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Abstract

Preterm birth is associated with significant mortality and a risk for lifelong morbidity.
The complex multifactorial aetiology hampers accurate prediction and thus optimal
care. A pipeline consisting of bespoke machine learning methods for data imputation,
feature selection, and regression models to predict gestational age (GA) at birth was
developed and evaluated from comprehensive multi-modal morphological and functional
fetal MRI data from 176 control cases and 67 preterm birth cases. The GA at birth
predictions were classified into term and preterm categories and their accuracy,
sensitivity, and specificity were reported. An ablation study was performed to further
validate the design of the pipeline. The pipeline achieves an R2 score of 0.51 and a
mean absolute error of 2.22 weeks. It also achieves a 0.88 accuracy, 0.86 sensitivity, and
0.89 specificity, outperforming previous classification efforts in the literature. The
predominant features selected by the pipeline include cervical length and various
placental T2* values. The confluence of fast, motion-robust and multi-modal fetal MRI
techniques and machine learning prediction allowed the prediction of the gestation at
birth. This information is essential for any pregnancy. To the best of our knowledge,
preterm birth had only been addressed as a classification problem in the literature.
Therefore, this work provides a proof of concept. Future work will increase the cohort
size to allow for finer stratification within the preterm birth cohort.

Author summary

Preterm birth is defined as the birth of a baby before the 37th week of pregnancy. It
poses a serious risk to the life of a newborn and it is associated with a variety of severe
lifelong health problems. Currently, the causes of preterm birth are not completely
understood and therefore predicting when a baby will be born prematurely remains a
challenging problem. Fetal MRI is an imaging technique that can provide detailed
information about the development of the fetus and it is used to support the care of
pregnancies at high-risk of preterm birth. Our work combines machine learning
techniques with fetal MRI to predict gestational age at birth. The ability to predict this
information is crucial for providing adequate care and effective delivery planning. The
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main contribution of our study is demonstrating that it is possible to make use of all the
information obtained from fetal MRI to estimate the delivery date of a baby. To the
best of our knowledge, this is the first study to combine machine learning with such a
rich data set to produce these important predictions.

Introduction 1

Preterm birth is defined as a live birth before 37 completed weeks of gestation [1]. It is 2

estimated that every year 13.4 million babies are born prematurely, corresponding to a 3

global preterm rate of around 9.9% [2]. Prematurity is the leading cause of mortality 4

among children under 5 years accounting for 17.7% of the 5.3 million yearly deaths in 5

this age group [3]. Complications associated with preterm birth are also the leading 6

cause of neonatal mortality, accounting for 36% of these deaths [3]. The chances of 7

survival of preterm babies are directly related to their gestational age (GA) at birth, 8

with survival chances increasing from less than 18% for babies born at 22 weeks to over 9

95% for babies born at 29 weeks or later [4–6]. Despite advances in perinatal and 10

neonatal care [4–9] survival critically depends on every additional week in-utero. 11

A continuous rise in survival rate has not translated into a decrease of the short- or 12

long-term morbidity associated with preterm birth [8–10]. Short-term outcomes of 13

premature birth include infections, bronchopulmonary dysplasia, retinopathy, 14

necrotising enterocolitis, and brain disorders [11]. Long-term consequences include an 15

increased risk of neuropsychiatric disorders such as psychosis, neurodevelopmental 16

disabilities such as cerebral palsy and neuromotor dysfunction, adverse sensory 17

outcomes such as hearing and visual impairment, as well as disabilities encompassing 18

learning, cognition, and behaviour [10,12,13]. Similar to mortality rates, the incidence 19

and severity of short- and long-term consequences of preterm birth are inversely related 20

to GA at birth [11,14,15]. GA at birth is also correlated to social aspects later in life 21

such as income and education level [15]. 22

Reducing the incidence of preterm birth and the impact of its consequences would 23

not only alleviate the burden on individual patients and their families, but also on 24

entire healthcare systems, since the lifetime cost of preterm births in the USA (in 2016) 25

was estimated to be $25.2 billion [16]. Unsurprisingly, a review of the literature on the 26

economic consequences of preterm birth found a prevailing inverse relation between 27

economic costs and GA at birth, regardless of methodology, date, or country of 28

publication [17]. 29

Preterm birth is classified into three subcategories: extremely preterm (less than 28 30

weeks), very preterm (28 to 32 weeks), and late preterm (32 to 37 weeks) [1], with 31

further categorisation by clinical presentation: medically induced (or iatrogenic) and 32

spontaneous [18]. While maternal and fetal indicators for iatrogenic preterm birth are 33

well characterised and include conditions such as pre-eclampisa and fetal growth 34

restriction (associated with 30.1% of cases) [19,20], the aetiologies underlying 35

spontaneous preterm birth are complex, varied, and poorly understood [21]. Causes 36

include -but are not restricted to- infection or inflammation, vascular disease (leading to 37

uterine ischaemia), uterine overdistention, and cervical injury. The latter can be a 38

consequence of LLETZ procedures, cervical cone biopsies for abnormal smear tests, and 39

injuries resulting from emergency C-sections in previous pregnancies [19,22]. However, 40

definitive causes are registered for only 50% [23,24] of cases. As such, spontaneous 41

preterm birth should more broadly be considered a syndrome resulting from multiple 42

intricate causes [19,25]. 43

Despite this complexity, several risk factors have been identified [19,21,26] (see 44

Table 1) and are useful, both to provide insights and to help identify at-risk women. 45

The wide variety of factors thereby matches the aetiological complexity of preterm birth. 46
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Even within the same clinical subtype, some factors can have opposite effects. For 47

example, low maternal body mass index (BMI) is a risk factor for fetal growth 48

restriction but protective against preeclampsia, whereas these roles are reversed for 49

maternal obesity [27]. 50

Table 1. Most common risk factors for preterm birth [19,21,26].

Risk Factors for Preterm Birth.
African-American ethnicity
Depression
Family history of preterm birth
History of cervical excision
Infections (genitourinary or extragenital)
Low educational attainment
Low socio-economic status
Maternal age (low and high)
Maternal body mass index (low and high)
Multiple gestation (twins, triplets, etc)
Periodontal disease
Prior preterm birth
Stress
Stillbirth or induced abortion history
Tobacco use
Use of assisted reproductive technologies
Uterine anomalies

Currently there are three leading indicators used in clinical practice to identify 51

women at high risk. The strongest predictor is a history of previous preterm birth or 52

cervical surgery or injury (32% chance of recurrent preterm birth) [19,28]. The other 53

two biomarkers are mid-trimester cervical length below 25mm [28,29], measured via 54

vaginal ultrasonography; and the presence of more than 50ng/mL fetal fibronectin, a 55

glycoprotein usually absent in cervicovaginal fluid from 18 weeks of gestation and an 56

indicator of choriodecidual disruption. The absence of any of these factors suggests the 57

likelihood of delivering within the following 7 days is only around 1% [19,28]. These 58

factors have been combined within clinical practice to improve their predictive 59

capabilities [30, 31]. In other analyses, the combination of these predictors also reduced 60

the average cost of high-risk pregnancies. [32, 33]. 61

Another modality with good potential to investigate preterm birth is Magnetic 62

Resonance Imaging (MRI). Fetal MRI is used as a complementary modality to the 63

commonly used ultrasound screening due to its higher resolution, operator independence 64

and suitability for use on women with a higher BMI. It is also non-invasive with no 65

evidence indicating any risk to the fetus or mother [34–36]. Another key advantage of 66

MRI is that it offers multiple complementary contrasts that can support comprehensive 67

functional evaluation of fetal and maternal tissues [37]. Available contrasts include 68

T2-weighted anatomical imaging, T2* relaxometry (which provides an indirect measure 69

of oxygenation [38]), diffusion MRI (which can quantify alterations in tissue 70

microstructure [39–42]), flow measurements and T2 relaxometry. Past studies have 71

largely focused on individual organs such as investigating changes to lung [43], thymus 72

volumes [44], or assessing placental microstructure by measuring T2* and ADC 73

values [45]. One study measured umbilical vein T2 values as a potential marker of 74

intrauterine growth restriction [46]). 75

While predictive machine learning (ML) models have enjoyed an ever-increasing 76

popularity, preterm birth has only been addressed as a classification problem. Models 77

based on electronic health records, uterine electromyography and transvaginal 78
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ultrasound [47] reported accuracies of approximately 0.77 [48–50], while studies based 79

on electrohysterography reported values above 0.94 [51–53], with the latter, however, 80

only including records of women with recorded contractile activity [53,54]. 81

Machine learning applied to structural MR measurements has been successful at 82

predicting GA at the time of the scan during pregnancy. For example, Convolutional 83

Neural Networks trained on fetal brain MRI have been able to outperform current 84

clinical methods to estimate GA at the time of scan [55,56]. A different study managed 85

to obtain a mean absolute error of 6.1 days by developing bespoke features from 3D 86

ultrasound and using a regression forest for prediction [57]. 87

For this work, a stacking approach was chosen to predict GA at the time of birth. 88

Stacking is an ensembling technique that consists of combining the predictions of 89

individual base models by training a meta-model [58]. Stacking was introduced by 90

Wolpert in 1992 to improve the predictions and generalisability of individual 91

classification models [59]. In 1996 Breiman [60] showed that stacking was also suitable 92

for regression problems, while in 1999 Ting and Witten [61] generalised the technique 93

further by stacking three different types of base models and exploring different 94

meta-models than the ones used in previous work. Ensemble methods such as stacking 95

have the statistical advantage of reducing the risk of overfitting to the training data by 96

taking into account the predictions of all the base models, as well as the 97

representational advantage of expanding the space of available models by combining the 98

base models into meta-models [62]. 99

In recent years, stacking has been successful at various tasks such as genomic 100

prediction [63], protein interactions prediction [64], or prostate cancer detection [65]. 101

These works take advantage of more recent ML learning models, e.g., Yi et. al. [64] use 102

Support Vector Machines and XGBoost models as part of their base models, while 103

Wang et. al. explore using a Random Forest as their meta-model [65]. 104

The present study combines a uniquely rich MR data acquisition including both 105

anatomical and functional scans of multiple fetal organs, and multimodal MRI of the 106

placenta, with a ML pipeline based on stacking. To the best of our knowledge, this is 107

the first work to leverage the advantages of stacking methods together with a 108

comprehensive multi-modal data set to predict GA at birth. 109

Methods 110

This section contains a detailed outline of the development of the ML pipeline 111

introduced in this work. The pipeline was designed to address the challenges presented 112

by the data. These include: a large number of derived features relative to the number of 113

training examples, data imbalance, and missing data. These problems were addressed 114

through feature selection, balanced training, and feature imputation. Throughout the 115

development of the pipeline, different design options were investigated including 116

changing data threshold for imputation, and models for feature selection and regression. 117

The end product is a meta-model where predictions are stacked to obtain a final 118

predicted GA at birth. The last subsection describes an ablation study, which 119

investigates the impact of each component. Fig 1 illustrates the workflow of the project. 120

The reader is invited to refer to it repeatedly to complement the description that follows. 121

Fig 1. Schematic representation of the project pipeline. The boxes in a darker
shade denote steps of the pipeline where different design options were explored. The top
part of the figure shows the flow of the pipeline with fixed designed options, while the
bottom part explicitly indicates the different design choices available for each step.
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Data 122

The data set used for this work comprises clinical records, MR data, and parameters 123

manually extracted from ultrasound from 313 singleton pregnancies, acquired as part of 124

four ethically approved studies: 14/LO/1169 (Placenta Imaging Project, Fulham 125

Research Ethics Committee, approval received September 23, 2016), 19-SS-0032 126

(Inflammation study in pregnancy, South East Scotland Ethics Committee, approval 127

received March 7, 2019), 21/WA/0075 (Congenital Heart Imaging Programme, Wales 128

Research Ethics Committee, approval received March 8, 2021), and 21/SS/0082 129

(Individualised Risk prediction of adverse neonatal outcome in pregnancies that deliver 130

preterm using advanced MRI techniques and machine learning, South East Scotland 131

Ethics Committee, approval received March 2022). Informed consent was obtained in all 132

instances. 133

From the 313 cases originally considered, 59 cases were excluded as they were lacking 134

GA at delivery. We also removed 11 cases scanned after 37 weeks, since - in the context 135

of predicting preterm birth - these would bias training of the model. This resulted in a 136

final data set of 243 cases (see S1 Fig). 137

Recruitment for all the considered studies was opportunistic, with two studies 138

particularly recruiting women at high risk of preterm birth based on obstetric history, 139

ultrasound and biomarker findings. However, the stated difficulty in accurately 140

predicting preterm birth renders this task difficult, and as a result recruitment and thus 141

the data set available is biased towards term birth. 142

In all experiments data was split into train, validation, and test sets with an 8:1:1 143

ratio, keeping an equal proportion of term and preterm birth cases in each set. 144

Image Acquisition and Processing 145

Imaging protocols were similar for each study: MR scans were performed on a clinical 146

3T Philips Achieva scanner between 15 and 40 weeks of gestation using a 32-channel 147

cardiac coil (as is standard process for fetal imaging). For maternal comfort, padding 148

was provided, imaging time was limited to under 90 minutes, and there was frequent 149

verbal interaction and monitoring of heart rate and blood pressure. The protocol 150

included both anatomical T2-weighted imaging and functional MR sequences. For the 151

work presented here only T2* relaxometry among the functional sequences was used. 152

Anatomical information was acquired with a 2D multi-slice Turbo-Spin-Echo 153

sequence in four to ten planes covering the fetal brain and uterus. Next, to allow for 154

image-based shimming on the 3T scanner, a map of the B0 field was obtained; then 155

shimming was performed for the organ of interest. Afterwards, functional MRI of the 156

entire uterus was performed in coronal orientation using free-breathing multi-echo 157

Gradient Echo with Echo Planar read-out. 158

In addition to the MRI, two ultrasound scans were performed: an anomaly scan 159

(clinically performed between 19 and 21 weeks of gestation) and a second growth scan 160

(including Doppler ultrasound) that was generally performed within one week of the 161

MRI. In both cases, morphological measurements were manually extracted including 162

abdominal and head circumference, bi-parietal diameter (i.e. the cross-sectional 163

diameter of the skull), femur length, and expected weight. From the growth scan blood 164

flow pulsatility indices were also estimated for the umbilical, uterine and mid-cerebral 165

arteries. 166

The obtained MR images were processed to obtain quantitative values. For the 167

anatomical data, slice-to-volume reconstruction [66] and learning-based 168

segmentation [67] were applied separately for the brain, body and the placenta. Then 169

regional volumes were calculated. 170

From the functional data, no motion correction was applied, since all echos for each 171
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slice were acquired within 200ms. Using the method described in [45], quantitative T2* 172

values were obtained by fitting the signal of data from subsequent echo times for the 173

entire uterine field of view (FOV). Values over 300ms were clipped to limit partial 174

volume effects following common practise. Segmentation of the placenta, brain and 175

lungs was performed manually. From these segmentations, regional volumes were 176

calculated, as well as the mean, kurtosis, and skewness of their T2* distributions. These 177

data acquisition steps are represented by index 1 in Fig 1. 178

Summary of Derived Features 179

In addition to imaging derived features, demographics, obstetric and medical history of 180

the patients (including previous pregnancies, miscarriages and preterm births) were 181

recorded as well as any relevant information from the current pregnancy such as 182

diagnosis of pre-eclampsia, gestational diabetes, fetal growth restriction or any other 183

fetal or maternal pathology. Finally, the outcomes of the pregnancy were obtained, 184

including gestational age at birth, birth weight-centile and any occurrence of major 185

complications. Collectively the full set of features used by our models was summarised 186

as follows (see S1 Table for more details): 187

1. Clinical variables: e.g. number of previous preterm deliveries, and maternal 188

body mass index. 189

2. Structural MRI metrics: describing sizes of structures e.g. volumes of different 190

brain regions or bi-parietal diameter of the foetal head; these were extracted from 191

both the anatomical and functional scans 192

3. Functional MRI metrics: statistics derived from T2* distributions of the 193

placenta, brain and lungs. 194

4. Ultrasound metrics: from both anomaly and growth ultrasounds - manually 195

extracted by a trained sonographer e.g. the fetal head circumference, femur length. 196

Feature cleaning 197

Prior to training it was vital to address the confound effect of gestational age at scan, as 198

well as address the impact of missing data. 199

Deconfounding 200

While GA at scan is a feature that would normally be available in a clinical setting, its 201

impact on any learning model could lead to data leakage (e.g. by acting as a lower 202

bound for GA at delivery). Moreover, as all features change dramatically with 203

age [43,44,68,69], it is necessary to disentangle the dominant effect of GA from more 204

subtle signatures that might robustly predict preterm birth. For these reasons, GA was 205

linearly regressed from all features using the method of internally studentised 206

residuals [70]. See index 2 in Fig 1. 207

Data Imputation 208

There was significant heterogeneity in the availability of features across the data set. 209

Fetal and maternal motion, maternal discomfort, and clerical errors led to loss of data, 210

with different features available for each of the 243 cases. For this reason, a 211

regression-based approach to imputation, known as Multivariate imputation by chained 212

equations (MICE) [71], was investigated (see S1 Algorithm). Following guidance from 213

the literature, ten iterations of the model were performed [71,72], with two different 214
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regression models: weighted K-Nearest Neighbours (KNR) [73] and Random 215

Forests [74]. Both models were implemented in the standard way using Sci-kit 216

Learn [75]. Imputation should not be applied to features with arbitrarily large amounts 217

of missing data [72,76]. Thus the impact of discarding features with more than 30%, 218

40%, or 50% missing values was investigated (see S2 Table for the missing percentages 219

of each feature). Features with a greater percentage of missing values than the 220

respective threshold were discarded. All remaining features were normalised (mean 0, 221

std 1) afterwards. 222

Data imputation corresponds to index 3 in Fig 1. The boxes corresponding to this 223

step are emphasised by a darker shade to represent that different options were 224

investigated as part of the pipeline design process. The top part of the figure shows the 225

flow of the pipeline with fixed design choices (e.g. if the choice is made to investigate a 226

pipeline using a RF within the MICE algorithm to impute features with less than 40% 227

of missing data). Conversely, the bottom part of the figure explicitly indicates the 228

design choices that were investigated for this step. 229

Training 230

Training was performed using a stacking approach in which a number of different classes 231

of machine learning model were trained and these were ensembled together through the 232

training of a meta model [59]. Base models consisted of: Random Forests (RF) [74], 233

Support Vector Regression (SVR) [77], and XGBoost [78]. Each was chosen due to 234

unique strengths: RF are interpretable and robust to overfitting [79]; SVR are robust to 235

outliers and well-suited to small data sets [80,81]; XGBoost offers state-of-the-art 236

performance from sparse data sets [78]. Importantly they are all capable of capturing 237

non-linear relationships but approach regularisation in different ways [80]. This suggests 238

that they will perform differently on boundary cases, to produce diverse predictions that 239

could benefit from ensembling. 240

Since a key challenge of training models on our data set has been the high number of 241

features relative to examples (see S1 Table), feature selection was also performed to 242

discourage overfitting. Two simple models were explored: linear regression and Random 243

Forests. For each model trained, 10 features were selected. These two different design 244

options are indicated by the boxes with a darker shade with index 4 in Fig 1. 245

Models were trained using the Sci-kit learn framework [75], with hyperparameters 246

(see S3 Table) optimised using 3-fold cross-validated grid search [82]. The metric used 247

for optimisation was the coefficient of determination (R2) [83]. Given fixed design 248

choices on the previous steps, training was carried out every non-empty subset of the 249

selected features. Since there are 1023 non-empty subsets of the ten selected features 250

and 3 regression models, 3069 different regression models were trained in total (Index 5 251

in Fig 1). These were then composed via the training of a meta-model, for which two 252

different methods were explored: Linear Regression and Random Forests (index 6 in Fig 253

1). Meta-models were trained on the m best performing base models, as validated 254

through their R2 score on the validation set. The value of m was also optimised using 255

the validation set. 256

Ablation Study 257

An ablation study was conducted to validate the design of the proposed pipeline, with 258

results compared against the best performing meta-model. Since XGBoost models may 259

be trained with incomplete data, and without variance normalisation of the features 260

(since the base learners are decision trees) the first two experiments consist of a single 261

XGBoost model trained on unnormalised data. All experiments are described as follows: 262
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1. Out-of-the-box XGBoost: XGBoost without preprocessing. 263

2. XGBoost with deconfounding: one XGboost was trained after linear 264

deconfounding of features. 265

3. Imputation: all base predictive models were trained with deconfounding and 266

imputation (using the imputation approach used in the best meta-model), without 267

performing any upsampling or feature selection. 268

4. Correcting data imbalance: base models were trained with imputation and 269

upsampling preterm cases in the training set. 270

5. Combining feature selecting with upsampling: This equates to evaluating the best 271

performing base model, obtained without ensembling. 272

6. Meta-model without upsampling: the impact of upsampling in the whole pipeline 273

was explored by turning it off. This is equivelent to the final meta-model without 274

upsampling. 275

7. Meta-model: Reporting the performance of the proposed meta-model - obtained 276

from the whole pipeline. 277

Results 278

Data Exploration 279

Table 2 shows key demographics, clinical information, and outcomes, divided into 280

preterm and control cohorts. Specifically, the data set consisted of 176 control cases and 281

67 preterm cases. The distribution of the data according to the four temporal categories 282

was 72.4% term, 14.8% late preterm, 7% very preterm, and 5.8% extremely preterm. 283

Fig 2 shows the distribution of the five continuous features and outcomes included in 284

Table 2, namely GA at scan, maternal BMI at scan, maternal age, GA at birth, and 285

birth weight centile. The pairwise relationship between these is also plotted. For a 286

statistical summary of the data set see S2 Table. 287

Table 2. Key demographics, clinical information, and outcomes of participants.

Preterm birth cohort Control cohort
Current pregnancy

Gestational age at scan [weeks] 27.62±4.29 [16.86,34.14] 28.39±4.65 [15.00,36.86]
Maternal BMI at scan [kg/m2] 24.26±3.06 [18.31,32.05] 23.59±2.94 [18.21,32.46]
Maternal age at scan [years] 33.30±6.37 [18.82,47.17] 34.50±3.92 [24.43,45.13]

Obstetric history
Previous preterm birth 16.42% 8.52%

Outcome
Gestational age at birth 31.67±4.48 [20.14,36.86] 37±42.43 [39.53,1.32]
Birth weight centile 31.07±32.32 [0.00,95.53] 53.23±28.52 [0.82,99.77]
Fetal sex 54.69% female, 45.31% male 55.56% female, 44.44% male

Reported values are the mean ± SD in the case of continuous variables and percentages for discrete variables. The numbers in
brackets are ranges.

Fig 2. Data exploration. Distribution and pairwise relationship between GA at scan,
maternal BMI at scan, maternal age, GA at birth, and birth weight centile in the data
set.

February 6, 2024 8/24

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302791doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.17.24302791
http://creativecommons.org/licenses/by/4.0/


Meta-model 288

The best performing meta-model achieved an R2 score of 0.45 and a mean absolute eror 289

(MAE) of 2.55 weeks on the validation set. This performance was achieved using the 290

following settings in the pipeline. First, features with more than 50% missing values 291

were discarded. Then, features with 50% or less missing values were imputed using the 292

MICE algorithm with a KNR as its regression model and a RF was used for feature 293

selection. In order of importance, the selected features were: 294

1. Cervical length measured from the sagittal plane of MR scan. 295

2. Mean whole placental T2* value measured from the MR scan. 296

3. End-diastolic flow measured from the growth ultrasound. 297

4. T2* brain to placenta ratio measured from the MR scan. 298

5. Bi-parietal diameter measured from the anomaly ultrasound. 299

6. Placental T2* kurtosis value measured from the MR scan. 300

7. Fetal head circumference measured from the anomaly ultrasound. 301

8. Brain T2* kurtosis value measured from the MR scan. 302

9. Estimated fetal weight at growth ultrasound. 303

10. Whole brain T2* volume value measured from the MR scan. 304

Fig 3 a) shows the mean decrease in impurity corresponding to each of these features. 305

This is the metric used by Random Forests to assign importances to each feature [84]. 306

Fig 3. Feature importances and predictions of the meta-model. a) Feature
importance score of the 10 most important features used to train the base models in the
pipeline. b) Predictions made by the meta-model 50-KNR-RF on the test set, colourised
according to their true preterm temporal category.

After training RF, SVR, and XGBoost models with every non-empty subset of these 307

10 features, the 14 models with the highest R2 score on the validation set were used as 308

input for a RF meta-model. Specifically, the 14 base models that provided the features 309

used by the meta-model were all SVRs, trained with different subsets of the selected 310

features. In what follows, this meta-model will be referred to by abbreviating its 311

components, i.e. 50-KNR-RF. 312

The metrics used for evaluation on the test set were the R2 score and the mean 313

absolute error (MAE) measured in weeks. The cases were labeled as term (≥ 37 weeks) 314

or preterm (< 37 weeks), according to the GA predicted by the meta-model, and 315

accuracy, sensitivity, and specificity were also reported. On the test set 50-KNR-RF 316

achieved an R2 score of 0.51 and a MAE of 2.22 weeks. After labeling each subject as 317

term or preterm according to their predicted GA at birth, the meta-model achieved a 318

0.88 accuracy, 0.86 sensitivity, and 0.89 specificity. The predictions made by 319

50-KNR-RF on the test set are depicted in Fig. 3 b). It is worth noting that the model 320

only misclassified one of the preterm cases and two term ones. 321
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Ablation study 322

The performance of each of the models resulting from the experiments of the ablation 323

study is reported in Table 3. 50-KNR-RF outperformed every model in the ablation 324

study in every evaluation metric. The best performing model within the experiments 325

that consist of training different versions of the base models (experiments 3), 4), and 5)) 326

was a SVR, which coincides with the type of models used as features for 50-KNR-RF. 327

Table 3. Evaluation of the models in the ablation study.

Model R2 score MAE Accuracy Sensitivity Specificity
1) Out-of-the-box XGBoost -0.45 3.84 0.60 0.57 0.61
2) XGBoost with deconfounding -0.34 3.61 0.64 0.43 0.72
3) Imputation, RF 0.01 3.39 0.68 0.43 0.78
3) Imputation, SVR 0.29 2.66 0.80 0.86 0.78
3) Imputation, XGBoost 0.02 3.20 0.68 0.57 0.72
4) Correcting data imbalance, RF 0.10 3.16 0.60 0.57 0.61
4) Correcting data imbalance, SVR 0.34 2.75 0.76 0.86 0.72
4) Correcting data imbalance, XGBoost -0.28 3.67 0.52 0.43 0.56
5) Combining feature selecting with upsampling, SVR 0.15 3.48 0.72 0.86 0.67
6) Meta-model without upsampling, RF 0.03 2.68 0.72 0.43 0.83
7) Meta-model, 50-KNR-RF 0.51 2.22 0.88 0.86 0.89

Discussion 328

Comprehensive multi-modal fetal data and ML models combine synergistically to 329

predict GA at delivery. The developed pipeline acknowledges and addresses key 330

challenges such as imbalances and missing features in the data set, both of which are 331

common when investigating preterm birth. 332

As mentioned in the Introduction, preterm birth had so far only been addressed as a 333

classification problem. The pipeline constructed in this work attempts to make more 334

precise predictions by developing a regression model to predict GA at birth. In turn, 335

these predictions can be classified as term or preterm to compare the performance of 336

50-KNR-RF to other classification models in the literature. Table 4 shows a comparison 337

between 50-KNR-RF and the best performing models obtained by other recent studies. 338

Out of the 5 models, 50-KNR-RF has the highest accuracy and specificity. The only 339

model that achieves a higher sensitivity than 50-KNR-RF is one of the models 340

developed by by Esty et al. [48]. However, the 0.93 sensitivity achieved by that model 341

comes with the trade-off of having an accuracy and specificity lower than 0.73. In 342

contrast, 50-KNR-RF achieved a score greater than 0.85 in every metric. 343

Table 4. Classification performance of the meta-model obtained by this work and other models from recent
studies.

Model
Metric

Accuracy Sensitivity Specificity

Esty et al. [48] 0.72 0.93 0.71

Esty et al. [48] 0.77 0.84 0.77

W lodarczyk et al. [49] 0.78 0.74 0.85

Prema et. al [50] 0.76 0.84 0.73

50-KNR-RF 0.88 0.86 0.89
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To the best of our knowledge, the only other study on predicting GA at delivery 344

using ML is the one by Heinsalu et al. [85], where they investigated models using a 345

simpler version of the pipeline displayed in this work. Their best performing model 346

achieves an R2 score of 0.66 and a MAE of 1.60, but their implementation suffers from 347

data leakage at the imputation stage which makes these results unreliable. Nevertheless, 348

the framework they established is valuable and served as the basis of the present work. 349

This study provides a proof of concept, but the clinical implementation of a reliable 350

model that could predict the timing of delivery would have important benefits. These 351

include ensuring women are transferred to appropriate neonatal care facilities. A timely 352

transfer helps reduce neonatal mortality and decrease costs [37]. Another crucial 353

example is the targeting of therapies to mitigate the effects of prematurity. Especifically, 354

cortiscosteroids administration can help reduce intra-ventricular haemorraghe and 355

promote lung maturity. The timing of this therapy is highly important, since it works 356

best when administered within a week before delivery, and repeated doses increase the 357

risk of adverse effects such as reduction in birthweight [86]. 358

The results of the ablation study in Table 3 are helpful to understand the 359

importance of every element of the pipeline. In experiments 1) and 2) it can be seen 360

that even though XGBoost has a built-in mechanism to be trained using data sets with 361

missing values, the results achieved with minimal preprocessing steps are among the 362

worst in the study. In experiments 3) and 4) RF, SVR, and XGBoost models were 363

trained using the data set obtained after imputation, without a feature selection 364

selection step, and using upsampling in the case of experiment 4). On average, results in 365

these experiments were better than in experiments 1) and 2) but upsampling did not 366

translate in a significant difference between experiments 3) and 4). Contrastingly, the 367

impact of upsampling in the whole pipeline can be appreciated by comparing the 368

meta-model obtained in experiment 5) and 50-KNR-RF. The only difference between 369

these two experiments is the use of upsampling during training. The sensitivity score of 370

0.43 obtained by the meta-model in experiment 5) evidences its inadequacy to address 371

data imbalance, while the 0.86 score achieved by 50-KNR-RF shows that upsampling is 372

effective in tackling this problem. Lastly, it can also be observed that 50-KNR-RF 373

generalises well, i.e. it is not overfitting. 50-KNR-RF achieves an R2 score of 0.4530 and 374

a MAE of 2.5489 weeks on the validation set and an R2 score of 0.5143 and a MAE of 375

2.2202 weeks on the test set. This is line with the literature, that suggests that 376

ensemble models tend to generalise well [59]. The reason why the SVR model in 377

experiment 6) has lower scores than its counterparts in experiments 3) and 4) in spite of 378

being the best model prior to the ensembling of 50-KNR-RF is because it is not 379

generalising well. It is the best performing model on the validation set, where it 380

achieves an R2 score of 0.4878 and a MAE of 2.6418 weeks, but its performance on the 381

test set is significantly worse. Combining the predictions of the 14 best models via 382

50-KNR-RF helps to solve this problem. 383

The features selected as the most important are in line with the literature. The 384

importance of cervical length as a predictor in clinical practice is reflected by its 385

consistent use in the models. Placental features obtained from MRI scans were other 386

prominent features, which is in line with the current understanding of the mechanisms 387

leading to iatrogenic preterm birth [45,87]. The most common clinical indicator, number 388

of previous preterm births, was not a predominant feature. This could be explained by 389

the decision of approaching the problem as a regression instead of a classification one. 390

While this data set could be considered large given the comprehensive data 391

acquisition, including a fetal MR scan in a cohort of women requiring a high level of 392

medical care, its size is an important limitation for ML methods. The few examples of 393

extremely preterm subjects available during training help explain the poor performance 394

on the test set for this category. Taking into account the performance of 50-KNR-RF in 395

February 6, 2024 11/24

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302791doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.17.24302791
http://creativecommons.org/licenses/by/4.0/


the validation and test sets, the meta-model seems to generalise well. However, the size 396

of the data set makes it hard to predict if the performance of the meta-model would 397

generalise to new data. 398

Another limitation is the lack of information on the clinical presentation of preterm 399

birth for every patient in the data set. Iatrogenic and spontaneous preterm births have 400

different aetiologies and training separate models for each case could not only yield 401

better predictions, but also help improve the understanding of each clinical presentation 402

by differentiating their most predictive features. Future work will focus on such 403

subgroups and on extracting relevant phenotypes associated with the different types of 404

preterm birth. 405

Data obtained on a 1.5T and a 0.55T scanner were available for this study. However, 406

these were not included as there is not a straightforward way to extrapolate the signals 407

acquired by scanners with different magnetic field strengths [88]. Future experiments 408

that include these types of data could test the adequacy of the elements of the pipeline, 409

such as the method of internally studentised residuals, to make accurate predictions 410

regardless of field strength. 411

There are other directions future research can take to expand or improve the 412

methodology presented in this work. The implementation of the models is ready to 413

benefit from larger or more complete data sets. Adding features known for their 414

predictive power, such as quantitative fibronectin measurements, could improve the 415

results. The performance of the meta-model demonstrates that structural and functional 416

information obtained from MRI can be used to predict GA at delivery. An interesting 417

direction is to make predictions directly from the images making use of deep learning 418

techniques, bypassing the problem of missing data and the need of time-consuming 419

measurements made by experienced clinicians. These techniques have been explored to 420

classify preterm and term patients by automatic measurements of cervical length from 421

transvaginal ultrasound [49] and to estimate GA at scan from fetal brain MRI [55,56]. 422

MRI remains an expensive modality, however, with an increasing use of fetal MRI, 423

the pipeline presented in this study helps to address a question essential for any 424

pregnancy, and can find an application regardless of the indication of the scan. One of 425

the fundamental contributions of this work is that it shows that fetal MR data acquired 426

as part of diagnostic care or research can be used to obtain useful predictions on the GA 427

at delivery, which in turn can inform the care provided to all pregnancies. 428
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Supporting information 444

S1 Table. Description of the features. Features and outcomes available in the 445

original data set. The first column is the name of the feature, the second column its 446

type (C = continuous, Cat = categorical, D = discrete), the third column provides a 447

short description, and the last column registers how each feature was acquired: clinical 448

background (CB), clinical outcome (CO), structural MRI (sMRI), functional MRI 449

(fMRI), growth ultrasound (GUS), and anomaly ultrasound (AUS). 450

Feature Type Description Origin
GA scan (tag ga) C GA of fetus at time of MR scan -

GA ROM (tag garom) C GA of fetus at time of rupture of the membranes CO
Cohort type (tag typ) Cat Cohort type CO

Scanner type (tag scanner) D 1.5 Tesla, 3 Tesla -
Age (tag age) C Maternal age CB
BMI (tag bmi) C Maternal body mass index CB
LOC (tag loc) D Placental location. GU

GA delivery (tag gadel) C Gestational age of fetus at delivery CO
MOD (tag mod) Cat Modality of the delivery i.e. C-section. CO
Sex (tag sex) Cat Sex of the fetus (Male, Female) CO

BWG (tag bwg) C Birth weight (grams) CO
BWC (tag bwc) C Birth weight centile CO

Parity (tag parity) D Number of previous pregnancies. CB
Parity (tag prev ptb) D Number of previous preterm births. CB

BPD (tag bpd) C Biparietal diameter of the fetal brain sMRI
BPD Cent (tag bpd cent) C Biparietal diameter centile of the fetus sMRI

TCD (tag ce tcd) C Transcerebral diameter of the fetus sMRI
TCD Cent (tag ce tcd cent) C Transcerebral diameter centile of the fetus sMRI

Post Hor Diam (tag post hor diam) C Diameter of the posterior horn of the fetus sMRI
VOL Body (tag vol body) C Volume of the fetus sMRI
Diabetes (tag diabetes) Cat Diagnosis of diabetes CB

HC (tag hc) C Fetal head circumference at birth CO
HC Cent (tag hcc) C Fetal head circumference centile at birth CO
CPTR (tag cptr) C T2* brain to placenta ratio fMRI

Anom Pi Left (tag anom pi left) C Pulsatility index of the left uterine artery AUS
Anom Pi Right (tag anom pi right) C Pulsatility index of the right uterine artery AUS

Anom GA (tag anom ga) C Gestational age at anomaly US AUS
Anom LOC (tag anom loc) D Placental location at anomaly US AUS
Anom Cord (tag anom cord) D Umbilical cord type at anomaly US AUS

Anom Cord Ins (tag anom cord ins) D Umbilical cord insertion at anomaly US AUS
Anom HC (tag anom hc) C Fetal head circumference at anomaly US AUS
Anom AC (tag anom ac) C Abdominal circumference at anomaly US AUS

Anom BPD (tag anom bpd) C Bi-parietal diameter at anomaly US AUS
Anom FL (tag anom fl) C Femur length at anomaly US GUS

GU GA (tag gu ga) C Gestational age at growth US GUS
GU HC (tag gu hc) C Head circumference at growth US GUS
GU AC (tag gu ac) C Abdominal circumference at growth US GUS

GU BPD (tag gu bpd) C Bi-parietal diameter at growth US GUS
GU FL (tag gu fl) C Femur length at growth US GUS
GU Pi (tag gu pi) C Pulsatility index of the umbilical vein GUS

GU EFW (tag gu efw) C Estimated foetal weight at growth US GUS
GU MCA PI (tag gu mca pi) C Pulsatility index of the mid-cerebral artery GUS

GU MCA PSV (tag gu mca psc) C Peak systolic velocity of the mid-cerebral artery GUS
GU MCA CPR (tag gu mca cpr) C Cerebroplacental ratio GUS

GU Notch (tag gu notch) C Notching present in the uterine artery GUS
GU Pi Left (tag gu pi left) C Pulsatility index of the left uterine artery GUS

GU Pi Right (tag gu pi right) C Pulsatility index of the right uterine artery GUS
GU EDF (tag gu edf) C End-diastolic flow GUS
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GU LOC (tag gu loc) D Placental location at growth US GUS
GU Cord (tag gu cord) D Umbilical cord type at growth US GUS

GU Cord Ins (tag gu cord ins) C Umbilical cord insertion at growth US GUS
APGAR5 (tag apgar5) C APGAR score at 5 minutes CO

Histo MVM (tag histo mvm) C Histopathology, maternal villi malperfusion CO
Histo FVM (tag histo fvm) C Histopathology, foetal villi malperfusion CO

Histo weight (tag histo weight) C Histopathology placental weight CO
Histo chorio (tag histo chorio) C Histopathology chorioamnionitis CO

SMOK (tag smok) D Maternal smoking status CB
IVF (tag ivf) D In vitro fertilisation (IVF) status CB

BWC delivery (tag del bwc) C Birth weight centile (Intergrowth21) at delivery CO
Plac T2* mean (plac t2s mean) C Mean whole placental T2* value fMRI

Plac T2* vol (plac t2s vol) C Whole placental T2* volume value fMRI
Plac T2* lacu (plac t2s lacu) C Placental T2* lacunarity fMRI
Plac T2* skew (plac t2s skew) C Placental T2* skewness fMRI
Plac T2* kurt (plac t2s kurt) C Placental T2* kurtosis fMRI

GU EFW Cent (tag gu efw cen) C Expected foetal weigth centile (Intergrowth21) GUS
Brain T2* mean (brain t2s mean) C Mean brain T2* value fMRI

Brain T2* vol (brain t2s vol) C Brain T2* volume value fMRI
Brain T2* lacu (brain t2s lacu) C Brain T2* lacunarity fMRI
Brain T2* skew (brain t2s skew) C Brain T2* skewness fMRI
Brain T2* kurt (brain t2s kurt) C Brain T2* kurtosis fMRI

T1 (t1 1) C Mean T1 from MRI fMRI
Cervical length (tag cervix length) C Cervical length from sagittal plane sMRI
Cross Study ID (tag complete id) C Anonymous Cross Study Identifier -

Volume eCSF left (eCSF L) C Volume eCSF left side sMRI
Volume eCSF right (eCSF L) C Volume eCSF right side sMRI

Left cortex (Cortex L) C Volume cortex left sMRI
Right cortex (Cortex L) C Volume cortex right sMRI

Left white matter (WM L) C White matter volume left sMRI
Right white matter (WM R) C White matter volume right sMRI

Left lateral ventricles (Lat ventricle L) C Lateral ventricles volume left sMRI
Right lateral ventricles (Lat ventricle R) C Lateral ventricles volume right sMRI

Csp volume (tag cervix length) C Cavum septi pellucidi volume sMRI
Brainstem volume (Brainstem) C Brainstem volume sMRI

Left cerebellum volume (Cerebellum L) C Cerebellum volume left sMRI
Right cerebellum volume (Cerebellum R) C Cerebellum volume right sMRI

Vermis volume (V ermis) C Vermis volume sMRI
Left lentiform volume (Lentiform L) C Lentiform volume left sMRI
Right lentiform volume (Lentiform R) C Lentiform volume right sMRI
Left thalamus volume (Thalamus L) C Thalamus volume left sMRI
Right thalamus volume (Thalamus R) C Thalamus volume right sMRI

Third ventricle volume (Third ventricle) C Third ventricle volume sMRI
Category (tag cat norm) D Assigned category CO

Brain volume T2 (tag cervix length) C Complete T2-weighted brain volume fMRI
Blood pressure systole (tag bp sys) C Average systole blood pressure CB
Blood pressure diastole (tag bp dias) C Average diastole blood pressure CB

Heart rate (tag bp hr) C Average heart rate CB
Fetal body volume (tag volume wb) C Whole fetal body volume sMRI

Amniotic fluid volume (tag volume amniotic) C Amniotic fluid volume sMRI
Cohort at scan (tag control at scan) C Cohort assessment at scan CO

Mid cerebellar artery ratio (tag gu mca cpr1) C Mid cerebellar artery ratio US
Adc (diff 1) C Average adc fMRI
T2* (diff 2) C Average T2* fMRI

T2* perfusion compartment (diff 3) C T2* perfusion compartment fMRI
T2* diffusing compartment (diff 4) C T2* diffusing compartment fMRI
Adc perfusion compartment (diff 5) C Adc perfusion compartment fMRI
Adc diffusing compartment (diff 6) C Adc diffusing compartment fMRI

T2* perfusing compartment weighted (diff 7) C T2* perfusing compartment weighted fMRI
T2* diffusing compartment weighted (diff 8) C T2* diffusing compartment weighted fMRI
Adc perfusion compartment weighted (diff 9) C Adc perfusion compartment weighted fMRI
Adc diffusing compartment weighted (diff 10) C Adc diffusing compartment weighted fMRI

February 6, 2024 14/24

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.17.24302791doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.17.24302791
http://creativecommons.org/licenses/by/4.0/


Perfusion fraction ivim (diff 11) C Perfusion fraction ivim fMRI
Left lung T2* mean (lung t2s left mean) C Mean left lung T2* value fMRI

Left lung T2* vol (lung t2s left vol) C Left lung T2* volume value fMRI
Left lung T2* lacu (lung t2s left lacu) C Left lung T2* lacunarity fMRI
Left lung T2* skew (lung t2s left skew) C Left lung T2* skewness fMRI
Left lung T2* kurt (lung t2s left kurt) C Left lung T2* kurtosis fMRI

Right lung T2* mean (lung t2s right mean) C Mean right lung T2* value fMRI
Right lung T2* vol (lung t2s right vol) C Right lung T2* volume value fMRI

Right lung T2* lacu (lung t2s right lacu) C Right lung T2* lacunarity fMRI
Right lung T2* skew (lung t2s right skew) C Right lung T2* skewness fMRI
Right lung T2* kurt (lung t2s right kurt) C Right lung T2* kurtosis fMRI
Both lungs T2* mean (lung t2s both mean) C Mean T2* value of both lungs fMRI

Both lungs T2* vol (lung t2s both vol) C Both lungs T2* volume value fMRI

S2 Table. Statistical summary of the features. Statistics of the data set after 451

the first preprocessing steps and before imputation. 452

Feature name Missing Mean Median STD Skewness
tag ga 0 (0.0%) 28.18 28.14 4.56 -0.11
tag typ 23 (9.47%) 158.21 99.0 300.93 2.6
tag scanner 0 (0.0%) 1.0 1.0 0.0 0.0
tag age 10 (4.12%) 34.18 34.3 4.7 -0.27
tag bmi 21 (8.64%) 23.77 23.65 2.98 0.48
tag loc 35 (14.4%) 3.53 2.0 2.09 1.76
tag gadel 0 (0.0%) 37.37 38.86 4.37 -1.73
tag mod 0 (0.0%) 4.34 4.0 2.48 0.14
tag sex 8 (3.29%) 1.57 2.0 0.52 0.19
tag bwg 7 (2.88%) 2832.48 3062.5 917.24 -0.91
tag bwc 107 (44.03%) 45.75 43.06 29.52 0.17
tag parity 0 (0.0%) 0.48 0.0 0.78 2.14
tag prev ptb 0 (0.0%) 0.11 0.0 0.33 2.84
tag bpd 122 (50.21%) 73.51 74.0 12.86 -0.29
tag bpd cent 124 (51.03%) 49.3 47.0 28.02 0.05
tag ce tcd 123 (50.62%) 33.88 32.55 8.42 0.08
tag ce tcd cent 129 (53.09%) 51.94 52.5 23.59 -0.08
tag post hor diam 125 (51.44%) 6.42 6.35 1.61 0.22
eCSF L 100 (41.15%) 31941.45 33049.6 11969.29 0.17
eCSF R 100 (41.15%) 30944.74 31214.5 10941.05 0.35
Cortex L 100 (41.15%) 21351.56 16914.0 12237.17 0.74
Cortex R 100 (41.15%) 21422.58 17092.2 11960.04 0.73
WM L 100 (41.15%) 44681.85 41335.1 20056.3 0.35
WM R 100 (41.15%) 44771.93 41127.5 20324.06 0.37
Lat ventricle L 100 (41.15%) 2154.67 2018.12 963.81 1.01
Lat ventricle R 100 (41.15%) 2008.0 1891.96 893.35 0.89
CSP 100 (41.15%) 497.36 471.24 224.35 0.85
Brainstem 100 (41.15%) 3514.29 3428.88 1474.82 -0.16
Cerebellum L 100 (41.15%) 2999.35 2493.24 1914.44 0.5
Cerebellum R 100 (41.15%) 2977.61 2348.0 1992.55 0.47
V ermis 100 (41.15%) 936.0 831.04 535.0 0.25
Lentiform L 100 (41.15%) 2120.58 1953.5 1059.44 0.23
Lentiform R 100 (41.15%) 2041.67 1871.62 1033.36 0.15
Thalamus L 100 (41.15%) 1642.67 1483.75 819.65 0.29
Thalamus R 100 (41.15%) 1590.87 1420.96 801.94 0.26
Third ventricle 100 (41.15%) 140.56 143.68 70.51 -0.08
tag diabetes 7 (2.88%) 0.5 0.0 2.13 4.3
tag cat norm 75 (30.86%) 1.45 1.0 0.52 0.45
tag hc 64 (26.34%) 33.3 34.0 3.03 -2.23
tag hcc 121 (49.79%) 53.64 56.6 33.57 -0.12
tag garom 0 (0.0%) 37.0 38.86 5.07 -1.78
tag gu efw cen 103 (42.39%) 54.11 61.19 32.35 -0.41
tag vol t2w complete 100 (41.15%) 143758.08 134099.98 60465.11 0.26
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tag cptr 102 (41.98%) 0.38 0.36 0.12 0.93
tag histo weight 131 (53.91%) 417.62 453.0 130.33 -0.55
tag histo mvm 132 (54.32%) 0.22 0.0 0.41 1.4
tag histo fvm 132 (54.32%) 0.02 0.0 0.13 7.35
tag histo chorio 133 (54.73%) 0.38 0.0 0.49 0.49
tag anom pi left 191 (78.6%) 1.19 1.07 0.52 0.5
tag anom pi right 191 (78.6%) 1.22 1.12 0.56 1.19
tag anom ga 53 (21.81%) 20.02 20.0 0.9 -3.34
tag anom loc 35 (14.4%) 3.53 2.0 2.09 1.76
tag anom cord 69 (28.4%) 1.11 1.0 0.56 5.32
tag anom cord ins 182 (74.9%) 5.7 8.0 2.86 -0.66
tag anom hc 58 (23.87%) 172.3 171.8 9.81 1.51
tag anom ac 58 (23.87%) 150.4 150.2 11.03 0.83
tag anom bpd 71 (29.22%) 47.56 47.65 3.15 -2.64
tag anom fl 58 (23.87%) 31.72 31.7 2.53 0.23
tag gu ga 94 (38.68%) 28.65 28.43 4.63 -0.37
tag gu hc 98 (40.33%) 259.63 265.3 44.46 -0.89
tag gu ac 98 (40.33%) 239.14 239.3 49.19 -0.41
tag gu bpd 100 (41.15%) 73.0 74.8 13.2 -0.72
tag gu fl 97 (39.92%) 52.53 53.25 10.87 -0.68
tag gu pi 112 (46.09%) 1.08 1.03 0.22 1.65
tag gu efw 103 (42.39%) 1378.66 1229.5 727.21 0.53
tag gu mca pi 133 (54.73%) 1.85 1.84 0.36 -0.12
tag gu mca psc 138 (56.79%) 43.83 42.7 13.47 0.71
tag gu mca cpr 158 (65.02%) 1.82 1.83 0.45 0.0
tag gu notch 153 (62.96%) 1.1 1.0 0.5 5.23
tag gu pi left 153 (62.96%) 0.87 0.85 0.26 0.71
tag gu pi right 153 (62.96%) 0.87 0.86 0.26 0.91
tag gu edf 112 (46.09%) 1.11 1.0 0.62 6.12
tag gu loc 110 (45.27%) 3.61 2.0 2.22 1.53
tag gu cord 140 (57.61%) 1.06 1.0 0.44 8.1
tag gu cord ins 161 (66.26%) 3.28 4.0 1.28 -1.24
tag apgar5 26 (10.7%) 9.25 10.0 1.5 -3.74
tag smok 33 (13.58%) 1.41 1.0 1.08 2.35
tag ivf 25 (10.29%) 1.87 2.0 0.46 -2.15
tag bp sys 105 (43.21%) 106.22 104.22 12.78 0.54
tag bp dias 105 (43.21%) 65.36 64.06 10.72 0.53
tag bp hr 118 (48.56%) 77.5 76.4 10.1 0.27
tag volume wb 220 (90.53%) 763487.03 683058.59 313741.75 0.59
tag volume amniotic 220 (90.53%) 460971.62 526734.02 242231.28 -0.32
tag control at scan 0 (0.0%) 0.62 1.0 0.49 -0.49
tag gu mca cpr1 138 (56.79%) 1.79 1.83 0.46 -0.22
tag del bwc 7 (2.88%) 47.22 48.04 31.14 -0.0
plac t2s mean 0 (0.0%) 57.92 59.69 19.11 -0.01
plac t2s vol 0 (0.0%) 366.89 340.31 173.32 0.77
plac t2s lacu 0 (0.0%) 19.47 19.08 6.16 2.53
plac t2s skew 0 (0.0%) 13.33 2.36 30.53 3.49
plac t2s kurt 0 (0.0%) 1.34 0.68 1.89 2.37
lung t2s left mean 159 (65.43%) 65.26 62.16 18.45 1.21
lung t2s left vol 159 (65.43%) 13.88 11.08 8.71 1.4
lung t2s left lacu 159 (65.43%) 20.06 18.43 8.72 1.58
lung t2s left skew 159 (65.43%) 7.27 1.78 13.54 2.99
lung t2s left kurt 159 (65.43%) 0.99 0.58 1.16 1.81
lung t2s both mean 155 (63.79%) 67.06 62.62 19.26 1.17
lung t2s both vol 155 (63.79%) 31.95 26.15 20.13 1.2
tag vol body 100 (41.15%) 1009.95 971.36 456.13 8.94
tag cervix length 26 (10.7%) 30.7 31.48 10.39 -0.71
brain t2s mean 101 (41.56%) 165.0 174.29 42.69 -0.56
brain t2s vol 101 (41.56%) 128.08 109.09 72.89 1.32
brain t2s lacu 101 (41.56%) 68.79 73.92 19.64 -0.77
brain t2s skew 101 (41.56%) 2.27 0.17 6.07 4.43
brain t2s kurt 101 (41.56%) 0.91 0.73 0.67 1.56
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lung t2s right mean 158 (65.02%) 67.97 63.24 19.56 1.07
lung t2s right vol 158 (65.02%) 19.64 15.85 13.1 1.15
lung t2s right lacu 158 (65.02%) 22.13 19.95 9.71 1.22
lung t2s right skew 158 (65.02%) 7.66 2.42 14.4 4.1
lung t2s right kurt 158 (65.02%) 1.14 0.82 1.19 2.08
t1 1 199 (81.89%) 1003.34 1016.46 243.97 -0.8
diff 1 140 (57.61%) 55.75 57.47 19.34 -0.22
diff 2 140 (57.61%) 0.0 0.0 0.0 1.14
diff 3 140 (57.61%) 0.0 0.0 0.0 2.41
diff 4 140 (57.61%) 0.0 0.0 0.0 0.0
diff 5 140 (57.61%) 0.01 0.0 0.01 3.3
diff 6 140 (57.61%) 0.0 0.0 0.0 0.0
diff 7 140 (57.61%) 52.51 52.21 32.07 0.11
diff 8 140 (57.61%) 0.03 0.03 0.01 1.02
diff 9 140 (57.61%) 76.01 75.25 22.84 0.99
diff 10 140 (57.61%) 0.0 0.0 0.0 0.62
diff 11 140 (57.61%) 0.33 0.3 0.17 0.68
tag complete id 0 (0.0%) 2400682.76 1000187.0 2864221.51 1.98

S3 Table. Hyperparameters of the base models. Hyperparameters investigated 453

by the grid search for each of the base models 454

Random Forests Support Vector Regression XGBoost
Hyperparameter Values Hyperparameter Values Hyperparameter Values

max depth [3, 5, 10, 20, 50, 100] C [0.001, 0.01, 0.1, 1, 10, 100, 1000] max depth [3, 5, 7, 10, 20, 50]
max features [’auto’, ’sqrt’, ’log2’] gamma [’scale’, ’auto’] learning rate [0.01, 0.05, 0.1, 0.3, 0.5]
n estimators [5, 10, 20, 50, 100, 250] kernel [’rbf’, ’poly’, ’sigmoid’, ’linear’] min child weight [1,3,5,7]

epsilon [0.001 ,0.01 ,0.1, 0.5, 1] gamma [0.1, 0.5, 0.8, 2, 5, 10]
degree [2, 3] colsample bytree [0.3, 0.5, 0.7]

S1 Fig. Details of First Preprocessing Steps. Number of subjects kept after 455

each initial preprocessing step. 456

S1 Algorithm. Pseudocode of the MICE algorithm. 457

Algorithm 1 Pseudocode of the MICE algorithm

Input: Data matrix Dij = (dij), Number of iterations MaxIter.

Output: Imputed matrix D̂ij .

1: Impute Dij with column means: D̂ij = (d̂ij)← FillWithMeans(Dij)
2: k ← 1
3: while k ≤ MaxIter do
4: for each column Dj in Dij do

5: Set imputations for Dj to missing in D̂ij

6: fj ← FitRegressionModel(D̂ij , D̂j)
7: for each row Di in Dij do

8: if d̂ij is missing in D̂ij then

9: Impute missing value: d̂ij ← fj(D̂i \ {d̂ij})
10: end if
11: end for
12: end for
13: k ← k + 1
14: end while
15: return D̂ij
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