules of TIMP1, LGALS3, VIM, TGFB1, MYH9, CSF1R, PTPRC, 4 

and GSN were noticed following protein interaction network analysis 5 

(Figure 2E). Next, in the biological process classification of 27 overlaps, 6 

terms directly related to the 8 most important protein enriched in negative 7 

regulation of cell adhesion, regulation of cell morphogenesis, leukocyte 8 

proliferation, T cell activation, plasma membrane organization, actin 9 

cytoskeleton reorganization, tissue remodeling, glial cell differentiation 10 

(Figure 2F and Table S5), which indicated that inflammation response 11 

was enhanced in the subacute ischemic stroke.  12 

Furthermore, the 8 target molecules were validated with qPCR in vitro 13 

and vivo (Table S6), flow chart shown in Figure 3A. Morphological 14 

observation showed that hCMEC/D3 atrophied compared with the control 15 

group after OGD 6 hours, and the proliferation was inhibited, followed by 16 

24 hours of reoxygenation (Figure 3B). The qPCR results showed a 17 

significant increase of TIMP1, MYH9, TGFB1, VIM, and LGALS3 mRNA 18 

(Figure 3C) and no significant change of CSF1R and GSN mRNA (Figure 19 

S1A) in hCMEC/D3 with OGD/R treatment. Meanwhile, the MCAO 20 

mice were established and confirmed with TTC straining (Figure 3D). 21 

mRNA change in the ischemic core of the cortex isolated from mice with 22 

MCAO on day 3 and day 7 was detected by qPCR. Data showed only the 23 

changes of Timp1, Tgfb1, and Lgals3 mRNA (Figure 3E) were consistent 24 
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as in the hCMEC/D3 cells and apparent up-regulation, Csf1r, Gsn, Myh9, 1 

Ptprc, and Vim mRNA without significant expression were shown in 2 

Figure S1B.  3 

TIMP1 and LGALS3, recently served as novel inflammatory factors, 4 

have a novel role in immune regulation, inspiring attention and 5 

exploration. Hence, we detected the changes of Timp1 and Lgals3 6 

expression in brain microglia by IF staining. In an immunofluorescence 7 

brain of mice with MCAO on 7 days, we found that the expressions of 8 

Timp1 and Lgals3 increased robustly after mice with ischemia-9 

reperfusion injury, especially in the ischemic core of the cortex (Figure 10 

4A and 4F). Iba1 is one of the classic markers of microglia activation. A 11 

remarkable increase was observed in Iba1 expression, which suggested 12 

that the microglia activation surged in ischemic brain tissue, including the 13 

ischemic penumbra cortex, hippocampus, striatum, and hypothalamus. 14 

The amplifying image for the corresponding area in Figure 4A showed 15 

that most TIMP1 and Iba1 were colocalized in the ischemic cortex 16 

(Figure 4B-C) and hippocampus (Figure 4D-E), as well as the 17 

colocalization of Lgals3 and Iba1 (Figure 4G-J). Therefore, 18 

multidimensional verification of candidate expression drew attention to 19 

TIMP1, LGALS3, and TGFB1, closely related to inflammatory response 20 

and prognosis. 21 

3.2 Biomarker validation by ELISA and ROC analysis 22 

Furthermore, we conducted an ELISA analysis to investigate the serum 23 

protein level of TIMP1, LGSAS3, and TGFB1 in an enlarged clinical 24 
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sample. This analysis included 15 patients with LE and 11 patients with 1 

OE who suffered from ischemic stroke events within 3 months and 18 2 

healthy controls. Detailed demographic information and primary ADL 3 

assessments for these two outcome groups are presented in Table S7 and 4 

Figure S2A-B. Age analysis revealed no significant difference between 5 

the healthy controls and stroke patients, while the mean age of the OE 6 

group (mean=63.27 ± 2.711) was lower than the LE group (mean=69.80 7 

± 2.322) (Figure 5A). ELISA data (Table S7) showed that the TIMP1 and 8 

LGALS3 levels significantly increased after ischemic stroke; additionally, 9 

higher serum TIMP1 and LGALS3 levels during the subacute phase of 10 

ischemic stroke were associated with greater severity in ADL activities 11 

(Figure 5B-C). However, no difference was observed in TGFB1 levels 12 

among the groups (Figure 5D). The lack of association between 13 

circulating TGFB1 levels and function outcomes of stroke with ADL 14 

assessment is hardly controversial
15

; TGFB1 change was not considered 15 

in the following study.  16 

Linear regression analysis was performed to rule out the effect of age 17 

on candidate protein levels. Correlations between TIMP1, LGALS3 18 

levels and age using scatter plots depicted by trend lines shown as red 19 

dashed lines in Figure 5E and Figure 5F, separately. The Pearson's 20 

correlation coefficient (R) values, along with their corresponding p-21 

values, were displayed in green text on each trend line. All R values were 22 

less than 0.3 with p-values greater than 0.05, indicating no significant 23 

linear relationship between changes in TIMP1, LGALS3 levels and age. 24 
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Furthermore, Receiver Operating Characteristic (ROC) analysis were 1 

addressed to evaluate the discriminatory sensitivity and specificity 2 

between individuals with Stroke and Control. This step, depicted in green, 3 

represents optimal discriminative measures indicated by black dots on the 4 

ROC curve. Notably, TIMP1 (AUC = 0.904) and LGALS3 (AUC = 0.995) 5 

exhibited superior sensitivity (Figure 5G-H). We further examined the 6 

discriminatory sensitivity towards distinguishing LE/OE individuals, 7 

yielding AUC values of TIMP1 (0.873) and LGALS3 (0.794) more than 8 

0.75 (Figure 5I-J), which suggested reasonable sensitivity and accuracy. 9 

These findings highlight that both TIMP1 and LGALS3 hold promise as 10 

reliable and practical biomarkers for predicting ischemic stroke 11 

rehabilitation. 12 

3.3 Develop a combined prognosis panel for stroke rehabilitation 13 

To evaluate clinical-based indicators for risk prediction in the subacute 14 

recovery of ischemic stroke, we collected multiple clinical data from 15 15 

patients with LE and 11 patients with OE, including ADL assessment, age, 16 

grip strength, blood routine, urine routine, eight items of liver function, 17 

six items of blood lipids, six items of electrolytes, and 6 items of kidney 18 

function. In this step of the analysis, ADL recovery of the LE (Longshi 19 

Scale from Bedridden group to Bedridden group, BI from 23.67 to 25.67) 20 

and OE (Longshi Scale from Bedridden group to Domestic group, BI 21 

range from 30.91 to 55.45) groups presented noticeable difference (Table 22 

2 and Figure S2A-B). Clinical test index data revealed significant 23 

differences by t-test in 9 clinical indicators such as hemoglobin (HGB), 24 
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erythrocyte count (RBC), hematocrit, coefficient of variation of red blood 1 

cell distribution width (RDW-CV), low-density lipoprotein cholesterol 2 

(LDL-c), standard deviation of red blood cell distribution width (RDW-3 

SD), uric acid (UA), total cholesterol (Cho) and albumin (ALB) as shown 4 

in Figure 6A and Table S8. Meanwhile, ROC analysis revealed that the 5 

area under curve (AUC) of 14 indicators exceeded 0.7, indicating 6 

excellent sensitivity and specificity in discriminating between LE/OE 7 

individuals. Among them, 9 out of the total 14 indicators were depicted in 8 

Figure 6B, exhibiting consistency with the indicators derived from the t-9 

test analysis. Additionally, Figure S2C illustrated the AUC values for the 10 

remaining 5 indicators (age, lymphocyte count, lymphocyte ratio, Mean 11 

erythrocyte hemoglobin concentration, viscose silk). The AUC results in 12 

the graph indicate that a yellow background represents a positive 13 

correlation with good prognosis, while a red background represents a 14 

negative correlation. Data indicated that higher levels of HGB, RBCs, 15 

hematocrit, UA, and ALB were positively associated with good prognosis, 16 

while higher RDW-CV LDL-c RDW-SD, and Cho levels were negatively 17 

associated with good prognosis. The t-test and ROC analysis conducted 18 

above had demonstrated the reliability of the data quality in the enrolled 19 

patients. Consequently, these 9 clinical-based indicators were screened 20 

out for variable screening and modeling by machine learning to 21 

accurately predict prognosis of stroke recovery. 22 

In this study, we aimed to develop a combined prognostic model based 23 

on inflammation-derived biomarkers and filtered clinical-indicators for 24 
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distinguishing subacute prognostication outcomes among patients with 1 

subacute ischemic stroke. The process and steps of establishing the 2 

prediction model using machine learning methods was illustrated in 3 

Figure 7A. The variable screening of machine learning was performed by 4 

LASSO analysis and Logistic regression, including those 9 clinical 5 

indicators (p-value < 0.05 in t-test and AUC > 0.7 in ROC) and 2 6 

validated biomarkers (TIMP1 and LGALS3). Figures 7B-C present the 7 

coefficients, lambda correlation plot of LASSO filtered variables, and 8 

Lambda value plot of LASSO analysis. The absolute value of the index 9 

coefficient exceeding 0 in LASSO analysis and the p-value < 0.05 in 10 

logistic regression analysis served as the screening criteria, ultimately 6 11 

molecules (HGB, UA, LDL-c, ALB, TIMP1, and LGALS3) were selected 12 

(Table S9). Furthermore, machine learning using ten standard two-13 

categorical variable algorithms applied for modeling in the above training 14 

data set (Table S8) and prediction of stroke recovery in another new test 15 

dataset (LE: n=15; OE: n =11, Table S10). In the new test dataset, t-test 16 

showed there was no difference in age between the LE (mean 70.87 ± 17 

2.808) and OE (mean 60.09 ± 2.630) groups (Table 3), similar to the 18 

inclusion data for the training set (Figure 7D). While most of 10 machine 19 

learning algorithms in training datasets achieved a prediction efficiency 20 

of 100%, the random forest algorithm model demonstrated the highest 21 

prediction efficiency in new test datasets, reaching 80% (Figure 7E). The 22 

best model of the random forest exhibited an AUC of prediction 23 

efficiency at 100% for trainset data and 80% for testset data (Figure 7F). 24 
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An important advantage of the random forest model is that it can rank the 1 

importance of predictive features, which has important implications for 2 

clinical management. Except for ALB without any contribution value in 3 

the model with random forest, the importance of 5 indicators (HGB, 4 

TIMP1, LGALS3, UA, LDL-c) related to inflammatory response were 5 

visualized in Figure 7G. This study confirmed that central immune 6 

regulation might be crucial in stroke rehabilitation outcomes. 7 

4. Discussion 8 

We developed a machine learning-based model to predict functional 9 

rehabilitation of subacute ischemic stroke accurately. This 10 

interdisciplinary study, involving clinical and animal samples, provided 11 

robust evidence that a combined prediction model of incorporating serum 12 

biomarkers (TIMP1 and LGALS3) and clinical-based indices (HGB, UA, 13 

LDL-c), which primarily encompassed the pathophysiology of 14 

neuroinflammation, anemia, and antioxidation, might help to 15 

differentiation disease severity of recovery. Furthermore, a random forest 16 

of machine learning has demonstrated the combined model’s sensitivity 17 

and reliability in predicting ADL outcomes of post-stroke patients. 18 

Further extensive research is required to elucidate the function and 19 

underlying mechanisms by which the unbalanced neuroinflammatory 20 

response contributes to elevated TIMP1 and LGALS3 during stroke 21 

recovery.  22 

The improvement of activity disorder from bedridden to domestic must 23 

result from the cooperation of various somatic functions and shows 24 
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significant differences in biochemical indicators of nutritional status, 1 

neuroimmune, oxidative damage and repair, and innervation function, 2 

embodied in differences in protein function and levels. Although multiple 3 

traditional markers for the prediction of functional outcomes after 4 

ischemic stroke have been reported with reliable accuracy, there are few 5 

combined prediction models elaborated in the literature. In our study, 6 

after these multi-omics and multidimensional experiments explored and 7 

validated the practicable variables in serum, biological and clinical-based 8 

markers were first incorporated by a machine learning algorithm to 9 

accurately predict the outcome of subacute ischemic stroke rehabilitation, 10 

grouped subjects with the novel and convenient Longshi scale for 11 

monitoring disability stratification of ADL in post-stroke. The grouping 12 

of LE (recovery from bedridden to bedridden) and OE (recovery from 13 

bedridden to domestic) according to the assessment of ADL at admission 14 

and discharge by the Longshi scale was equivalently consistent with the 15 

grouping by BI. The Longshi scale may be an alternative grouping 16 

method for biological and clinical research analysis on optimizing 17 

biomarker performance. 18 

Blood biomarkers have the potential to reflect underlying molecular 19 

and cellular processes, thereby facilitating the development of effective 20 

therapeutic strategies and improving rehabilitation outcomes. Functional 21 

rehabilitation after stroke events are highly dependent upon restitution, 22 

substitution, and compensation of neural network connectivity
16

; reliable 23 

predictors of stroke rehabilitation should play a crucial role in the process 24 
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of injury and repair of NVU. Dead and dying cells or substances released 1 

by ischemic penumbra stimulate the production of inflammatory 2 

responses, mainly in microglia. Alternative immune activation is 3 

associated with decreased inflammation, decreased neurological damage, 4 

and increased NVU repair. Though advanced blood omics have benefited 5 

from the discovery of many new inflammation-related molecules, it is 6 

difficult to trace the central pathological changes directly in humans. 7 

Therefore, validating biomarkers in animal and cell models thus emerges 8 

as a viable solution. Candidates screened and validated through different 9 

dimensions may provide more reliable predictive value, helping to guide 10 

the development of new interventions. 11 

We performed LC−MS/MS-based proteomic analysis in stroke subjects 12 

and investigated how these phenotypes correlate with 3-month recovery 13 

from ischemic stroke measured with ADL assessment. In the study, we 14 

identified 194 DEPs in LE vs HC and 174 DEPs in OE vs HC. To lessen 15 

the possible candidates, we used the RNA sequence of the ischemic 16 

prefrontal cortex in mice with MCAO at day 3 and day 7, equivalent to 17 

the clinical subacute stage of stroke recovery, considering the possibility 18 

of false positives of differential proteins due to the limited of clinical 19 

sample size. As a result, we focused on the 27 overlaps between DEPs 20 

and DEGs. Protein interaction network and functional analysis pointed 21 

directly to 8 target molecules of TIMP1, LGALS3, VIM, TGFB1, MYH9, 22 

CSF1R, GSN, and PTPRC. The qPCR validation of MCAO mice and 23 

OGD/R heMEC/D3 cells showed an important increase of the TIMP1, 24 
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TGFB1, and LGALS3 expression after ischemia reperfusion. The 1 

elevation of TIMP1 and LGALS3 were confirmed in an enlarged clinical 2 

serum sample, while the level of TGFB1 was not significantly different in 3 

the subjects of stroke and healthy control. TIMP1
17, 18

 and LGALS3
19, 20

, 4 

as novel inflammation-related factors, have been proven to be positively 5 

correlated with the poor outcomes of stroke and atherosclerosis. 6 

Therefore, our study focused on exploring the value of TIMP1 and 7 

LGALS3 in predicting the prognosis of stroke rehabilitation. LGALS3 8 

and TIMP1, as novel inflammatory factors, may play an essential role in 9 

microglia-related inflammation regulation and promote NVU injury 10 

repair.  11 

TIMP1, one of the tissue inhibitors of metalloproteinase (TIMP) family, 12 

inhibits matrix metalloproteinases (MMPs), a vital protein in maintaining 13 

the homeostasis of extracellular matrix structure and function. Recent 14 

studies have revealed that TIMP-1 possesses MMP-independent functions, 15 

acting as an emerging multifunctional cytokine through binding to cell 16 

surface receptors in developing central nervous system diseases and 17 

tumors
21-23

. The change of TIMP1 is consistent with the survey 18 

conclusion that higher TIMP1 levels were associated with increased risk 19 

of mortality and major disability after acute ischemic stroke in clinical
17

, 20 

and the gene expression of Timp-1 was upregulated in infarction of the 21 

MCAO model
24, 25

. Our study demonstrated that the correlation between 22 

changes in TIMP1 within 3 months post-stroke and stroke recovery 23 

scores remained significant even after adjusting for baseline stroke 24 
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severity. The latest study on the neuroinflammatory regulatory effect of 1 

TIMP1 through receptor-mediated signaling on the protection of the 2 

blood-brain barrier, independent of MMP9
23

, may provide novel insights 3 

into the reparative mechanism of TIMP1 in stroke injury. In our study we 4 

verified that the change in serum TIMP1 level was consistent with the 5 

variation tendency in proteomics. ROC analysis showed the reliability 6 

and specificity of TIMP1 (AUC=0.904, 0.873) in distinguishing the 7 

stroke from the healthy and LE from OE groups separately. The result 8 

indicated TIMP1 could be a marker to differentiate different recovery 9 

effects. 10 

Another vital biomarker, LGALS3 (Galectin-3), a beta-galactosidase 11 

binding protein involved in microglial activation, a novel inflammatory 12 

factor known for its role in intravascular inflammation, lipid endocytosis, 13 

macrophage activation, cellular activation, and proliferation
26

. Many 14 

studies have revealed that galectin-3 plays an important role as a 15 

diagnostic or prognostic biomarker for neurodegenerative disorders, 16 

certain types of heart disease, viral infection, autoimmune disease, and 17 

tumors
27-29

. Additionally, LGALS3 could serve as a novel marker for the 18 

prediction of stroke clinical prognosis, positively associated with poor 19 

functional outcome and an increased risk of mortality in stroke patients
30, 

20 

31
. Our data on the ROC analysis of LGALS3 (AUC=0.794) in the 21 

differentiation of the stroke with poor and good prognosis were consistent 22 

with this result. In molecular mechanism research, increasing evidence 23 

supports that LGALS3 modulates microglial activation under 24 
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neurodegeneration conditions
32

. Except for the report that LGALS3 1 

inhibits progressive fibrosis by modulating inflammatory profibrotic 2 

cascades
33

, few studies have elucidated the molecular mechanism of 3 

LGALS3 in post-infarction. Moreover, we detected the co-localized 4 

expression of TIMP1 and Lgals3 with microglia marker protein Iba1 with 5 

immunofluorescence, respectively. The findings of our study demonstrate 6 

firstly that microglia expressed TIMP1 and Lgals3 significantly increased 7 

during post-ischemic repair. It may be interesting to study further the 8 

mechanism of TIMP1 and Lgals3 regulation of microglial activation in 9 

ischemic stroke recovery. 10 

Some clinical test indicators are also significant predictors. The data 11 

obtained from our enrolled patients underwent ROC analysis and 12 

LASSO-filtered variables to identify valuable predictive indicators, which 13 

primarily encompassed the pathophysiology of neuroinflammation, 14 

anemia, and antioxidation during the subacute stage of stroke. HGB 15 

levels are the gold standard for anemia, commonly and associated with 16 

poor outcome function after a stroke
34, 35

. The World Health Organization 17 

defines anemia as a hemoglobin level of less than 130 g/L. The average 18 

HGB level of patients in the OE group was 136.32 g/L, whereas in the LE 19 

group, it was 119.73 g/L, indicating an anemic state which may 20 

contribute to a poor prognosis. Low LDL-c is associated with a reduced 21 

risk of cardiovascular events and outcomes
36

. Higher serum UA levels 22 

have been proved to be an independent predictor of poor outcomes
37

. 23 

Though it has been reported UA as an independent predictor in stroke 24 
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prognosis remains controversial, the role of UA in ischemic stroke 1 

pathophysiology is inseparable from oxidative damage
37, 38

.  Age is linked 2 

to the long-term outcome of post-stroke rehabilitation, and the older with 3 

a stroke will probably result in worse outcomes
39

. Our study showed no 4 

important differences in age between enrolled patients with good or poor 5 

prognosis. Additionally, we observed a weak association between age and 6 

prognostic indicators (p < 0.3). These provided evidence that the OE 7 

group with good prognosis attributed to intervention therapy regardless of 8 

age. Variables selected in in this study could effectively reflect the 9 

underlying pathological progression of stroke recovery, thereby ensuring 10 

the predictive model of stroke rehabilitation with high accuracy.  11 

This study is subject to certain limitations. Firstly, using a relatively 12 

small clinical sample in proteomics analysis may result in fewer 13 

differential proteins and limit the scope of bioinformatics analysis. To 14 

address this limitation, we strictly adhered to specific inclusion criteria, 15 

including age range (50-80 years), gender (male), and duration of onset 16 

(1-2 months) to minimize objective individual differences. Additionally, 17 

transcriptome changes at different stages of mice with MCAO were 18 

performed to validate our findings. Furthermore, in the validation 19 

experiments using ELISA analysis, we expanded the sample size to 20 

include 18 cases in the healthy control group and 52 cases in the stroke 21 

group. Recruiting larger sample sizes for model construction could yield 22 

even better prediction results. Despite the potential controversy 23 

surrounding the small sample size used in this study, it is essential to 24 
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emphasize that our ultimate biomarkers have been confirmed credible and 1 

valuable through two conventional biomarker selection methods and 2 

machine learning techniques. 3 

Conclusions 4 

In conclusion, we reported using machine learning to develop a novel 5 

combination prognostic model of inflammation-derived biomarkers 6 

(TIMP1, LGALS3) and clinical-based biomarkers (HGB, UA, LDL-c) in 7 

predicting the rehabilitation of ischemic stroke. Our work raises the 8 

exciting possibility that monitoring changes in inflammatory protein in 9 

ischemic stroke recovery could be used to gauge the severity of stroke 10 

and used in complementary to clinical prognostic variables to function 11 

outcome during stroke recovery. 12 
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 6 

Tables 7 

Table 1. ADL assessment of enrolled subjects for LC-MS/MS 8 

Characteristic  
Health Controls 

(HC) 

Ischemic Stroke (IS) 

Obvious effects (OE) Little effects (LE) 

Gender (male) 6 5 5 

Age (year) 56.50 ± 2.655 67.40 ± 4.445 67.20 ± 2.478 

Diagnosis Normal Ischemic stroke Ischemic stroke 

ADL assessment of Barthel 

Index at admission  

(at discharge)  

NA 
34.00 ± 3.674 

(42.00 ± 5.831) 

21.00 ± 2.739 

(22.00 ± 2.550) 

ADL assessment of 

Longshi Scale at admission 

(at discharge)  

NA 
Bedridden group 

(Domestic group) 

Bedridden group 

(Bedridden group) 

 9 

Table 2. ADL assessment of enrolled subjects for ELISA validation 10 

Characteristic  
Health Controls 

(HC) 

Ischemic Stroke (IS) 

Obvious effects (OE) Little effects (LE) 

Gender (male) 18 11 15 

Age (year) 67.00 ± 2.099 63.27 ± 2.711 69.80 ± 2.322 

Diagnosis Normal Ischemic stroke Ischemic stroke 
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ADL assessment of Barthel 

Index at admission  

(at discharge)  

NA 
30.91 ± 3.149 

(55.45 ± 6.923) ** 

23.67 ± 4.125 

(25.67 ± 4.165) 

ADL assessment of 

Longshi Scale at admission 

(at discharge)  

NA 
Bedridden group 

(Domestic group) 

Bedridden group 

(Bedridden group) 

"**" represents statistical significance at p < 0.01 1 

Table 3. ADL assessment of enrolled patients for test dataset  2 

with machine learning 3 

Characteristic  
Ischemic Stroke (IS) 

Obvious effects (OE) Little effects (LE) 

Gender (male) 11 15 

Age (year) 60.09 ± 2.630 70.87 ± 2.808 

Diagnosis Ischemic stroke Ischemic stroke 

ADL assessment of Barthel Index at 

admission (at discharge)  

32.73 ± 4.737 

(57.27.45 ± 4.879) ** 

22.33 ± 3.268 

(23.00 ± 3.229) 

ADL assessment of Longshi Scale 

at admission (at discharge)  

Bedridden group 

(Domestic group) 

Bedridden group 

(Bedridden group) 

"**" represents statistical significance at p < 0.01 4 
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Figures and Figure Legend 1 

 2 

Fig1. Overall experimental design for a combined model development based 3 

on machine learning.  4 

Ischemic stroke patients were categorized into LE and OE group based on activities 5 

of daily living assessments followed by a 28-day recovery. Discovery group 6 

underwent proteomic testing for initial candidates. Multidimensional validation of 7 

ischemia-reperfusion at protein and mRNA levels was performed both in vivo and in 8 

vitro. ROC and LASSO analysis in an additional cohort to confirm the candidate 9 

biomarker and clinical variables in the discriminatory sensitivity and specificity 10 

between the LE and OE groups. Candidates were modeled using ten standard machine 11 

learning algorithms and then prediction outcomes in another new dataset.  12 

Abbreviations: CT, Computed Tomography; MRI, magnetic resonance imaging, 13 

LC-MS/MS, liquid chromatography-tandem mass spectrometry analysis; LE, little 14 
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effective recovery; OE, obvious effective recovery; HC, Healthy Control; MCAO, 1 

middle cerebral artery occlusion; OGD/R, oxygen-glucose deprivation/ reoxygenation; 2 

HGB, hemoglobin; LDL-c, low-density lipoprotein cholesterol; UA, uric acid; ADL, 3 

activities of daily living. 4 

 5 

 6 

Fig2. Screening robust target molecules from different omics data of humans 7 
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and mice after ischemic injury. 1 

A, Workflow chart of the study. Human serum samples for LC-MS/MS were 2 

categorized into three groups based on ADL assessment using the Longshi scale: LE 3 

group, representing patients with poor prognosis transitioning from bedridden to 4 

bedridden; OE group, representing patients with good prognosis transitioning from 5 

bedridden to domestic assessed by Longshi Scale; and healthy controls. Mouse brain 6 

samples for RNA sequencing were collected from the operative side of the brain on 7 

days 3 and 7 after MCAO, while the contralateral side of the brain served as a control. 8 

The differentially expressed proteins (DEPs) obtained through protein profiling and 9 

differentially expressed genes (DEGs) obtained through RNA sequencing were 10 

overlapped. GO functional analysis and protein network interaction analysis were 11 

performed on the intersecting genes. Candidate targets were validated with qPCR, 12 

WB and ELISA analyses at both the RNA and protein levels. B, Protein information 13 

detected by mass spectrometry proteomics in the LE (n=5), OE (n=5), and HC (n=5) 14 

groups. C, PCA plots revealed the separation of samples in LC-MS/MS. D, Venn 15 

diagram of differentially expressed proteins obtained by protein profiling and the 16 

differentially expressed genes obtained by RNA sequencing, 27 molecules were 17 

differentially expressed in all 4 groups. E, The protein-protein interaction network 18 

diagram displayed by cytoscape. Different colors represent the order of protein 19 

importance, the redder the color, the more important it is. F, The 27 proteins in the 20 

intersection set in D were subjected to GO functional enrichment, and the de-21 

dundantitems terms directly related to the 8 most important proteins in E were filtered 22 

from the significantly Biological Processes terms. Shown are the top 8 terms with 23 

“p.adjust” ranking. The background colors of the labels were artificially divided into 24 
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two groups according to function, with the pink group being related to immunity and 1 

the blue group being related to histomorphology.  2 

Abbreviations: PCA, Principal Component Analysis; TGFB1, Transforming 3 

Growth Factor beta 1；PTPRC, Protein Tyrosine Phosphatase Receptor Type C; VIM, 4 

Vimentin; MYH9,  Myosin Heavy Chain 9; CSF1R, Colony stimulating factor 1 5 

receptor; GSN, Gelsolin; GO, Gene Ontology; BP, Biological Processes.  6 

 7 

 8 

Fig3. Validation of the candidate targets at the RNA levels in vitro and in vivo. 9 

A, Work flow chart of study. The hCMEC/D3 cells are human brain microvascular 10 

endothelial cell line that were OGD-treated for 6 hr, reoxygenation for 24 hr, and then 11 

the samples were collected in 3 biological replicates per group. The model of mice 12 
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with MCAO was followed by taking brain tissue on days 3 and 7, 4 biological 1 

replicates per group. B, Bright field images of the hCMEC/D3 cells during OGD/R 2 

modeling indicating successful modeling. C, Histograms of the q-PCR expression 3 

levels of the 8 target molecules in hCMEC/D3 cells with OGD/R. The histogram 4 

displays the qPCR expression levels of the 8 target molecules in hCMEC/D3 cells. 5 

The statistically significant molecules, with differences determined by p-value from 6 

smallest to largest, were arranged from left to right. Supplementary Figure S1A 7 

showed the molecules without significant differences. Each data point represents a 8 

biological sample. D, TTC staining images of successful MCAO modeling. E, 9 

Histograms of the qPCR expression levels of the 8 target molecules of the brain tissue 10 

in mice with MCAO. 3 molecules with significant difference presented as in C and 11 

Other molecules were shown in Supplementary Fig. 1 B. Each point represents a 12 

biological sample. 13 
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 1 

Fig4. IF staining of candidates in brain sections of mice with MCAO.  2 

A, Immunofluorescence staining with anti-Timp1 (green) and anti-Iba1 in brain 3 

sections of mice with MCAO on day 7; B-C, Staining magnification of the ischemic 4 

penumbra cortex; D-E, Staining magnification of the ischemic hippocampus; F, 5 

Immunofluorescence staining with anti-Lgals3 (green) and anti-Iba1 in brain sections 6 

of mice with MCAO on day 7; G-H, Staining magnification of the ischemic 7 

penumbra cortex; I-J, Staining magnification of the ischemic hippocampus. Nucleus 8 

were dyed with DAPI staining (blue). The white triangle refered to the colocalization 9 

expression of targets and Iba1. 10 

 11 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.18.24303013doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.18.24303013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

42 

 

 1 

Fig5. Validation and ROC analysis of target molecules at the protein level in 2 

ischemic stroke patients.  3 

A, Age distribution statistics of recruited clinical subjects of the LE (n=15), OE 4 

(n=11), and HC (n=20). Each point represents an individual. B-D, Histograms of the 5 

ELISA expression levels of the 3 target molecules validated at RNA level. The data 6 

were analyzed using one-way ANOVA analysis. “*” represents p < 0.05, “**” 7 

represents p < 0.01, “***” represents p < 0.001. Each point represents an individual. 8 

E-F, Correlation scatter plots of TIMP1 and LGALS3 with age. The red dashed lines 9 

are the trend lines, with the Pearson’s correlation coefficient (R) and p value of the 10 

trend lines shown in green. Each point represents a biological sample. G-I, Receiver 11 
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Operating Characteristic (ROC) analysis of TIMP1 for the discrimination of 1 

Stroke/Control individuals and LE/OE individuals, respectively, with the Area Under 2 

the ROC Curve (AUC) shown in green. The black dots represent points on the ROC 3 

curve to gain optimal discriminative measures. H-J, ROC analysis of LGALS3 for the 4 

discrimination of Stroke/Control individuals and LE/OE individuals, respectively. The 5 

black dots represent points on the ROC curve to gain optimal discriminative measures. 6 

  7 
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 1 

Fig6. Analysis of clinical indicators of recruited clinical subjects with ischemic 2 

stroke.  3 

A, Histograms of the clinical indicator expression levels in the LE (n=15) and OE 4 
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(n=11). The showed are the statistically significant indicators those with significant 1 

differences according to p-value from smallest to largest from left to right, and from 2 

up to down, and those without significant differences are shown in Supplementary 3 

Figure 2 C. Each point represents a biological sample. B, Receiver Operating 4 

Characteristic (ROC) analysis of indicators in A for the discrimination of LE/OE 5 

individuals, respectively, with the Area Under the ROC Curve (AUC) shown in green. 6 

The black dots represent points on the ROC curve to gain optimal discriminative 7 

measures. The yellow background represents a positive correlation with good 8 

prognosis, and the red background represents a negative correlation. 9 

Abbreviations: HGB, hemoglobin, RBC, erythrocyte count; RDW-CV, SD of 10 

erythrocyte volume; LDL-c, low-density lipoprotein cholesterol; RDW-SD, blood red 11 

cell volume distribution width; UA, uric acid; Cho, total cholesterol; ALB, albumin. 12 

  13 
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 1 

Fig7. Screen biomolecules and clinical-based indicators to predict prognosis 2 

using machine learning modeling. 3 

A, Work flow chart of prognosis biomarker discovery with machine learning. B, 4 

Coefficients and lambda correlation plot of LASSO filtered variables. C, Lambda 5 

value plot of LASSO analysis. D, Age distribution statistics of clinical subjects 6 

recruited to the test dataset. Each point represents an individual. E, A total of 10 7 

prediction models with 10 different machine learning classification algorithms for 8 

distinguishing dichotomous variables and the calculated discriminatory AUCs of each 9 

model across the training datasets (Train) and the blinded testing datasets (Test). 10 

Machine learning algorithms including Support Vector Machine (svmRatial, svmPloy, 11 

and svmLinear), Artificial Neural and Network (nnet), Logistic Regression (glmnet), 12 
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Naive Bayesian Classifier (nb), K-Nearest Neighbor (kknn), Decision Tree Algorithm 1 

(C5.0, AdaBag, and Random Forest). F, ROC plots of the best-performing model in 2 

panel E, and the prognosis accuracy on the corresponding datasets were shown in the 3 

lower right corner. G, The top 5 feature molecules in the best predictive model 4 

(“random forest” on title) in panel F based on the variable importance ranking. 5 

 6 

 7 

FigS1. Supplementary figure corresponding to Figure 2. 8 

A, The histogram displays the qPCR expression levels of CSF1R and GSN mRNA 9 

in hcMEC/D3 cells after OGD/R. B, The histogram displays the qPCR expression 10 

levels of Csf1r, Gsn, Myh9, Ptprc, and Vim mRNA in ischemic cortex of mice with 11 

MCAO at day3 and day 7. Each data point represents a biological sample. 12 
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 1 

FigS2. Supplementary figure corresponding to Figure 5. 2 

A, ADL assessment of the enrolled patients at admission and discharge by 3 

Longshi scale in the LE (n=15) and OE (n=11); B, ADL assessment of the enrolled 4 

patients at admission and discharge by Longshi scale, 1 = Bedridden group, 2 = 5 

Domestic group; C, ROC analysis of Age, LymphocyteCount, LymphocyteRatio, 6 

mean corpuscular hemoglobin concerntration (MCHC), and Viscose silk for the 7 

discrimination of LE/OE individuals, respectively. 8 

 9 
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