
 

Automated Diagnostic Reports from Images of Electrocardiograms at the Point-of-Care 
 

Akshay Khunte1*, Veer Sangha BS2,3*, Evangelos K Oikonomou MD DPhil2, Lovedeep S 
Dhingra MBBS2, Arya Aminorroaya MD MPH2, Andreas Coppi PhD,2,4 Sumukh Vasisht 

Shankar2, Bobak J Mortazavi PhD4,5, Deepak L Bhatt MD MPH6, Harlan M Krumholz MD 
SM2,5,7, Girish N Nadkarni MD MPH8,9#, Akhil Vaid MD8,9#, Rohan Khera MD MS2,4,10# 

 

1Department of Computer Science, Yale University, New Haven, CT 
2Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of 
Medicine, New Haven, CT 
3Department of Engineering Science, Oxford University, Oxford, UK 
4Department of Computer Science & Engineering, Texas A&M University, College Station, TX 
5Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT 
6Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 
7Department of Health Policy and Management, Yale School of Public Health, New Haven, CT 
8The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount 
Sinai, New York, NY, USA 
9The Division of Data Driven and Digital Medicine, Department of Medicine, Icahn School of 
Medicine at Mount Sinai, New York, NY, USA 
10Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New 
Haven, CT 
 
*Contributed equally as co-first authors 
#Contributed equally as co-senior authors 
 
Correspondence to: Rohan Khera, MD, MS  
195 Church St, 6th Floor, New Haven, CT 06510, 
203-764-5885; rohan.khera@yale.edu; @rohan_khera  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302976doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.02.17.24302976
http://creativecommons.org/licenses/by-nc/4.0/


 

ABSTRACT 

Timely and accurate assessment of electrocardiograms (ECGs) is crucial for diagnosing, triaging, 

and clinically managing patients. Current workflows rely on a computerized ECG interpretation 

using rule-based tools built into the ECG signal acquisition systems with limited accuracy and 

flexibility. In low-resource settings, specialists must review every single ECG for such decisions, 

as these computerized interpretations are not available. Additionally, high-quality interpretations 

are even more essential in such low-resource settings as there is a higher burden of accuracy for 

automated reads when access to experts is limited. Artificial Intelligence (AI)-based systems 

have the prospect of greater accuracy yet are frequently limited to a narrow range of conditions 

and do not replicate the full diagnostic range. Moreover, these models often require raw signal 

data, which are unavailable to physicians and necessitate costly technical integrations that are 

currently limited. To overcome these challenges, we developed and validated a format-

independent vision encoder-decoder model – ECG-GPT – that can generate free-text, expert-

level diagnosis statements directly from ECG images. The model shows robust performance, 

validated on 2.6 million ECGs across 6 geographically distinct health settings: (1) 2 large and 

diverse US health systems- Yale-New Haven and Mount Sinai Health Systems, (2) a consecutive 

ECG dataset from a central ECG repository from Minas Gerais, Brazil, (3) the prospective cohort 

study, UK Biobank, (4) a Germany-based, publicly available repository, PTB-XL, and (5) a 

community hospital in Missouri. The model demonstrated consistently high performance 

(AUROC≥0.81) across a wide range of rhythm and conduction disorders. This can be easily 

accessed via a web-based application capable of receiving ECG images and represents a scalable 

and accessible strategy for generating accurate, expert-level reports from images of ECGs, 

enabling accurate triage of patients globally, especially in low-resource settings.  
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MAIN 

Electrocardiography (ECG) is a widely available, first-line, noninvasive tool for diagnosing, 

triaging, and managing cardiovascular disease.1 Traditional workflows often rely on 

computerized ECG interpretation algorithms to generate preliminary reads, which, despite 

limited accuracy,2,3 provide diagnostic support and enable faster triage for high-risk conditions.4 

Such algorithms, however, are often proprietary and require raw signal data. This makes 

computerized pre-reads inaccessible to clinicians in rural and low-resource settings, a disparity 

further exacerbated by the lower availability of expert-level readers.5,6 This lack of automated 

system-generated ECG reports in many low-resource settings globally highlights the need for an 

accurate, easily accessible ECG interpretation tool. 

Though recent advances in deep learning enable accurate classification of specific ECG 

abnormalities,7–10 they are generally limited to a select number of commonly encountered 

abnormalities and do not address less common conduction and rhythm disorders or variations 

within common rhythms. Additionally, while our prior work has demonstrated that diagnostic 

models can directly identify information from ECG images,10,11 most traditional signal-based 

models, like computerized interpretation algorithms, predominantly rely on raw signal data, 

limiting their scalability to the point-of-care and across low-resource settings. The development 

of models exclusively for images is challenged by variations in the layout of the leads, labeling 

of the leads, structure and design of the graphed background, and the quality of the image 

acquisition.  

In this study, we report the development of ECG-GPT (Figure 1), a novel vision-text 

transformer model capable of generating diagnostic reports from ECG images regardless of the 

layout, trained against the full breadth of expert-verified ECG interpretations across 1.2 million 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302976doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.17.24302976
http://creativecommons.org/licenses/by-nc/4.0/


 

ECGs collected over 21 years in a large US-based hospital system. ECG-GPT can be accessed as 

a web-based application that can receive ECG images across formats and layouts as the only 

input and generate diagnostic reports (demonstration hosted at https://www.cards-lab.org/ecg-

gpt). 

It demonstrates consistently high discriminative performance across the range of conduction 

and rhythm disorders, validated in 2.6 million ECGs across temporally and geographically 

distinct datasets, including a separate US-based major referral hospital system, a Brazil-based 

large telehealth network, a UK-based prospective cohort study, a publicly available ECG dataset 

from Germany, and a rural US-based community hospital. By enabling direct inference from 

ECG images, ECG-GPT can be directly integrated into existing clinical workflows across low-

resource settings to help triage care and provide diagnostic support without requiring significant 

system-wide investments.  

 

RESULTS 

Designing ECG-GPT: a vision-text transformer-based architecture 

We replicated the traditional ECG interpretation by expert clinicians who rely on visual 

evaluation of ECG images in their practice, pursuing a systematic approach to define a series of 

distinct rhythm, rate, conduction, ischemic, and other abnormalities summarized as an 

unstructured diagnostic impression.12 To reflect this pattern, we built a generative vision-text 

transformer model, ECG-GPT, to enable complete, free-text diagnosis statement generation from 

ECG images in any format and lead layout. This algorithm relied on a custom vision encoder-

decoder model architecture built on the backbone of a BEiT vision transformer encoder and a 

GPT2 decoder.13,14 In designing ECG-GPT, we chose BEiT for its ability to capture complex 
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visual features in ECG images, akin to expert clinicians' visual assessments, and chose GPT-2 

for its lightweight and efficient nature for text generation given the narrower vocabulary 

diagnostic text. This ensured a balance between computational depth and operational efficiency 

essential for deployment. 

For the model, a linear sequence of 16x16 pixel patches extracted from each ECG image 

input, described in further detail below, represented the input for the BEiT transformer model, 

which produces a lower-dimensional representation of the image that the pre-trained GPT2 

decoder uses to generate the diagnosis statement. 

 

Training ECG-GPT 

Data source and population: We developed ECG-GPT in a set of 1,162,727 12-lead ECG 

recordings with accompanying cardiologist-confirmed diagnosis statements performed on 

328,891 unique patients at the Yale-New Haven Health System (YNHHS) between 2000 and 

2021. These ECGs reflected a wide and balanced distribution of demographics, with a mean age 

of 67.6 (SD 17.2) years at the time of the ECG. In the development population, 556,565 (47.9%) 

of the ECGs were obtained among women, 823,421 (70.8%) ECGs were from non-Hispanic 

White, 151,387 (13.0%) non-Hispanic Black, 129,346 (11.1%) Hispanic, 16,298 (1.4%) non-

Hispanic Asian, and 42,275 (3.6%) from patients from other racial backgrounds (Table S1), 

reflecting broad and diverse representation. 

To enable format-independent inference that would generalize to real-world images, we took 

raw ECG signal data from these recordings and plotted ECG images in several distinct lead 

configurations and layouts. These plotting schemes, which we have developed and extensively 

validated in previous studies,10,11 included standard, two-rhythm, shuffled, and alternative 
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formats, reflecting common and uncommon variations in ECG image printouts (Figure 1, see 

Methods for details). The model randomly selected a format each time an ECG was loaded 

during training to reduce overfitting. We also applied random image rotations between -10 and 

+10 degrees before training to further mimic variations seen in real-world ECG images. The 

handling of additional acquisition artifacts was addressed during model deployment (details in 

Methods) to enable broad utility on real-world ECG images. 

 

Diagnostic statement processing and label definitions: We developed a standardized, rule-based 

approach to process each cardiologist-confirmed diagnostic statement before training. This 

included removing all references to dates, prior ECGs, providers, and patients. The 100 most 

prevalent acronyms and misspellings were expanded and corrected, respectively, based on a 

review by expert cardiologists (Table S2). Lastly, a single designation was chosen for disorders 

with multiple synonymous designations (Figure S1). After processing, the diagnostic statements 

had a median length of 110 characters (IQR 72, 154). These processed diagnosis statements had 

a median length of 28 tokens (IQR 19, 38) after tokenization using the GPT2 tokenizer. To align 

the model's evaluation with its intended use, we demonstrate the performance of generated text 

on extracted labels for 20 distinct conditions extracted from the processed diagnosis statements 

using a rule-based approach (see Methods for details, Table S3). Two cardiologists in 

discussion selected the conditions. Of note, the diagnosis statements represent the full range of 

diagnoses, and these conditions were chosen strictly for model evaluation. 

Using this approach, we report metrics for a few ECG abnormalities. In the development 

cohort, most ECGs reported normal sinus rhythm (788,999, 67.8%), followed by left ventricular 

hypertrophy (126,795, 10.9%), left atrial enlargement (121,654, 10.5%), and atrial fibrillation 
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(AF) (111,533, 9.6%). A total of 89,675 (7.7%) and 66,483 (5.7%) ECGs reported sinus 

tachycardia (ST) and sinus bradycardia (SB), respectively. Right bundle branch block (RBBB) 

and left bundle branch block (LBBB) were present in 83,810 (7.2%) and 40,790 (3.5%) ECGs, 

respectively, and 101,836 (8.76%) ECGs reported atrioventricular block (AVb). The proportion 

of ECGs with the 20 conditions, spanning rhythm and conduction disorders extracted from the 

diagnosis statements is listed in Table S1. 

 

Evaluating Model Performance 

Natural language generation metrics and structured label evaluation: As detailed below, we 

employed three distinct approaches to assess the performance of ECG-GPT for generating 

comprehensive, clinically accurate diagnosis statements. First, we used a fine-tuned DistilBERT 

model to quantify the semantic similarity between reference and model-generated diagnosis 

statements.15–17 Next, we employed natural language generation (NLG) metrics conventionally 

used to evaluate models designed for image captioning or translation tasks to assess the syntactic 

similarity between statements. These included ROUGE, BLEU, and METEOR, ranging from 0 

to 1, and CIDEr, ranging from 0 to 5, with higher values indicating better overlap between 

reference and generated text.18–21 Third, we performed a clinical assessment to evaluate the 

diagnostic accuracy of the model-generated statements for 20 key conditions spanning a wide 

range of rhythm and conduction disorders. Each diagnostic label was extracted from the 

reference and model-generated diagnosis statements using a rule-based approach. 

 

Internal testing – Semantic similarity: We fine-tuned a clinically pretrained DistilBERT 

language model in the same set of diagnosis statements used to train the vision-text transformer 
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model (see Methods for details). This language model was then used to generate embeddings for 

each reference and model-generated statements for each ECG in the 146,096 ECGs in the 

internal held-out test set, obtained from 40,827 patients who had not contributed any data to the 

training set (Table S1). The median cosine similarity between the embeddings for reference 

statements and their paired model-generated statements was 0.93 (IQR 0.83-1.00). This result 

was significantly higher than the median cosine similarity between 100,000 randomly selected 

combinations of reference and model-generated statements (0.69 (IQR 0.62-0.77, p<0.001). 

We also performed a secondary analysis to assess the model’s ability to capture individual 

conditions within their full clinical context. For each of the 20 diagnostic labels extracted from 

the reference statements, we generated a subset with all ECGs flagged as positive for that 

condition. For each subset, we computed the pairwise cosine similarity between embeddings for 

reference and model-generated statements and the baseline similarity between random 

combinations of reference and model-generated statements within the subset. Across all subsets, 

the median pairwise cosine similarity was significantly greater than the respective median 

random cosine similarity (Table 1). Across all 20 conditions, pairwise and baseline similarities 

ranged from 0.85-0.96 and 0.74-0.84, respectively. For key rhythm disorders – AF, ST, SB, 

premature atrial complexes (PACs), and premature ventricular complexes (PVCs) – pairwise and 

random similarities ranged from 0.87-0.96 and 0.76-0.84, respectively. For conduction 

abnormalities –LBBB, RBBB, AVb, left anterior fascicular block (LAFB), and left posterior 

fascicular block (LPFB) – pairwise and random similarities ranged from 0.87-0.96 and 0.76-

0.84, respectively.  
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Internal testing – NLG agreement: For NLG metrics, ECG-GPT matches or outperforms most 

state-of-the-art medical image captioning models.22–24 For ROUGE scores, which measure the 

overlap of word sequences between the generated and reference diagnosis statements, 

emphasizing recall, we report scores of 0.748 and 0.742 for ROUGE-1 and ROUGE-L, 

respectively. For BLEU scores, which focus on precision and assess the quality of model-

generated statements, we report scores ranging from 0.619 for BLEU-1 to 0.472 for BLEU-4. 

We also report a METEOR score of 0.750, indicating substantive agreement in both the word 

usage and order of model-generated and reference diagnosis statements and a CIDEr score of 

4.69, demonstrating that the model-generated statements closely matched the diversity of the 

language used in the reference statements (Table S4). 

 

Internal testing – Structured label assessment: Model performance in the held-out test set for 

each of the 20 rhythm and conduction disorders, including accuracy, positive and negative 

predictive values, specificity, sensitivity, AUROC, AUPRC, and F1 scores, are recorded in 

Table 2. For AF, ST, SB, PACs, and PVCs, AUROCs and AUPRCs ranged from 0.87-0.97 and 

0.58-0.87, respectively. For LBBB, RBBB, AVb, LAFB, and LPFB, the AUROCs and AUPRCs 

ranged from 0.88-0.96 and 0.30-0.85, respectively. Across all 20 conditions, diagnostic accuracy 

ranged between 0.95-0.99. 

 

External Validation 

Testing in an independent hospital-based system (Mount Sinai Health System): To assess the 

external validity of our algorithm and account for possible variations in the interpretation and 

recording of diagnostic statements, we deployed our computational platform to a library of 
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1,434,455 ECGs drawn from a geographically distinct large hospital system, Mount Sinai Health 

System (MSHS) in New York, using a federated validation approach (described in Methods). 

This dataset also consisted of 12-lead ECG data with paired free-text diagnosis statements, 

enabling the evaluation of our training and validation pipeline in a large population. Consistent 

with our internal test findings, ECG-GPT reported high semantic similarity between the model-

generated statements and the MSHS reference statements and, in structured label assessment, 

maintained robust performance across the 20 rhythm and conduction disorders. 

For semantic similarity, embeddings had a median pairwise similarity of 0.86 (IQR 0.78-

0.94), significantly greater than the median baseline similarity of 0.73 among 2 random 

statements (IQR 0.66-0.79, p<0.001). This separation persisted across the 20 subsets 

corresponding to each extracted rhythm and conduction disorder (Table 3). For key rhythm 

disorders – AF, ST, SB, PACs, and PVCs – pairwise and baseline similarity ranged from 0.83-

0.89 and 0.75-0.81, respectively. For key conduction abnormalities – LBBB, RBBB, AVb, 

LAFB, LFPB – pairwise and baseline similarity ranged from 0.87-0.93 and 0.78-0.82, 

respectively. 

The model performed well in clinical assessment across the 20 extracted labels. For AF, ST, 

SB, PACs, and PVCs, AUROCs and AUPRCs ranged from 0.80-0.95 and 0.48-0.78, 

respectively. For LBBB, RBBB, AVb, LAFB, and LFPB, AUROCs, and AUPRCs ranged from 

0.71-0.97 and 0.06-0.78, respectively. Model performance in the external MSHS validation 

dataset across all 20 conditions is reported in Table 4. 

 

Testing across geographically distinct open-source datasets: Next, we assessed the performance 

of ECG-GPT across four publicly available ECG datasets, thus providing benchmarks for prior 
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and future models. These datasets had more limited coverage of diagnostic flags, with 6 

conditions spanning rhythm and conduction disorders available across these datasets (Table S5). 

We generated full diagnosis reports for these ECGs and evaluated performance on the available 

AF, ST, SB, LBBB, RBBB, and AVb conditions. This was done by extracting these labels from 

the ECG-GPT-generated diagnosis statements using the rule-based approach described above. 

The model’s diagnostic performance in each of these external validation sets is noted in Table 5. 

First, in a randomly selected sample of 1,000,000 ECGs from the previously described 

CODE15 dataset collected by the Telehealth Network of Minas Gerais (TNMG), Brazil, between 

2010 and 2017.7,25 Here, AUROCs for rhythm disorders were 0.93, 0.94, and 0.93 for AF, ST, 

and SB, respectively, with similar performance for conduction abnormalities (0.91, 0.95, and 

0.89, for LBBB, RBBB, AVb, respectively).  

When deployed to a smaller, cardiologist-validated dataset collected by TNMG in Brazil 

between April and September 2018, consisting of 827 ECGs manually annotated by two 

cardiologists with disputes resolved by a third,10 AUROCs were higher across nearly all 

diagnostic labels. The model reported AUROCs of 0.96, 0.96, and 0.91 for AF, ST, and SB, 

respectively. For LBBB, RBBB, and AVb, the model reported AUROCs of 0.97, 0.98, and 0.89, 

respectively. 

The third of these four open-source datasets consisted of 45,389 ECGs obtained from patients 

enrolled in the UK Biobank, a prospective study with protocolized testing in the community 

outside the context of clinical evaluation. Here, the model had AUROCs ranging from 0.92 to 

0.99 (Table 5), thus highlighting the reproducibility of our approach across clinical and non-

clinical settings.  
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Lastly, to better understand the generalizability of our tools across distinct temporal and 

geographical settings reflecting different acquisition systems, we also evaluated ECG-GPT in the 

Germany-based PTB-XL dataset, which consists of 21,784 ECGs obtained between 1989 and 

1996.26 Here, ECG-GPT maintained robust performance, with AUROCs of 0.94, 0.96, and 0.86 

for AF, ST, and SB, respectively, and 0.98, 0.99 and 0.85 for LBBB, RBBB, and AVb 

respectively. 

 

External Validation Using Real-World ECG Images: Finally, to further illustrate the robustness 

of ECG-GPT against real-world images, we further report its performance in a real-world dataset 

of 64 ECG images collected at the Lake Regional Hospital (LRH) system in Missouri. In these 

ECGs, the model had AUROCs of 0.99, 0.90, and 0.79 for AF, ST, and SB, respectively. For 

LBBB, RBBB, and AVb, the model reported AUROCs of 1.00, 1.00, and 0.87, respectively.  

 

ECG-GPT as a web-based tool: To demonstrate the potential utility of a platform capable of 

receiving ECG images and generating reports, ECG-GPT is publicly available through an online, 

interactive platform. This web-based application is for research use (https://www.cards-

lab.org/ecg-gpt) - it demonstrates the potential use via incorporating quality control on uploaded 

ECGs (based on a prior approach, see Methods for details),11 and generating full-text reports. 

 

DISCUSSION 

We describe the development and external validation of ECG-GPT, a first-of-its-kind AI pipeline 

that enables the direct generation of automated, complete diagnosis statements from images of 

ECGs in any format. The model performs well against clinician-certified reports across various 
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natural language generation metrics and diagnostic labels spanning a wide array of conduction, 

rhythm, and structural heart disorders. The model's scalability is further supported by its robust 

performance across a range of demographically, temporally, and geographically distinct cohorts, 

its online deployment, and the capacity to containerize and deploy the model without sharing 

data in a federated approach. 

Our work on format-independent, image-based ECG captioning represents a novel 

development for vision-text machine learning models. Our model significantly outperforms prior 

implementations for generating free-text reports from ECG signals, with CIDEr and METEOR 

scores of 4.69 and 0.75, respectively, compared with scores of 2.55 and 0.27, respectively, 

reported in a previous study suggesting high textual consistency between original and generated 

reports.24 Machine learning-based multilabel models have been previously developed to 

simultaneously diagnose large sets of conditions, but these approaches are inherently limited to 

those labels selected for training and do not capture the full diagnostic range of ECGs.7,10,27 

Moreover, the utility of such signal models is limited to healthcare systems with the resources to 

store signal data and incorporate models into the clinical workflow. We demonstrate consistent 

performance across a range of external validation sets for classifying key rhythm and conduction 

disorders. Of note, the performance for labels in external validation sets where specific labels 

were explicitly available matches the performance on those labels in prior published reports. The 

simplicity of this system, based on images, is that there is inherent interoperability and the 

absence of a requirement to integrate with ECG machines to extract signals. This approach is 

particularly advantageous in low-resource regions, where ECGs are currently not stored beyond 

printing ECG images at the time of acquisition.28 This approach also adds convenience, and 
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provides access in any venue, including, for example, to emergency medical services providers 

or in remote locations. 

ECG-GPT can be used directly by clinicians at the point of care by uploading ECG images 

from their phones or as scanned images to a web-based interface, with a demonstration 

accompanying this study.29 This applies anywhere that end-users may still lack access to 

automated reads or require interpretation before a specialist’s review. The image-based model 

can also be more easily integrated into repositories of scanned ECGs, the most prevalent and 

interoperable format for storing and sharing ECGs. Further, ECG-GPT has a unique combination 

of diagnostic accuracy and range, demonstrating expert-level performance for key conditions 

while also retaining the capability to generate statements for rare conditions frequently not 

captured by standard multi-label models. This feature could make ECG-GPT a tool for 

generating pre-reads and enabling more efficient triage globally in areas with insufficient access 

to specialists and computerized ECG interpretation algorithms. 

Our study has several limitations. First, while the model accurately diagnosed the selected 

conditions, it is impossible to determine and thus evaluate the performance for the full extent of 

possible diagnoses the model could output for a given ECG image due to the size and variety of 

the corpus of diagnosis statements used for model development. However, we report model 

performance across various rhythm and conduction disorders of varying severity and prevalence, 

suggesting that ECG-GPT’s performance generalizes to other conditions. Moreover, using the 

federated approach implemented for external validation, ECG-GPT could be continually fine-

tuned to improve performance in individual healthcare systems. This would ensure a reliable 

pipeline with consistent performance for future ECGs within the specific patient populations in 

which the model is deployed. Second, while four different formats were used during model 
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development, we cannot ascertain whether the model generalizes equally well to every other 

novel ECG image format. However, the model’s performance within the dataset from LRH, 

consisting of ECG images plotted in a distinct configuration from those used in model 

development, indicates the model can generate accurate diagnosis statements for ECGs in 

formats not seen during training. Finally, though strictly expert-validated diagnosis statements 

were used to develop the model, these statements are not always completely accurate, limiting 

the model's performance. As evidenced by the high diagnostic accuracy of the model in the 

external set of ECGs manually annotated by two cardiologists, the model may perform better if 

developed and evaluated in more rigorously validated diagnosis statements. Furthermore, the 

current practice of clinicians over-reading the computer-generated reads and correcting them 

without version control precludes the head-to-head assessment of ECG-GPT against computer-

generated reads. However, the higher performance in labels assigned by more than one expert 

suggests that it likely performs at or above the performance of the current computerized reads at 

the US health systems, especially for the tested diagnoses. 

 Thus, we have developed and extensively validated a novel vision-text transformer 

capable of generating complete diagnostic statements from ECG images in any lead layout and 

configuration. Our approach represents a scalable and accessible strategy for generating accurate, 

expert-level reports from photos of ECGs, enabling accurate ECG interpretation anywhere that 

an ECG image, paper or digital, can be produced.  
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METHODS 

The study was reviewed by the Yale Institutional Review Board, which approved the study 

protocol and waived the need for informed consent as the study represents secondary analysis of 

existing data. The development dataset from Yale and the validation datasets from Mount Sinai 

and Lake Regional Hospital are not publicly available, given the stipulations of the relevant 

Institutional Review Boards. The external datasets from Brazil, UK Biobank, and PTB-XL are 

available directly from the respective groups and are outside the purview of the authors. 

 

Vision-Encoder Decoder Model Architecture 

We built a custom Vision Encoder-Decoder model using the HuggingFace framework.30 For the 

image encoder, we selected a BEiT transformer model, pretrained on the ImageNet dataset,31 due 

to its robust performance on the ImageNet-1K benchmark, relatively few trainable parameters 

compared to other state-of-the-art models, and the 384x384 pixel input size.13 We selected the 

base-size version of the model, with ~84 million trainable parameters, which takes a linearly 

embedded sequence of 16x16 pixel patches as the input. 

We selected the Generative Pretrained Transfomer-2 (GPT-2) transformer for the text 

decoder, initially developed for prompt-based text generation. This architecture, which contains 

~124 million parameters, decoded the lower-dimensional representations generated from images 

by the BEiT encoder into diagnosis statements with a maximum output token length of 115 

tokens. In addition to the lightweight nature of the model relative to other large language models 

capable of text generation, the extensive pretraining of the GPT2 decoder enabled direct 

integration into the vision-text transformer architecture without further fine-tuning. 
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Overall, the composed Vision Encoder-Decoder model, consisting of the BEiT encoder and 

GPT-2 decoder, has over 239 million trainable parameters (Figure 2). The model was trained at 

a learning rate of 5 x 10-5 for 20 epochs. We used the Adam optimizer, a minibatch size of 14, 

and a cross-entropy loss function to minimize the error between the GPT2 output and the 

tokenized reference diagnostic statements to train the model.32 Model development used the 

HuggingFace Transformers 4.28.1 framework with PyTorch 2.0.0 and Python 3.11.3 on four 

RTX 3090 graphics processing units. 

 

Model Development 

Data Source: Raw voltage data was collected for all 12-lead ECGs with corresponding diagnosis 

statements obtained at the YNHHS during 2000-2021. Each ECG was recorded with a sampling 

frequency of 500 Hz using Philips PageWriter and GE MAC machines. The subset of these 

ECGs with continuous recording across all 12 leads was then split at the patient level into 

training, validation, and test sets (85%, 5%, 10%). For each of these sets, we restricted to ECGs 

with no marked abnormalities and abnormal ECGs with confirmed reports certified by a 

cardiologist. An exception to this was ECGs with STEMI, since ECGs for STEMI are done in 

the emergency setting, interpreted at the point-of-care, and may not be listed as a confirmed read 

in the system. In the training set, 150,921 ECGs with no marked abnormalities were randomly 

removed to match the prevalence of such ECGs in the original cohort (13.6%) (Figure S2). 

 

Signal Preprocessing: First, all ECGs that did not contain 10 seconds of continuous recording 

across all 12 leads were excluded. To enable the generation of ECG images like those used in 

clinical settings, we further preprocessed the signal before plotting. For this, we subtracted a one-
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second median filter from the original raw voltage for each lead of 10-second ECGs to remove 

baseline wander, mirroring the approach undertaken by ECG machines before printing clinical 

ECGs available to and interpreted by physicians. 

All ECGs obtained in the YNHHS were plotted at their original sampling rate of 500 Hz. 

ECGs used for external validation, which were recorded at sampling frequencies between 300-

600 Hz, were down sampled to 300 Hz before plotting, as described previously.10 

 

ECG Image Generation: The preprocessed ECG signals were transformed into ECG images at 

100 dots per inch (DPI) using the python library ecg-plot.33 We employed multiple strategies to 

ensure the robustness of the model. 

First, we converted each signal waveform to multiple images using four different layouts of 

the leads to account for different schemes of real-world ECGs. To ensure the model is resilient to 

these different formats, it was trained using all these variations of ECG images, an approach we 

previously developed and validated.10  The four formats used in model development (Figure 1) 

included (1) The standard printed ECG format in the US with lead I as the rhythm strip. This 

format consists of four 2.5-second sequential columns, each containing a 2.5-second strip from 

three leads. (2) The same as the standard US format that includes an additional rhythm strip from 

lead II. (3) An alternate format with no rhythm strip comprising two 5-second columns. The first 

column represents a simultaneous recording from limb leads, while the second column represents 

a simultaneous recording from precordial leads. (4) A shuffled format in which precordial leads 

are recorded in the first two columns and limb leads are represented in the last two columns. 

Second, the conversion of ECG signals to images was done independently of the model 

development to ensure the model remains agnostic to preprocessing steps from ECG signals to 
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images. Third, all images were rotated by a random amount between -10 to 10 degrees prior to 

training. Finally, we used Python Image Library (PIL v9.2.0) to convert all ECG images to 

greyscale and down-sample them to the required size for input into the model regardless of their 

initial resolution. 

 

Image Standardization for Model Inference: We have implemented a previously validated 

approach to standardize model inputs.11 First, inputs are limited to 12-lead ECG tracings which 

are vertically oriented, minimally rotated, have a uniform background, and do not have 

peripheral annotations. Additionally, to mitigate the effects of noise, a two-step preprocessing 

approach is applied to each image: first, the image is straightened and cropped to correct for 

rotations and to remove any elements outside of the ECG tracing. Second, the algorithm scales 

the brightness and contrast of the ECGs to the mean values of the development population before 

generating model predictions. ECGs with deviations in brightness and contrast 50% greater or 

lower than those seen in the development set are flagged as requiring the image to be recaptured 

in better quality before inference. 

 

Diagnostic Statement Preprocessing: Cardiologist-confirmed diagnosis statements were 

preprocessed to remove all identifying information using a rule-based approach. A string search 

was performed for all diagnostic statements to identify and remove names, references to previous 

ECGs, and all dates and times. The Python PyEnchant package was then used to generate a list 

of all abbreviations present in the processed diagnosis statements.34 A pair of clinical experts 

manually generated a dictionary containing each abbreviation and its expanded form for the 100 

most common abbreviations (Table S2). Each instance of these abbreviations in the diagnosis 
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statement was then replaced with its expansion. Additionally, the most common misspellings and 

all synonyms for a condition were replaced with a single term. This processed diagnosis 

statement was then used for model development and evaluation (Figure S1). 

 

Data Sources for External Validation 

Independent hospital-based system (Mount Sinai Health System): To further evaluate the 

ability to generalize to external data sources, five ECG signal datasets acquired outside the 

YNHHS were used to validate model performance. First, to externally assess ECG-GPT’s 

performance in free-text diagnostic statements, we deployed the model in a set of 1,434,455 

ECGs with corresponding diagnosis statements collected at the MSHS from 2013 to 2023. 

A federated approach was implemented to enable external validation within the MSHS. The 

model was containerized using Docker and securely deployed within the hospital's infrastructure. 

It accepted file paths as input, ensuring that patient data remained within the hospital's system 

without the need for external data sharing. This approach facilitated accurate prediction 

generation while safeguarding patient privacy. 

 

Geographically distinct open-source datasets: To further evaluate the model’s performance on 

six key rhythm and conduction disorders, including AF, ST, SB, LBBB, RBBB, and AVb, we 

deployed the model in four distinct open-source ECG datasets. First, we obtained 45,389 ECGs 

from the UK Biobank, under research application #71033, to pursue external validation of our 

model. UK Biobank represents the largest population-based cohort of 502,468 people in the 

United Kingdom with protocolized imaging, laboratory testing, and linked electronic health 

records.  
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We also used a set of 1,000,000 ECGs randomly sampled from the CODE15 study dataset, a 

set of 2,322,513 ECG recordings previously used for both signal- and image-based multilabel 

ECG classification models.7,10,25 As the primary CODE15 dataset consists of ECGs collected and 

annotated for six rhythm and conduction disorders by individual clinicians during routine care, 

we also deployed the model in a secondary cardiologist-validated dataset. This dataset contained 

827 additional ECGs collected in the Telehealth Network of Minas Gerais between April and 

September 2018.7,10 For each of these ECGs, annotations for the six rhythm and conduction 

disorders were made by two independent cardiologists following criteria from the American 

Heart Association,35 with disagreements resolved by a third cardiologist.  

Finally, the model was also validated on PTB-XL, a previously described dataset of ECGs.26 

This dataset contains 21,837 10-second, 12-lead recordings collected at 500 Hz from 18,885 

patients in Germany between 1989 and 1996. The records for each ECG, including diagnostic, 

form, and rhythm statements, were used to extract labels for the same set of rhythm and 

conduction disorders. 

 

Real-World ECG Images: We pursued external validation on a real-world ECG image dataset to 

evaluate the model’s performance when applied to ECG images plotted independent of our ECG 

preprocessing and plotting pipeline. This dataset consisted of 64 ECG images obtained at the 

LRH System in Osage Beach, MO.10 This dataset included 8-10 ECGs with each of the six 

rhythm and conduction disorders assessed with the other external validation datasets and ECGs 

labeled as normal. 

Though the layout of these ECGs was similar to the standard layout used for model 

development, there were multiple key distinctions. First, the V1 lead, instead of lead I, was the 
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rhythm lead. Second, the signal was black, as opposed to blue, and vertical lines were separating 

the leads. Additionally, there were variations in background and grid color, as well as in the 

position and font of the lead label. 

 

Model Evaluation 

Label extraction: Clinical labels for 20 conditions, spanning key rhythm and conduction 

disorders selected by two cardiologists, were extracted from each reference and model-generated 

diagnosis statement using a standardized string search approach. For each condition, basic string 

search was performed to extract each label using a set of strings (Table S3). A condition was 

flagged as positive if the diagnosis statement contained a full match for any string in the set. 

ECGs were flagged as negative if there was no match or if the match was preceded by a 

negation, including “no” or “without”. 

 

Semantic Similarity: To evaluate the semantic similarity between original and model-generated 

diagnosis statements, we fine-tuned a lightweight DistilBERT model,15,36 pretrained on a large 

corpus of electronic health record notes,16,17 in the same set of cardiologist-confirmed diagnosis 

statements used to train the vision-text transformer model. The training mirrored the standard 

approach for training masked language models, with a chunk size of 128 tokens and a masking 

probability of 0.15. The model was trained at a 2 x 10-5 learning rate until validation loss did not 

improve for three consecutive epochs. We used the Adam optimizer, a minibatch size of 16, and 

a cross-entropy loss function to minimize the error between the masked and generated tokens to 

train the model.32 Model development used the HuggingFace Transformers 4.28.1 framework 

with Torch 2.0.0 and Python 3.11.3 on four RTX 3090 graphics processing units. 
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After fine-tuning, we deployed the masked language model in the held-out test set and the 

MSHS external validation set to generate 768-dimensional embeddings for each reference and 

model-generated diagnosis statement. We used an identical federated approach to the model-

generated statements to generate embeddings for the diagnosis statements within the MSHS. 

Pairwise similarity was computed as the median cosine similarity between the embeddings for 

each reference diagnosis statement and its paired model-generated statement. Baseline similarity 

was computed as the median cosine similarity between the embeddings for 100,000 random 

pairings of reference and model-generated statements. 

To assess the model’s ability to diagnose specific conditions within their complete clinical 

context, we created subsets for each of the 20 diagnostic labels identified from the reference 

statements, consisting of all ECGs marked positive for that condition. Pairwise and baseline 

similarity were computed identically to the approach used for the complete datasets. For subsets 

too small to generate 100,000 random pairings, the baseline similarity was reported as the 

median cosine similarity between embeddings for all possible reference and model-generated 

statement pairings within the subset. 

 

Syntactic Similarity: Four conventional NLG metrics assessed the syntactic similarity between 

the original diagnosis reports and generated text. ROUGE and BLEU, which range from 0 to 1, 

evaluate recall and precision, respectively, for the overlap of n-grams between generated and 

reference statements, providing insight into content overlap and coherence.18,19 METEOR, which 

ranges from 0 to 1, incorporates both syntactic and semantic similarity by aligning word stems 

and synonyms, enabling an evaluation of content relevance in addition to word overlap.20 

Finally, CIDEr, which ranges from 0 to 5, measures consensus between generated text and 
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reference summaries through similarity to human consensus, enhancing evaluation robustness 

across various linguistic styles.21 Collectively, these metrics offer a comprehensive assessment of 

the syntactic similarity between original diagnosis statements and model-generated statements. 

Each of these metrics was deployed in both the internal held-out test set using the HuggingFace 

Evaluate package for computing ROUGE, BLEU, and METEOR scores and the COCO Caption 

Evaluation package for computing CIDEr scores, respectively.37,38 

 

Structured Label Assessment: We also implemented a secondary analysis of model performance 

using the 20 extracted labels. For each reference and model-generated statement, we computed 

agreement between the statements for each of the 20 rhythm and conduction disorders.  

The open-source datasets, which each contained reference labels for AF, ST, SB, RBBB, LBBB, 

and AVb, were compared to labels extracted from the model-generated diagnosis statements for 

these ECGs. 

We used the area under the receiver operating characteristic (AUROC) to measure model 

discrimination. 95% confidence intervals for AUROC were calculated using DeLong’s 

algorithm.39,40 We also assessed the area under precision-recall curve (AUPRC), accuracy, 

sensitivity, specificity, F1 score, positive predictive value (PPV), and negative predictive value 

(NPV). We employed the bootstrap resampling method to estimate confidence intervals for 

AUPRC.41 

 

Statistical Analysis 

Summary statistics are presented as counts and percentages for categorical elements and median 

and interquartile range (IQR) for continuous elements. A paired t-test was used to compute the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302976doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.17.24302976
http://creativecommons.org/licenses/by-nc/4.0/


 

probability of overlap between the pairwise and baseline cosine similarity of reference and 

model-generated statements. All analyses were performed using Python 3.11.3, and the 

significance level was set at an alpha of 0.05. 
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Figure 1. Overview of ECG-GPT’s development and evaluation.  
Abbreviations: ECG, electrocardiogram; BEiT, Bidirectional Encoder representation from Image 
Transformers; GPT-2, Generative Pretrained Transformer-2. 
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Figure 2. Vision Encoder-Decoder Model Architecture and Sample ECG-GPT Output 
Diagnosis Statement. Abbreviations: ECG, electrocardiogram; BEiT, Bidirectional Encoder 
representation from Image Transformers; GPT-2, Generative Pretrained Transformer-2. 
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Table 1. Pairwise and baseline similarity between reference and model-generated diagnosis 
statements in the held-out test set. Abbreviations: AF, atrial fibrillation; ST, sinus tachycardia; 
SB, sinus bradycardia; LBBB, left bundle branch block; RBBB, right bundle branch block; AVb, 
atrioventricular block; LAFB, left anterior fascicular block; LPFB, left posterior fascicular block; 
SVT, supraventricular tachycardia; PAC, premature atrial complexes; PVC, premature 
ventricular complexes; LAE, left atrial enlargement; LVH, left ventricular hypertrophy; MI, 
myocardial infarction. 
 

 
 
  

Labels Pairwise Similarity (IQR) Baseline Similarity (IQR) P-Value 
Normal Sinus Rhythm 0.923 (0.855-0.987) 0.783 (0.735-0.833) <0.001 
AF 0.908 (0.834-1.000) 0.803 (0.738-0.858) <0.001 
Atrial Flutter 0.937 (0.877-1.000) 0.809 (0.759-0.858) <0.001 
ST 0.872 (0.792-0.949) 0.758 (0.673-0.861) <0.001 
SB 0.925 (0.857-0.988) 0.797 (0.730-0.859) <0.001 
Sinus Arrhythmia 0.903 (0.816-0.952) 0.822 (0.741-0.872) <0.001 
LBBB 0.847 (0.783-0.896) 0.743 (0.669-0.799) <0.001 
RBBB 0.917 (0.846-0.973) 0.756 (0.697-0.815) <0.001 
AVb 0.912 (0.839-1.000) 0.753 (0.694-0.811) <0.001 
LAFB 0.956 (0.870-1.000) 0.791 (0.734-0.847) <0.001 
LPFB 0.885 (0.807-0.959) 0.750 (0.695-0.811) <0.001 
SVT 0.915 (0.842-0.972) 0.754 (0.690-0.812) <0.001 
PAC 0.912 (0.843-0.958) 0.765 (0.696-0.823) <0.001 
PVC 0.957 (0.894-1.000) 0.837 (0.758-0.896) <0.001 
LAE 0.932 (0.867-0.980) 0.775 (0.703-0.841) <0.001 
LVH 0.881 (0.795-0.951) 0.749 (0.687-0.808) <0.001 
Low Voltage 0.930 (0.871-0.981) 0.793 (0.743-0.843) <0.001 
Left Axis Deviation 0.939 (0.881-1.000) 0.821 (0.762-0.873) <0.001 
Acute MI 0.867 (0.782-0.896) 0.757 (0.669-0.845) <0.001 
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Table 2. Clinical assessment of model-generated diagnosis statements in the held-out test 
set. Abbreviations: PPV, Positive Predictive Value; NPV, Negative Predictive Value; AUROC, 
area under the receiver operator characteristic; AUPRC, area under precision-recall curve; AF, 
atrial fibrillation; ST, sinus tachycardia; SB, sinus bradycardia; LBBB, left bundle branch block; 
RBBB, right bundle branch block; AVb, atrioventricular block; LAFB, left anterior fascicular 
block; LPFB, left posterior fascicular block; SVT, supraventricular tachycardia; PAC, premature 
atrial complexes; PVC, premature ventricular complexes; LAE, left atrial enlargement; LVH, left 
ventricular hypertrophy; MI, myocardial infarction. 
 

 
 
 
  

Labels Accuracy PPV NPV Specificity Sensitivity AUROC AUPRC F1 
Normal Sinus Rhythm 0.964 0.973 0.941 0.930 0.977 0.954 (0.953-0.955) 0.967 (0.966-0.968) 0.975 
AF 0.986 0.912 0.992 0.992 0.911 0.952 (0.949-0.954) 0.839 (0.832-0.846) 0.912 
Atrial Flutter 0.989 0.686 0.994 0.994 0.692 0.843 (0.834-0.852) 0.480 (0.459-0.499) 0.689 
ST 0.991 0.929 0.995 0.995 0.936 0.965 (0.963-0.968) 0.873 (0.868-0.881) 0.932 
SB 0.989 0.906 0.993 0.995 0.876 0.935 (0.932-0.939) 0.799 (0.789-0.808) 0.890 
Sinus Arrhythmia 0.983 0.568 0.996 0.987 0.797 0.892 (0.885-0.899) 0.457 (0.443-0.472) 0.664 
LBBB 0.992 0.877 0.995 0.997 0.829 0.913 (0.907-0.919) 0.732 (0.717-0.745) 0.852 
RBBB 0.990 0.921 0.995 0.995 0.922 0.958 (0.956-0.961) 0.854 (0.847-0.861) 0.922 
AVb 0.960 0.710 0.983 0.974 0.786 0.880 (0.876-0.884) 0.574 (0.564-0.582) 0.746 
2nd/3rd degree AVb 0.998 0.403 0.999 0.998 0.634 0.816 (0.789-0.847) 0.256 (0.204-0.305) 0.493 
LAFB 0.977 0.733 0.990 0.987 0.780 0.883 (0.878-0.888) 0.581 (0.569-0.594) 0.756 
LPFB 0.994 0.372 0.999 0.995 0.794 0.894 (0.878-0.911) 0.296 (0.268-0.323) 0.507 
SVT 0.994 0.358 0.999 0.995 0.740 0.868 (0.849-0.887) 0.266 (0.244-0.297) 0.483 
PAC 0.979 0.761 0.988 0.989 0.746 0.868 (0.862-0.873) 0.579 (0.564-0.591) 0.753 
PVC 0.983 0.836 0.991 0.991 0.834 0.913 (0.908-0.917) 0.706 (0.696-0.718) 0.835 
LAE 0.934 0.636 0.968 0.959 0.691 0.825 (0.821-0.829) 0.469 (0.461-0.477) 0.662 
LVH 0.954 0.716 0.984 0.965 0.852 0.908 (0.905-0.911) 0.624 (0.617-0.631) 0.778 
Low Voltage 0.950 0.622 0.985 0.962 0.808 0.885 (0.881-0.889) 0.516 (0.507-0.525) 0.703 
Left Axis Deviation 0.948 0.651 0.978 0.966 0.747 0.856 (0.852-0.860) 0.506 (0.498-0.516) 0.696 
Acute MI 0.991 0.271 0.998 0.993 0.629 0.811 (0.792-0.830) 0.172 (0.151-0.191) 0.379 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302976doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.17.24302976
http://creativecommons.org/licenses/by-nc/4.0/


 

Table 3. Pairwise and baseline similarity between reference and model-generated diagnosis 
statements in the Mount Sinai Health System. Abbreviations: AF, atrial fibrillation; ST, sinus 
tachycardia; SB, sinus bradycardia; LBBB, left bundle branch block; RBBB, right bundle branch 
block; AVb, atrioventricular block; LAFB, left anterior fascicular block; LPFB, left posterior 
fascicular block; SVT, supraventricular tachycardia; PAC, premature atrial complexes; PVC, 
premature ventricular complexes; LAE, left atrial enlargement; LVH, left ventricular 
hypertrophy; MI, myocardial infarction. 
 

 
 
 
  

Labels Pairwise Similarity Baseline Similarity P-Value 

Normal Sinus Rhythm 0.854 (0.785-0.911) 0.747 (0.674-0.810) <0.001 
AF 0.882 (0.807-0.945) 0.787 (0.731-0.841) <0.001 
Atrial Flutter 0.834 (0.755-0.900) 0.767 (0.707-0.822) <0.001 
ST 0.828 (0.754-0.894) 0.748 (0.684-0.806) <0.001 
SB 0.888 (0.819-0.960) 0.786 (0.728-0.837) <0.001 
Sinus Arrhythmia 0.919 (0.849-0.963) 0.843 (0.774-0.896) <0.001 
LBBB 0.927 (0.821-0.993) 0.818 (0.749-0.874) <0.001 
RBBB 0.897 (0.838-0.941) 0.803 (0.755-0.848) <0.001 
AVb 0.898 (0.829-0.947) 0.794 (0.728-0.851) <0.001 
LAFB 0.901 (0.846-0.939) 0.804 (0.752-0.850) <0.001 
LPFB 0.867 (0.794-0.917) 0.777 (0.720-0.828) <0.001 
SVT 0.804 (0.742-0.851) 0.763 (0.705-0.811) <0.001 
PAC 0.868 (0.793-0.925) 0.782 (0.720-0.835) <0.001 
PVC 0.886 (0.810-0.937) 0.806 (0.739-0.856) <0.001 
LAE 0.914 (0.846-0.958) 0.821 (0.760-0.871) <0.001 
LVH 0.883 (0.817-0.942) 0.805 (0.740-0.857) <0.001 
Low Voltage 0.832 (0.742-0.902) 0.731 (0.657-0.801) <0.001 
Left Axis Deviation 0.878 (0.811-0.930) 0.772 (0.711-0.824) <0.001 
Acute MI 0.787 (0.713-0.871) 0.752 (0.681-0.827) <0.001 
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Table 4. Clinical assessment of model-generated diagnosis statements in the Mount Sinai 
Health System. Abbreviations: PPV, Positive Predictive Value; NPV, Negative Predictive 
Value; AUROC, area under the receiver operator characteristic; AUPRC, area under precision-
recall curve; AF, atrial fibrillation; ST, sinus tachycardia; SB, sinus bradycardia; LBBB, left 
bundle branch block; RBBB, right bundle branch block; AVb, atrioventricular block; LAFB, left 
anterior fascicular block; LPFB, left posterior fascicular block; SVT, supraventricular 
tachycardia; PAC, premature atrial complexes; PVC, premature ventricular complexes; LAE, left 
atrial enlargement; LVH, left ventricular hypertrophy; MI, myocardial infarction. 
 
 

  

Labels Accuracy PPV NPV Specificity Sensitivity AUROC AUPRC F1 
Normal Sinus Rhythm 0.926 0.951 0.877 0.902 0.938 0.920 (0.919-0.920) 0.933 (0.933-0.933) 0.944 
AF 0.982 0.903 0.988 0.993 0.846 0.919 (0.918-0.921) 0.776 (0.773-0.778) 0.874 
Atrial Flutter 0.987 0.599 0.994 0.993 0.651 0.822 (0.819-0.825) 0.396 (0.389-0.401) 0.624 
ST 0.974 0.937 0.978 0.993 0.813 0.903 (0.902-0.904) 0.782 (0.780-0.784) 0.871 
SB 0.961 0.771 0.991 0.965 0.934 0.950 (0.949-0.950) 0.728 (0.726-0.730) 0.845 
Sinus Arrhythmia 0.960 0.534 0.989 0.968 0.774 0.871 (0.869-0.873) 0.423 (0.402-0.426) 0.632 
LBBB 0.989 0.714 0.998 0.991 0.915 0.953 (0.951-0.954) 0.656 (0.651-0.660) 0.802 
RBBB 0.983 0.818 0.997 0.985 0.955 0.970 (0.969-0.971) 0.784 (0.782-0.787) 0.881 
AVb 0.945 0.592 0.987 0.954 0.838 0.896 (0.895-0.897) 0.508 (0.505-0.511) 0.694 
2nd/3rd degree AVb 0.994 0.266 0.999 0.995 0.640 0.818 (0.810-0.825) 0.171 (0.164-0.180) 0.376 
LAFB 0.970 0.589 0.985 0.984 0.615 0.799 (0.797-0.802) 0.376 (0.372-0.380) 0.602 
LPFB 0.987 0.140 0.998 0.989 0.429 0.709 (0.703-0.715) 0.062 (0.059-0.066) 0.211 
SVT 0.991 0.232 0.999 0.992 0.692 0.842 (0.836-0.849) 0.161 (0.155-0.169) 0.347 
PAC 0.964 0.751 0.975 0.987 0.614 0.800 (0.799-0.802) 0.484 (0.481-0.488) 0.675 
PVC 0.976 0.761 0.987 0.987 0.758 0.873 (0.871-0.874) 0.589 (0.585-0.593) 0.759 
LAE 0.693 0.233 0.993 0.665 0.953 0.809 (0.809-0.810) 0.227 (0.226-0.228) 0.375 
LVH 0.914 0.637 0.965 0.936 0.765 0.850 (0.850-0.852) 0.517 (0.515-0.519) 0.695 
Low Voltage 0.954 0.900 0.955 0.999 0.221 0.610 (0.608-0.611) 0.243 (0.241-0.246) 0.355 
Left Axis Deviation 0.930 0.717 0.942 0.983 0.412 0.698 (0.696-0.699) 0.351 (0.348-0.353) 0.524 
Acute MI 0.953 0.126 0.997 0.956 0.674 0.815 (0.811-0.819) 0.088 (0.086-0.090) 0.213 
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Table 5. Clinical assessment of model-generated diagnosis statements on external 
validation sets. Abbreviations: ECG, electrocardiogram; PPV, Positive Predictive Value; NPV, 
Negative Predictive Value; Spec, specificity; Sens, sensitivity; AUROC, area under the receiver 
operator characteristic; AUPRC, area under precision-recall curve. AFIB, atrial fibrillation; ST, 
sinus tachycardia; SB, sinus bradycardia; LBBB, left bundle branch block; RBBB, right bundle 
branch block; AVb, atrioventricular block. 
 

  Labels Accuracy PPV NPV Specificity Sensitivity AUROC AUPRC F1 

Cardiologist 
Validated 
CODE15 

AF 0.995 0.800 0.999 0.996 0.923 0.960 (0.884-1) 0.740 (0.528-0.930) 0.857 
ST 0.990 0.872 0.996 0.994 0.919 0.956 (0.912-1) 0.805 (0.657-0.917) 0.895 
SB 0.886 0.139 0.999 0.885 0.938 0.911 (0.849-0.974) 0.131 (0.067-0.197) 0.242 

LBBB 0.996 0.966 0.997 0.999 0.933 0.966 (0.921-1) 0.904 (0.778-1) 0.949 
RBBB 0.992 0.846 0.999 0.992 0.971 0.982 (0.953-1) 0.822 (0.689-0.927) 0.904 
AVb 0.978 0.647 0.992 0.985 0.786 0.885 (0.808-0.963) 0.516 (0.329-0.713) 0.71 

CODE15 

AF 0.991 0.711 0.997 0.994 0.860 0.927 (0.924-0.929) 0.613 (0.607-0.620) 0.778 
ST 0.986 0.619 0.997 0.988 0.881 0.935 (0.933-0.937) 0.548 (0.542-0.553) 0.727 
SB 0.908 0.141 0.999 0.907 0.952 0.930 (0.928-0.931) 0.135 (0.133-0.137) 0.246 

LBBB 0.993 0.758 0.997 0.996 0.819 0.907 (0.904-0.910) 0.624 (0.615-0.632) 0.787 
RBBB 0.988 0.723 0.997 0.990 0.912 0.951 (0.949-0.953) 0.662 (0.658-0.666) 0.807 
AVb 0.971 0.326 0.997 0.974 0.815 0.894 (0.891-0.897) 0.268 (0.263-0.273) 0.465 

UK 
Biobank 

AF 0.998 0.961 0.998 0.999 0.896 0.948 (0.936-0.959) 0.862 (0.827-0.889) 0.927 
ST 0.999 0.743 1 0.999 0.848 0.924 (0.887-0.961) 0.630 (0.515-0.738) 0.792 
SB 0.953 0.680 0.995 0.953 0.952 0.952 (0.949-0.956) 0.651 (0.636-0.662) 0.793 

LBBB 0.998 0.851 1 0.998 0.990 0.994 (0.989-0.999) 0.842 (0.805-0.874) 0.915 
RBBB 0.993 0.755 1 0.994 0.984 0.989 (0.985-0.993) 0.743 (0.718-0.767) 0.854 
AVb 0.963 0.607 0.996 0.965 0.938 0.951 (0.946-0.956) 0.573 (0.557-0.589) 0.737 

PTB-XL 

AF 0.985 0.887 0.992 0.992 0.895 0.943 (0.936-0.951) 0.801 (0.783-0.820) 0.891 
ST 0.988 0.799 0.997 0.991 0.927 0.959 (0.950-0.968) 0.744 (0.716-0.772) 0.858 
SB 0.910 0.218 0.994 0.913 0.802 0.858 (0.842-0.873) 0.181 (0.167-0.196) 0.343 

LBBB 0.993 0.806 0.999 0.994 0.958 0.976 (0.967-0.985) 0.773 (0.740-0.811) 0.876 
RBBB 0.988 0.671 1 0.988 0.985 0.986 (0.981-0.992) 0.661 (0.631-0.692) 0.798 
AVb 0.941 0.354 0.990 0.948 0.759 0.853 (0.838-0.868) 0.277 (0.256-0.296) 0.482 

LRH 

AFIB 0.984 0.929 1 0.980 1 0.990 (0.971-1) 0.929 (0.750-1) 0.963 
ST 0.969 1 0.964 1 0.800 0.900 (0.769-1) 0.831 (0.618-1) 0.889 
SB 0.922 0.857 0.930 0.981 0.600 0.791 (0.630-0.952) 0.577 (0.300-0.849) 0.706 

LBBB 1 1 1 1 1 1 (1-1) 1 (1-1) 1 
RBBB 1 1 1 1 1 1 (1-1) 1 (1-1) 1 
AVb 0.906 0.692 0.961 0.925 0.818 0.871 (0.747-0.996) 0.598 (0.329-0.917) 0.75 

 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302976doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.17.24302976
http://creativecommons.org/licenses/by-nc/4.0/

