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Abstract
Presurgical planning prior to brain tumor resection is critical for the preservation of neurologic

function post-operatively. Neurosurgeons increasingly use advanced brain mapping techniques

pre- and intra-operatively to delineate brain regions which are “eloquent” and should be spared

during resection. Functional MRI (fMRI) has emerged as a commonly used non-invasive

modality for individual patient mapping of critical cortical regions such as motor, language, and

visual cortices. To map motor function, patients are scanned using fMRI while they perform

various motor tasks to identify brain networks critical for motor performance, but it may be

difficult for some patients to perform tasks in the scanner due to pre-existing deficits.

Connectome Fingerprinting (CF) is a machine-learning approach that learns associations

between resting-state functional networks of a brain region and the activations in the region for

specific tasks; once a CF model is constructed, individualized predictions of task activation can

be generated from resting-state data. Here we utilized CF to train models on high-quality data

from 208 subjects in the Human Connectome Project (HCP) and used this to predict task

activations in our cohort of healthy control subjects (n=15) and presurgical patients (n=16)

using resting-state fMRI (rs-fMRI) data. The prediction quality was validated with task fMRI data

in the healthy controls and patients. We found that the task predictions for motor areas are on

par with actual task activations in most healthy subjects (model accuracy around 90-100% of

task reliability) and some patients suggesting the CF models can be reliably substituted where

task data is either not possible to collect or hard for subjects to perform. We were also able to

make robust predictions in cases in which there were no task-related activations elicited. The

findings demonstrate the utility of the CF approach for predicting activations in out-of-sample

subjects, across sites and scanners, and in patient populations. This work supports the
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feasibility of the application of CF models to presurgical planning, while also revealing

challenges to be addressed in future developments.

Introduction

The use of functional magnetic resonance imaging (fMRI) data for presurgical planning is

gaining clinical adoption as an aid to guide neurosurgeons in the removal of brain tumors while

minimizing new post-operative neurologic deficits. Task-based fMRI (t-fMRI) is actively used to

map brain regions associated with motor and language functions using simple tasks such as

hand/foot movements (Wengenroth et al., 2011) or antonym generation/sentence completion,

respectively (Unadkat et al., 2019). However, some patients are not able to perform such tasks

due to pre-existing motor, language, or other cognitive deficits (Silva et al., 2018). In such

cases, resting-state fMRI (rs-fMRI) allows the estimation of various brain networks using

data-driven approaches, such as Independent Component Analysis (ICA) (Tie et al., 2014; Sair

et al., 2016; Lu et al., 2017). The efficacy of rs-fMRI to map brain networks is still debated.

Some researchers suggest that care is required while using only rs-fMRI and that it should be

used in conjunction with t-fMRI (Rosazza et al., 2014; Silva et al., 2018). However, others have

found that rs-fMRI derived networks, at least for the sensorimotor regions, were

comprehensive (Dierker et al., 2017). Further research using advanced analytical techniques

can help improve the identification of brain networks for presurgical planning in patients.

The functional organization of adult human brains shares a common framework, but each

individual’s brain exhibits variations. These individual differences are often lost because

neuroscientific studies commonly average across individuals for robust estimations. The
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science of individual differences has started to make progress over the last few years (Dubois &

Adolphs, 2016). We have seen in our work on frontal lobe functional organization that distinct

function regions that are completely missed in group-averaging analyses can be reliably and

reproducibly identified in individuals (Michalka et al., 2015; Noyce et al., 2021; Somers et al.,

2021). Precision functional mapping allows for better estimation of an individual’s brain

networks and task-specific regions (Michalka et al., 2015; Braga & Buckner, 2017; Dosenbach

& Al, 2010; Gordon et al., 2017), which is critical for presurgical brain mapping in individual

patients.

Resting-state functional connectivity-based network measures have allowed for the estimation

of both group average and subject-specific brain parcellation schemes (Yeo et al., 2011; Power

et al., 2011; Glasser et al., 2016; Schaefer et al., 2017). Brain-behavior connectivity studies

have made robust out-of-sample predictions for cognitive modalities such as attention and

intelligence, using functional connectivity data (Finn et al., 2015; Rosenberg et al., 2015, 2017;

Beaty et al., 2018) and even individualized brain task activations (Tavor et al., 2016; Tobyne et

al., 2018; Osher et al., 2019; Tripathi & Somers, 2023). Some earlier studies have shown the

use of ICA to make predictions on resting-state networks (Mitchell et al., 2013; Tie et al., 2014;

Sair et al., 2016; Lu et al., 2017).

A technique called Connectome Fingerprinting (CF) allows us to estimate individualized

task-specific activations (Saygin et al., 2012; Tavor et al., 2016; Osher et al., 2016; Tobyne et

al., 2018; Osher et al., 2019). Studies have shown that anatomical connectivity can predict face

selectivity regions in the fusiform face area (Saygin et al., 2012), and object selectivity in the

visual word form area (Osher et al., 2016). Functional connectivity can predict subject-specific

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.24302895doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.16.24302895
http://creativecommons.org/licenses/by-nc/4.0/


5

task-based activations in the visual and auditory working memory regions in the lateral frontal

cortex, where group-averaged activations fail to identify an individual’s sensory-specific regions

(Tobyne et al., 2018). Similarly, CF allows for an accurate estimation of individualized frontal

and parietal attention networks (Osher et al., 2019).

In this study, we examined the feasibility and the potential challenges of applying CF modeling

approaches to identify patient-specific functional brain organization for the guidance of surgical

planning. This analysis was performed on pre-existing datasets collected on presurgical tumor

patients and on healthy individuals. The healthy brain data include a dataset collected in a

clinical setting and a large dataset collected in a research setting. We began by examining

healthy individuals and then applied CF models constructed from healthy participants to

presurgical tumor patients. We analyzed the factors that drive the predictive ability of CF

models derived using healthy subjects in the Human Connectome Project (HCP, n=208),

modeling the motor network using rs-fMRI data and motor t-fMRI data. We investigated the

effects of different search spaces, parcellation schemes, task contrasts, and the amount of

training and testing data required for optimal estimation of the task activations. We also

analyzed the limits of the model predictability with respect to task reliability and quality and

quantity of training and testing data. We then used these models to make cross-scanner

predictions on a dataset of healthy subjects acquired in a clinical setting (n=15). And finally, we

used the models trained on the HCP dataset and healthy subjects to make motor network

predictions on presurgical patients with lesions (n=16) to investigate the viability of the CF

approach to guide presurgical planning.
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Methods

Participants

Pre-existing datasets from two sites were studied. HCP Young Adult data was collected by the

Washington University – University of Minnesota (WU-Minn) Consortium (Van Essen et al.,

2013). It consists of 1200 subjects in the age range of 22-35 years old. Out of these 1200

subjects, we selected a subset of 169 subjects (64 males) that had both 7T and 3T MRI data

acquisition (though we limited our analysis to 3T data in the present study) and another set of

39 subjects (11 males) who contributed to a re-test data collection. In total, we included 208

participants (73 males) in the study. The data consists of high-resolution T1w, T2w, diffusion

MRI (dMRI), rs-fMRI and seven cognitive tasks using Blood Oxygenation Level Dependent

(BOLD) as detailed in (Barch et al., 2013; Van Essen et al., 2012) and can be accessed at

db.humanconnectome.org. The study was approved by the Washington University Institutional

Review Board, and all subjects gave informed consent for participation in the study and

anonymized data release. The second site was Brigham and Women’s Hospital (BWH). MRI

data were previously acquired from 15 healthy controls (8 males, age range 20-37 years) and

16 patients with brain lesions (10 males, age range 21-70 years) who had clinical fMRI for

presurgical planning at BWH (details specified in Table 1). Tumor diagnosis and location were

retrospectively taken from anatomic pathology reports. Tumors were segmented on T1w

images using the Brainlab software’s Smartbrush Segmentation Tool (Brainlab AG, Munich,

Germany), followed by computation of tumor volume using Brainlab Smartbrush. Patients also

had rs-fMRI acquired for research purposes and a presurgical high resolution T1 weighted

image. The study was approved by the Mass General Brigham (MGB) Institutional Review

Board, and all subjects gave their informed consent.
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MRI Acquisition

HCP data

For the purposes of high-quality connectomics and functional data in the HCP, a modified 3T

Siemens CONNECTOM Scanner was used (Van Essen et al., 2012). High-resolution T1w (0.7

mm isotropic) and T2w data were collected for all subjects. We examined the motor t-fMRI

data and rs-fMRI data in the current study. Rs-fMRI data were acquired across four runs (two

different sessions) of around 15 mins each using gradient-echo echo-planar imaging (EPI)

sequences (repetition time (TR) = 720 ms, echo time (TE) = 33 ms, flip angle = 52°, field of view

(FOV) = 208 × 180 mm, Multiband factor = 8, voxel size = 2 mm isotropic, 72 slices, 14 min, 24

sec total 1200 TRs per run). The motor t-fMRI in the HCP dataset consists of two runs of hand,

foot, and tongue movements. Each run was 3 mins 34 secs long (total 284 TRs), with 10 blocks

per run (2 of each body part – left foot, left hand, right foot, right hand, and tongue). Subjects

were presented with a visual cue (3 secs long) at the start of the block and asked to tap either

left or right fingers, squeeze left or right toes, or move their tongue about 10 times during the

task blocks which were 12 secs long. Each run consisted of three rest blocks (i.e., fixation on a

crosshair shown on the screen, 15 secs long) interspersed between different task blocks. For

the rs-fMRI acquisition in the HCP dataset, subjects were asked to fixate on a cross on the

screen with their eyes open and do “nothing in particular”. A total of four runs of rs-fMRI were

acquired across two sessions with each run 15 mins long (1200 TRs). Thirty-nine subjects in

the HCP dataset were recalled for another session repeating the entire protocol (high-resolution

T1w/T2w, dMRI, rs-fMRI and task fMRI) after an average gap of five months.
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BWH data

The BWH healthy subjects dataset was acquired on a 3T Siemens Skyra scanner whereas the

patient dataset was acquired across multiple Siemens 3T scanners (Trio, Verio, Skyra and

Prisma systems) with a 20-channel head coil. High-resolution T1w image was acquired at a

resolution of 0.5 x 0.5 x 1 mm3. T2* BOLD fMRI was acquired using single-shot gradient-echo

EPI (TR = 2000 ms, TE = 30 ms, flip angle = 85°, Matrix = 64 × 64, FOV = 220 × 220 mm, voxel

size = 2 × 2 × (4.0 or 5.0) mm3, 24 or 32 axial slices, 120 TRs). The motor tasks in the BWH

dataset consisted of three separate runs for hand, foot, and lip movements. The bilateral hand

(hand clench) and the foot (toe wiggle) runs were 4 mins long (120 TRs in total) and had 20-sec

long task blocks during which subjects were either moving the right or the left side of their

body parts with self-pacing (each condition repeated four times) and 20-sec long rest blocks

(i.e., fixation). The lip pursing task was 3 mins long (90 TRs) with five rest blocks and four task

blocks of 20 secs each during which the subjects were asked to purse their lips for the duration

of the block. In the BWH datasets, healthy subjects performed all motor tasks, while

presurgical patients only performed tasks requested by their neurosurgeons. Therefore, only

two presurgical patients performed all three motor tasks; five patients performed fewer motor

tasks (two with only lip pursing, two with hand movement and lip pursing tasks, and one with

hand and foot motor tasks), and the remaining subjects did not have motor t-fMRI data. In the

BWH datasets, all healthy and presurgical subjects performed one eyes-closed rs-fMRI run of 4

mins (120 TRs).
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Preprocessing

The HCP dataset was preprocessed using the minimal preprocessing pipeline (Glasser et al.,

2013). The anatomical pipeline consisted of gradient distortion correction, alignment of T1w

and T2w images, brain extraction, readout connection and boundary-based registration (BBR)

followed by bias correction, downsampling from 0.7 mm to 1 mm isotropic on T1w and T2w

images, followed by Freesurfer’s recon-all. Functional data preprocessing consisted of artifact

correction, gradient non-linearity correction, motion correction and EPI distortion correction,

temporal denoising and bandpass filtering between 0.01 and 0.08 Hz. For sub-second TRs (i.e.,

720 ms), slice time correction is not essential therefore was not performed. The functional

images were then normalized to the Montreal Neurological Institute (MNI) space which was

followed by cortical segmentation in the native surface mesh using the Freesurfer pipeline (Dale

et al., 1999; Fischl et al., 1999). Finally, the data were registered from the native space of 168k

to 32k vertices surface CIFTI format, followed by 2 mm full width half maximum (FWHM) spatial

smoothing at the 32k surface.

The BWH dataset was processed using the fMRIPrep software version 22.0.2 (Esteban et al.,

2019) which is implemented using Nipype 1.8.5 (Gorgolewski et al., 2011) and utilizes Nilearn

across multiple steps (Abraham et al., 2014). The anatomical data preprocessing included

intensity correction, brain tissue segmentation using FSL (Jenkinson et al., 2012), and the

Freesurfer recon-all pipeline to align to surface space. Functional data preprocessing consisted

of brain extraction, motion correction, slice time correction, and highpass filtering (128 sec

cutoff). Physiological regressors were extracted to remove noise from the BOLD signals

followed by co-registration to the reference space using Freesurfer (Dale et al., 1999; Fischl et
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al., 1999) and CIFTI space using Ciftify pipeline (Dickie et al., 2019). Preprocessing failed during

the cortical surface reconstruction step (recon-all) for two of the patients (#1, #12) due to large

tumor size, and therefore these individuals were excluded from further analysis.

Connectome Fingerprinting

CF is a computational modeling approach that uses individual subject connectome

measurements to predict the subject’s functional brain organization (Saygin et al., 2012; Tavor

et al., 2016; Tobyne et al., 2018). In the model construction phase, the CF model learns the

association between task activations and functional connectome across a set of training

subjects. Figure 1 describes the procedure diagrammatically. At first, we start with the task

data and specific task contrasts that we want to associate with functional connectivity. Then,

we choose the brain region(s) for which we wish to make high-resolution predictions of task

activity, which we refer to as the ‘search space’. We also select a lower-resolution parcellation

scheme for the rest of the brain. Many good parcellation schemes are widely available; here,

we utilize the Schaefer (Schaefer et al., 2017) and HCP-MMP (Glasser et al., 2016) atlases. The

pairing of the search space and the parcellation scheme define the dimensionality of a

functional connectome for the CF model. To compute an individual’s functional connectome for

this model, we correlate the time course of rs-fMRI data between each of the V voxels or

vertices in the search space and each of the P parcels in the parcellation scheme. This results

in the connectivity matrix of size V x P. We also extract the task activation data (in t-statistic

value) vector of size V x 1 for the voxels/vertices in the search space. We extract the

connectome and task data across all subjects in the training dataset (n-t) and concatenate
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them across rows to give a long concatenated regressor matrix of size (n-t)V x P. The task

activation vector is also concatenated to give an (n-t)V x 1 vector. We then use ridge regression

as implemented in Scikit Learn (Pedregosa et al., 2011) to learn the association between the

connectivity matrix, X, and task activation, Y. The hyperparameter of the ridge regression is

learned using a validation split within the training dataset. The learned model parameters are

then used to make predictions, Y’, on each test subject by applying the functional connectome

for that subject to the model via matrix multiplication. The performance of the model is

evaluated using Pearson correlation between the actual pattern of activation (as t-statistics), Y,

and the predictions, Y’.

Data Analysis

We compared the performance (Pearson correlations between spatial patterns of predicted and

actual task activation) across CF models trained on different search spaces, parcellation

schemes such as Schaefer (Schaefer et al., 2017) and HCP-MMP (Glasser et al., 2016) atlases,

task contrast, different amounts of training and testing dataset, using ANOVA implemented in

the statsmodels toolbox (Seabold & Perktold, 2010) or paired/independent samples t-test

implemented in the Scipy toolbox (Virtanen et al., 2020).

Results
Our initial analyses focused on establishing the parameters that might affect the performance

of our CF models for predicting motor activations in a motor only and a combined

somatosensory-motor (somato-motor) cortical search space. The analyses used the HCP

dataset. Figure 1 illustrates the CF model. We selected a broad set of somato-motor cortical
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surface vertices as our search space for the motor task to make predictions of task activity. We

split the data into training subject and testing subject datasets. We trained our model on

pooled data from the training dataset and made predictions on individual subjects from the

testing dataset. Before developing models that can predict motor networks in presurgical

patients with lesions, we investigated the effects of several factors on the model performance,

including task contrasts, parcellation scheme, the extent of search space, testing and training

data utilized, task data reliability and cross-scanner effects.

We first analyzed the effect of different task contrasts on the performance of CF models.

Blocks of five active conditions (left hand, right hand, left foot, right foot, tongue) and a

(non-motor) fixation/rest condition were recorded. We hypothesized that more precise CF

predictions would be obtained using a contrast between sets of active motor conditions than

between motor conditions and a passive fixation condition. The ‘X vs. Fixation’ contrasts were

defined by contrasting a given motor condition X (e.g., left hand) with the non-motor fixation

condition in the same task run. The ‘X vs. Average’ contrasts were defined as the contrast

between the selected motor task (e.g., left hand) and the concatenation of all the other task

conditions (right hand, left/right foot, and tongue). We computed t-statistics using a General

Linear Model (GLM) for the contrasts at each cortical surface vertex within the search space.

These activation maps along with the connectivity matrices were used to construct the CF

models, using training subject data. The HCP-MMP atlas was used as the parcellation scheme.

Subject-specific predictions of the pattern of task activation (t-statistics) within the search

space were generated by applying the (testing) subject's connectivity matrix to the CF model.

We then validated CF model predictions by comparing them to the actual task activation
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t-statistics, on a subject-by-subject basis. We quantified model performance by computing the

Pearson correlations of the predicted and actual t-statistics across the search space. Using a

2-way-ANOVA comparing the CF prediction accuracies (Pearson correlations) for models

trained and tested across different task conditions and contrast types (‘vs. Fixation’ or ‘vs.

Average’), we found that the correlation coefficients of ‘vs. Average’ contrasts (Figure 2: Left

Foot (LF): M=0.47, SD=0.14; Left Hand (LH): M=0.47, SD=0.13; Right Foot (RF): M=0.47,

SD=0.13; Right Hand (RH): M=0.47, SD=0.11; Tongue (T): M=0.52, SD=0.09) were significantly

higher (F(4,680) = 13.07, p < 0.00001) than that of the ‘vs. Fixation’ contrasts (LF: M=0.40,

SD=0.12; LH: M=0.35, SD=0.14; RF: M=0.41, SD=0.11; RH: M=0.37, SD=0.14; T: M=0.46,

SD=0.11). There was no significant difference among the different task conditions (LH, RH, LH,

RF, T) across the different contrast types (‘vs. Fixation’ or ‘vs. Average’). This indicates that CF

model performance is enhanced by selecting more specific task contrasts. Therefore, our

subsequent analyses focus on the ‘vs. Average’ contrast.

We then analyzed the effect of different cortical parcellation schemes on prediction accuracy.

The Multimodal Parcellation of the Human Connectome Project (HCP-MMP 1.0, Glasser et al.,

2016) is a widely used parcellation, but since it lacks subdivisions across the motor cortical

homunculus map, we hypothesized that it would be non-optimal for making predictions

specific to a particular body movement and a somewhat finer scale parcellation would yield

more accurate predictions, and examined both the Schaefer 400 parcellation and Schaefer

1000 parcellation (Figure S1) of the Yeo-Buckner maps (Schaefer et al., 2017). As illustrated in

Figure 3, across the five contrasts, CF models built on the HCP-MMP parcellation resulted in

significantly lower (F(2,1020) = 226.24, p < 0.00001) correlation coefficients (Table 2) when
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compared to CF models built on either of the two variations of Schaefer atlas - the 400 parcels

scheme (Table 2). These results confirmed our hypothesis that parcellations that subdivide the

motor cortex would yield stronger CF model performance. The Schaefer 1000 parcellation was

the best performing atlas but also computationally more expensive than the other two schemes

(approximately 3 times slower). The accuracy across the conditions was similar, however, hand

and tongue performed slightly better (F(4,1020) = 5.55, p = 0.0002) than the foot condition.

Tukey’s post hoc found pairwise differences across all conditions between Schaefer 1000 and

HCP-MMP atlases (Table 2).

We next investigated the effect of the extent of search space on motor predictions. We

hypothesized that restricting the search space to candidate motor cortical regions would

improve CF model performance relative to using a broader somato-motor search space. We

compared CF performance using these two search spaces; both analyses used the X vs.

Average contrast, but we examined the MMP parcellation and the Schaefer 400 and 1000

parcellations. Figures 2 and 3 contain models trained on search space including the

somato-motor area (including S1 and M1 regions), whereas Figure 4 restricts the search space

to only the motor regions without the somatosensory regions. The models trained on

motor-only search space showed higher prediction accuracies (F(1,2064) = 163.99, p <

0.00001) than the somato-motor search space across the three parcellation atlases: HCP-MMP

atlas: (Table 2; Post hoc analysis across all conditions t(688) = 25.84, p < 0.00001); Schaefer

1000 parcels atlas (Table 2; Post hoc analysis across all conditions: t(688) = 23.01, p <

0.00001), and Schaefer 400 parcels atlas (Table 2; Post hoc analysis across all conditions:

t(688) = 23.05, p < 0.00001). The advantages of the Schaefer parcellations relative to the
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HCP-MMP parcellation were replicated for the motor-only search space: Schaefer 1000 was

better (F(2,1020) = 122.72, p < 0.00001, t-test comparison collated across conditions:

Schaefer1000-HCP-MMP: t(688) = 31.17, p < 0.0001; Schaefer1000-Schaefer400: t(688) =

11.95, p < 0.0001; Schaefer400-HCP-MMP: t(688) = 28.14, p < 0.00001) than the other two.

Although Schaefer 1000 parcellation model outperformed the Schaefer 400 parcellation model

and would be preferred for clinical applications, we selected the Schaefer 400 parcellation in

subsequent analyses, due to the computational speed advantage over the Schaefer 1000

parcellation and the performance advantage over the HCP-MMP parcellation. The

computational advantage is useful for the parametric model analyses that we next performed.

We then examined the impact of the amount of training and testing data on CF model

performance using the parameters of task contrasts, cortical parcellation and search space

selected based on the above results. We ran a 3-way ANOVA among the predictions on

subjects using different training times (amount of rs-fMRI data per training subject), testing

times (amount of rs-fMRI data per test subject), and the number of subjects in the training

dataset (Fig. 5). We found that there was a prediction accuracy increase (F(4,21760) = 15.27, p

< 0.0001) with increased number of subjects, but the advantage largely saturated after twenty

subjects (10 subjects: M=0.64, SD=0.13; 20 subjects: M=0.70, SD=0.13;30 subjects: M=0.71,

SD=0.13; 40 subjects: M=0.73, SD=0.13; 50 subjects: M=0.73, SD=0.13). In an analysis of

models constructed using 50 training subjects we surprisingly found no main effect of the

quantity of rs-fMRI training data per subject (F(7,21760)=1.63, p=0.11) on the model

performance. However, in similar (n=50 training datasets) models with 60 mins of rs-fMRI

training data per subject, there was a strong and significant effect of the amount of rs-fMRI
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data per test subject (F(7,21760) = 29.63, p <0.0001), with mean performance increasing

across the full range of durations examined (2 mins: M=0.52, SD=0.11; 4 mins: M=0.59,

SD=0.12; 8 mins: M=0.64, SD=0.13; 10 mins: M=0.66, SD=0.13; 12 mins: M=0.66, SD=0.13; 16

mins: M=0.68, SD=0.13; 32 mins: M=0.71, SD=0.13; 60 mins: M=0.73, SD=0.13). However,

there were diminishing benefits of additional data for the longer durations. There were no

interaction effects between the number of subjects and the duration of rs-fMRI training data

found in the model.

Since model performance is evaluated here by comparing predicted task activation with actual

task activation our metric of ‘performance’ is limited by the reliability of the task activation in

each individual. That is, a subject with weak task activation for whom the model predicts

robust activation would be quantified as a poor model result even though the prediction might

accurately reflect the true functional organization of the individual’s brain. Therefore, a ‘poor’

CF model prediction might primarily reflect that the subject simply performed poorly in the

t-fMRI experiment, and that the t-fMRI failed to capture the subject’s brain organization. We

hypothesized that CF model performance would be stronger in subjects with more reliable task

activation. We compared task activation patterns across two scan sessions for a set of

‘test-retest’ subjects and across two task runs of a single session for subjects who participated

in only a single session. We computed a task reliability metric as the Pearson correlation

between the task activation in our search space across the runs in a scan session or across

scan sessions (in our test-retest subjects). Subjects with more reliable task activations across

the runs within a scan session had better (Figure 6a: r(66) = 0.45, p < 0.001) prediction

accuracy. We also observed that subjects with higher averaged task activations (t-stat values)
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across the search space had better (Figure S2: r(66) = 0.27, p = 0.02) prediction accuracies.

Remarkably, the CF model prediction accuracy across conditions (M=0.718, SD=0.136) was on

par (t(112) = 0.479, p = 0.6327) with task reliability across two runs of task data (M=0.707,

SD=0.128) and better (t(136) = 4.814, p < 0.0001) than task reliability across one run of task

data (M=0.615, SD=0.139). That is, the CF model predictions correlated with task activation as

much as the task activation patterns correlated within an individual across sessions. The fact

that the CF model is on par with actual task activation demonstrates that the CF model is a

highly suitable substitute for actual task activation. Our results here also suggest that the

model accuracy is primarily limited by the degree of task reliability within an individual, the

more reliable the task is at activating within a subject, the better is the correlation with our

model predictions.

Head motion is a potential confound in fMRI studies, and important data pre-processing steps

are routinely applied in both t-fMRI and rs-fMRI analyses. We analyzed the effect of head

motion on prediction accuracy in addition to the amount of rs-fMRI data. The movement of

subjects during the task lowered the prediction accuracy (Fig S3a, r(66) = -0.22, p=0.06) which

just missed statistical significance at p=0.05 level, and the more the subjects moved during the

task the lower (Figure S3b: r(66) = 0.31, p < 0.01) their task reliability. It is notable that the

patients in our clinical dataset moved significantly more than healthy subjects (t(30) = 2.72, p =

0.01)

An important factor in demonstrating the feasibility of CF models for surgical planning is to

examine the applicability of models across scanning environments as it is desirable to develop

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.24302895doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.16.24302895
http://creativecommons.org/licenses/by-nc/4.0/


18

and deploy a single successful CF model across multiple clinical centers. After establishing the

various factors that affect model performance across the motor network in the HCP data, we

trained the motor models for the different conditions on the BWH healthy controls dataset

(n=15). These analyses used the ‘X vs. Average’ task contrast, the motor cortex search space,

and the Schaefer 400 parcellation. We then performed cross- and within-scanner predictions

(Figure 7) using models trained on 4 mins (HCP4) and 60 mins (HCP60) of rs-fMRI data per

subject on the HCP dataset as well as the BWH healthy controls dataset using all available

rs-fMRI data of each subject (typically 4 mins). The HCP4 analysis was undertaken to compare

with the BWH data more fairly. We found that within-scanner predictions in the HCP dataset

(HCP4 applied to HCP4: M=0.61, SD=0.08; HCP4 applied to HCP60: M=0.71, SD=0.08;

HCP60 to HCP4: M=0.56, SD=0.08) were better (t(579) = 5.55, p < 0.0001) than in the BWH

dataset (BWH to BWH: M=0.35, SD=0.08). For cross-scanner predictions, the models

constructed from HCP data predicted the BWH activations slightly better than did the models

constructed from BWH data (HCP4 to BWH: M=0.44, SD=0.08; t(144) = 2.94, p = 0.003;

HCP60 to BWH: M=0.40, SD=0.08; t(144) = 1.72, p = 0.08). The BWH models applied to

HCP60 (M=0.61, SD=0.08) and to HCP4 (M=0.46, SD=0.08) underperformed as compared to

the HCP models (t(144) = 5.07, p < 0.0001). The HCP model performance likely benefited from

the enhanced performance of the HCP scanner environment, the greater number of training

subjects, and the shorter TR used (meaning more data points per unit time). Nevertheless, the

successful performance of the models constructed on the more limited BWH dataset in

predicting the HCP task activation further support the feasibility of cross-scanner application of

CF models.
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In our final analyses, we applied CF models constructed by training on healthy subjects to

presurgical tumor patients. Our preprocessing steps were successful in 14 out of the 16

presurgical patients, despite the presence of tumors. Preprocessing failed in two of these

subjects due to large tumor sizes, as white matter – gray matter boundaries could not be fully

identified in both cortical hemispheres. These patients were excluded from further analyses.

Structural and rs-fMRI data was processed for the remaining 14 patients. Full motor task

activation maps (five conditions) were available for two patients, with partial motor data

available for five more patients, and only resting-state and structural data was available for the

other seven patients.

Investigating of patients with full motor task data, we found that our model trained on HCP

data predicted the various contrasts robustly for patient #10, shown in Figures 8 and S4

(LF-AVG: r(2422) = 0.33, p < 0.00001; LH-AVG: r(2422) = 0.77, p < 0.00001; RF-AVG: r(2413) =

0.33, p < 0.00001; RH-AVG: r(2413) = 0.56, p < 0.00001; T-AVG: r(2413) = 0.07, p = 0.0004).

For another presurgical patient (#16) with a glioblastoma closer to the motor area along the left

frontal area, our predictions were less successful (Figures 9, S5: LF-AVG: r(2422) = 0.13, p <

0.0001; LH-AVG: r(2422) = 0.127, p < 0.0001; RF-AVG: r(2413) = 0.13, p < 0.0001; RH-AVG:

r(2413) = 0.03, p = 0.1; T-AVG: r(2413) = 0.01, p = 0.65). The evaluation of the foot predictions

was possibly impacted by the weak task activation in those conditions.

For the patients with task data on fewer than five conditions, the definition of the ‘Average’

motor baseline condition varies with the available data, and therefore the contrast of X vs

Average reflects a different contrast than the one for which the CF model was constructed.
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Nevertheless, we found that the CF models still exhibited effectiveness. For patient #11 (Figure

10) with a grade III anaplastic astrocytoma along the left frontal cortex, our model predicted

well for the left hand representation on the right hemisphere (LH-AVG: r(2422) = 0.47, p <

0.0001) and the mouth representation (T-AVG: r(2413) = 0.18, p < 0.001), but not for the right

hand representation on the side of the tumor (RH-AVG: r(2413) = -0.31, p < 0.0001). Here, the

significant anti-correlation does not represent a meaningful prediction. For patient #14 (Figure

11) with a diffuse astrocytoma along the left prefrontal and temporal cortex, our model was able

to significantly predict the hand and mouth representations (LH-AVG: r(2422) = 0.28, p <

0.0001; RH-AVG: r(2413) = 0.22, p < 0.0001; T-AVG: r(2413) = 0.44, p < 0.0001). For patients

#15 and #3, we only had mouth motor data. We were able to weakly predict mouth

representation for patient #15 (Figure 12b) along the side of the tumor (T-AVG: r(2413) = 0.09, p

< 0.001), but not for patient 3 (Figure 12d) (T-AVG: r(2413) = -0.07, p < 0.001). For patient #5

(Figure 13) with a grade II oligodendroglioma abutting the temporal cortex along the central

sulcus, our model was able to predict significantly for the left hand and left foot representation

on the right hemisphere (LF-AVG: r(2422) = 0.19, p < 0.0001; LH-AVG: r(2422) = 0.28, p <

0.0001), but not as strongly for the right hand and foot areas along the left hemisphere on the

side of the tumor (RF-AVG: r(2413) = 0.04, p = 0.49; RH-AVG: r(2413) = 0.06, p = 0.013).

Collectively, we conclude that close proximity to a large tumor often had a negative impact on

model performance.

We also produced prediction maps for the remaining presurgical patients with only rs-fMRI

data and no t-fMRI data. Predictions for patients #4 and #6 are displayed in Figure 14, and

predictions for all subjects without motor data are shown in Figure S6. Given the absence of
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any motor task data we cannot evaluate the accuracy of these predictions. Nevertheless, this

analysis demonstrates one important advantage of CF models, namely, the ability to use only

rs-fMRI data when collection of t-fMRI is not possible for the patient.

Discussion

In this study, we investigated the feasibility of using Connectome Fingerprint modeling for the

prediction of motor networks to guide surgical planning in patients with tumors. We first

examined the effect of the selection of the task contrasts on prediction accuracy. We found

that the more specific motor contrasts, i.e., ‘X vs. Average’, led to more accurate predictions

than the generic baseline of the ‘X vs. Fixation’ contrasts. We suggest that collecting motor

fMRI data for all tasks (vs. only a subset of tasks) allows for a better estimate of the motor

network. We observed that the Schaefer parcellation schemes (400 and 1000 node versions)

outperformed the HCP-MMP parcellation. We also observed that using a more functionally

specific motor-only search space led to better CF model performance than did the broader

somato-motor search space. Even though the task activates both somatosensory and motor

cortical regions, the connectivity of these regions differ significantly, and a more accurate

model is obtained by restricting the search space based on reasonable structural and

functional assumptions. Note that the somatosensory cortex could be modeled separately, if

desired.

The amount of training and testing data required to develop robust CF models is an important

question for any applications of the CF model approach. We created models with different
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numbers of subjects and different amounts of rs-fMRI data and found that model performance

approached asymptote when there were about 20-30 training subjects and 8-12 mins of

rs-fMRI data per training subject. With respect to the testing data required, the more the

rs-fMRI data, the better the prediction performance but further improvements diminished after

32 mins of data. The quality and quantity of the t-fMRI data was observed to be a significant

performance factor, for both model training and for test validation. Subjects who yield greater

task activation and who have reliable and stable activations show better correspondence with

our model predictions highlighting that CF models based on connectivity are able to capture

the estimates of brain regions at par if not better with t-fMRI data. This suggests that the

strength of the BOLD signal and the integrity of neurovascular signaling are important

patient-specific factors. Impressively, our CF model predictions correlated with task activation

as well as the pattern of task activation correlated across scan sessions within a subject. That

is, the CF model predictions were as effective as t-fMRI in estimating an individual’s functional

brain organization in this context. While more work needs to be done to examine the limits on

CF model performance accuracy, the present findings indicate that the quality of the task data

is a major factor that should be optimized in future work. We also found that the amount of

head motion during the scanning decreased prediction accuracy. Therefore, CF model

construction is likely to benefit for utilizing experienced MRI subjects who are comfortable in

the scanner. Additionally, every effort should be made to make patients as relaxed and

comfortable in the scanner as possible.

As noted above, we found a significant influence of cortical parcellation scheme on CF model

performance. In prior work examining frontal cortical cognitive networks we observed that the
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choice of parcellation schemes had very modest influence on CF model performance. We

suggest that the key disadvantage of the HCP-MMP here may be the lack of body part

(homuncular) subdivisions in the HCP-MMP motor and somatosensory parcels. Additionally,

the HCP-MMP atlas has thin strips of motor and somatosensory parcels as compared to

block-like regions-of-interest in the Schaefer atlases. As the network node could easily be

misaligned around subjects, the connectivity matrix of our search space could change

drastically across subjects in the HCP-MMP. In contrast, it would be more robust across the

Schaefer atlases, which may help explain the improved performance using the Schaefer

scheme.

MR scanners differ considerably across manufacturers, models, and sites, and therefore the

ability to transfer a CF model constructed on one scanner to other scanning environments is

quite important. Because individual connectome measurements fundamentally depend on

correlations within a dataset, our primary measurements are largely normalized across

scanners, and thus the CF models transfer well. We applied models constructed on the HCP

dataset to the BWH dataset, and vice versa. We found that our cross-scanner accuracy across

sites (and scanners) was robust. Since the functional connectome is a within-subject measure

of correlations, this appears to be a highly portable measure, which supports cross-scanner

application of CF models. However, efforts at cross-scanner harmonization of scan sequences

and/or the metrics used could lead to further enhancements in model performance. We found

that models constructed from the very high-quality HCP dataset actually predicted the BWH

dataset better than did models constructed from other subjects from the BWH dataset.

Importantly, this illustrates the advantages of constructing CF models from the highest quality
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data, scan sequences, and most reliable subjects and then deploying these models to other

sites, allowing those sites to deploy their limited resources in other ways.

It is challenging to get the desired quality and quantity of fMRI data from clinical subjects, in

our case presurgical patients with brain tumors. The model failed around large lesions as

envisioned but for a few patients the predictions exceeded expectations highlighting the

promise of the model. Although we had limited patient data both in terms of number of patients

with motor t-fMRI data (two subjects with all the motor tasks and five subjects with partial

tasks), and the amount of rs-fMRI data (4 mins) for all our clinical subjects, our model

predictions were significant with few in the range of 0.4-0.7 which is a large effect size given

our voxelwise comparison method. The mouth movement tasks in our HCP and BWH datasets

varied slightly, i.e., tongue movement in the HCP dataset and lip pursing movement in the

clinical dataset. Considering, the lip and tongue regions are adjacent in the motor maps and

the fMRI spatial resolution is low, there could be a small albeit significant effect of the

incongruent task paradigms in our mouth predictions in the clinical dataset.

Deep learning-based classification methods could perform better than a ridge

regression-based approach but would require a large amount of data which was not available

in the current study. Our predictions in the patients who didn’t have motor t-fMRI were

consistent with our expectations of motor networks, suggesting that future CF models, once

fully validated, could be used in patients who don’t have t-fMRI data either due to the inability

to perform the task or discomfort within the scanning environment. We observed that the

amount of rs-fMRi data in the test subject or patient was a large factor in CF model
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performance. Elsewhere, we have observed that movie-watching fMRI data can robustly

support CF models in place of resting-state data (Tripathi, 2023) and we suggest that patients

may better tolerate moving-watching and thus move less over longer durations than they do

during resting-state scans or t-fMRI (Yao et. al. 2021).

Prior work has also examined ICA approaches to utilizing rs-fMRI data for predicting functional

organization. Although both CF models and ICA-based rs-fMRI methods (Tie et al., 2014; Sair

et al., 2016; Lu et al., 2017) are data-driven approaches to making individualized predictions,

the CF technique is more data driven. Since ICA-based analyses produce a large number of

candidate networks, the creation of each model requires substantial human expertise about

what the desired network should look like. Additionally, the number of components relevant to

the task may vary across individuals, potentially requiring additional expert intervention. For CF,

once the model parameters are set, applying the CF technique does not require substantial

technical expertise. We are also planning to release a publicly available toolbox of the CF

method along with a repository of models trained across various tasks and networks of the

brain to make it easier to apply carefully curated models on novel datasets.

Limitations and Future Directions

The current paper focused on the feasibility of using Connectome Fingerprinting-based

approach to predict motor regions in the cortex for presurgical patients with tumors. Our

preprocessing stages were successful on 14 of 16 patients, but failed on two patients with

large tumors. Future work should examine how to adapt the preprocessing pipeline to better

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 20, 2024. ; https://doi.org/10.1101/2024.02.16.24302895doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.16.24302895
http://creativecommons.org/licenses/by-nc/4.0/


26

handle large tumors. In the study, we used t-fMRI activations as our ground truth but that may

be sub-optimal given the reliability of the task data across runs was about 75-80%. The limited

quantity of rs-fMRI data in the clinical dataset was a major limitation of the study. Future

research would look to expand the data collection per clinical subject. Our analysis suggests

that 30-60 mins of rs-fMRI data would be ideal, but this poses significant challenges making it

impossible to obtain in many patients. We can also utilize movie-watching dataset as an

alternative to resting-state data as others have shown (Yao et al., 2021). We conjecture that

asking patients to watch a movie would lead to better and longer compliance in remaining still

in the scanner and that movie-watching data could replace resting-state data in the CF models.

The extended dataset can allow the use of more complex machine learning models like graph

neural networks for the identification of motor regions only based on functional connectivity.

Future studies should examine the prediction of higher cognitive regions associated with

functions like language, attention, episodic projection etc. for clinical patients.

Conclusions
In this study, we established the parameters that govern the prediction of motor networks using

healthy subjects’ rs-fMRI data with the Connectome Fingerprinting method and evaluated

prediction performance in a group of presurgical patients with tumors. We found that selecting

the right task contrasts (task vs. Average), search space, and parcellation scheme (Schaefer

atlas) can improve prediction accuracy. For training models, 20-30 subjects each, 8-12 mins of

rs-fMRI data, and more than two task runs gave reliable results. Subjects who move less have

better predictions, so working to reduce patient movement is important. The greater the

amount of rs-fMRI data available from testing subjects, the better the prediction accuracy but

with diminishing returns beyond ~30 mins of rs-fMRI data. We were able to make
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cross-scanner predictions which were dependent on the amount of rs-fMRI data on the testing

side more than scanner quality and scan parameters. We were able to predict strongly across

some patients, but higher quality data per subject could improve our predictions. The CF

predictions can offer the neurosurgeon a new surgical guidance tool that is a useful alternative

to the t-fMRI data for presurgical planning.
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Figures & Tables

Figure 1: Connectome Fingerprinting model. To predict task activations in novel subjects, a) we

first select the task that we seek to predict, b) the brain parcellation scheme with which we

make functional connectivity estimates and c) the search space of cortical vertices/voxels for

which we will make predictions. d) For each subject, we then compute their functional

connectome as a matrix of Pearson correlations between the resting-state time courses of

each vertex/voxel in the search space and each parcel in the parcellation (averaged over all

vertices/voxels in the parcel). We also extract task activations in the selected search space. e)

We split the data into training and testing sets, divided by subjects. The training data is pooled

across the training subjects in a long matrix. We use the training dataset (connectomes and

activations) to learn the model parameters. To generate subject-specific predictions of task

activation for the test subject pool, we apply each subject's functional connectome to the
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model. f) Finally, we validate model performance using Pearson correlation between the actual

task activations (t-stats) and the predicted values for each test subject.

Figure 2: Effect of task contrast specificity on CF model performance. CF model performance

was examined using two different baseline conditions - a non-motor visual fixation condition

(‘Fixation’) and the average of all other motor conditions (‘Average’). For all five motor

conditions, CF model performance was more accurate in the ‘vs. Average’ contrast than the

‘vs. Fixation’ contrast. a) illustrates this difference for the left hand motor conditions for one

subject. b) summarizes performance for all 69 test subjects in the HCP pool. Prediction
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accuracy of the contrasts ‘vs Average’ of others do better as compared to ‘vs Fixation’

contrasts. ** denotes statistical significance with p < 0.0001. This indicates that greater

specificity of the baseline component of the task contrast supports better CF model

performance.

Figure 3: Effect of parcellation scheme: We compare three atlas parcellations: Human

Connectome Project Multi-Modal Parcellation (HCP-MMP; 360 parcels) (Glasser et al., 2016),

Schaefer 17 networks atlas with 400 and 1000 nodes (Schaefer et al., 2017) (see
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Supplementary Figure 1). Although MMP has nearly the same number of parcels as the

Schaefer 400, the MMP treats the full body map of the motor strip as a single parcel, while the

Schaefer atlas divides up the motor homunculus into multiple parcels. a) illustrates model

predictions for right and left hand movement vs. Average contrasts using CF models built on

the three different parcellation schemes, for one subject. b) summarizes model performance for

each parcellation across all five motor conditions (vs. Average) for all 69 test subjects (HCP).

The Schaefer 1000 atlas does slightly better than the Schaefer 400 for four of the five

conditions. Both Schaefer parcellations perform much better than the HCP-MMP atlas for all

five conditions. * denotes statistical significance with p < 0.01, ** with p < 0.001 and *** with p

< 0.0001.
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Figure 4: Effect of search space extent. Activation in motor tasks can extend across both motor

and somatosensory cortices. We compared CF model performance for a combined

somatosensory-motor search space (Figure S1) and for a more restrictive motor-only cortex

search space. a) Model performance using a CF model constructed with the more restrictive

motor-only space for the left and right hand movement conditions is illustrated for one subject;

see Figure 3a for predictions in the same individual using a CF model constructed using the
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broader somatomotor search space. b) The motor search space performs better than the larger

somatomotor search space across the three parcellations. The primary result of Figure 3,

substantial performance benefits for both Schaefer parcellations vs. MMP, is repeated in this

analysis. Though the Schaefer 1000 atlas’ prediction accuracy is slightly improved over the

Schaefer 400 atlas, it comes at an additional computational cost (running time per mode is 3-4

times longer for Schaefer 1000).
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Figure 5: Resting-state data requirements for CF model predictions. We examined the influence

of the amount of resting-state data per training subject, the number of training subjects, and

the amount of resting-state data per test subject on CF model accuracy. a) Predictions of a

single model (Left Hand vs. Average) illustrate how CF model performance improves with the

amount of resting state data used to compute a functional connectome for a test subject. The
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actual task activation (left panel) is shown next to CF model predictions using the subject’s

connectome estimated from either 60 mins (middle panel) or 4 mins (right panel) of

resting-state data. Even a small amount of resting-state data on the test subject is sufficient to

support model predictions, but predictions improve with additional resting-state data and this

holds true for all the five contrasts. b) The relationship between prediction accuracy and the

amount of resting state data used for subjects in the testing dataset is examined for models

constructed from different amounts of training data. Left panel: The different colored lines

represent the number of subjects in the training dataset from 10 to 50, each with 60 minutes of

resting-state data. Right Panel: Colored lines represent the amount of resting state data per

subject for training the CF model from 2 to 60 minutes (all models constructed with 50

subjects). While the models can perform well with as little as 4 minutes of resting-state subject

per test subject, CF model performance rapidly increases as the data is increased to 15-20

minutes per test subject. Significant but diminishing returns are observed for greater amounts

of test subject data. In contrast, CF model performance quickly asymptotes at about 20-30

training subjects (left panel) and at about 8-12 minutes of resting-state data per training

subject. A model trained with twenty subjects and greater than four minutes of resting state

data per training subject performs well on a subject for whom 15-20 minutes of resting state

data have been collected. The performance continues to increase with additional test-subject

resting-state data, though with diminishing returns.
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Figure 6: Influence of task activation reliability on model performance. a) CF Prediction

accuracy versus task reliability, which was computed by correlating the pattern of task

activation t-statistics in the motor search space for one task run with those from the other task

run. Subjects with better run-to-run task activation reliability across runs have better prediction

accuracy. This also demonstrates that CF model performance, which is computed by

comparisons with actual task activation, is strongly influenced by the reliability of the task

activation in each subject. b) CF accuracy, measured by correlating predictions with actual task

activation was on par with the correlations between two sessions of task data (green bar) and

was greater than the within-session reliability comparing split halves of the data. * indicates

statistical significance with p < 0.01. These analyses reveal that CF model performance is

primarily limited by the reliability of the task data used to validate the model.
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Figure 7: Application of CF models within and across scanner environments. Data were

examined for subject pools across two scanner environments (HCP, BWH). HCP data was

examined using either 4 minutes or 60 minutes of resting-state data per subject, whereas BWH

subjects had only 4 minutes each. a) Predictions for healthy control subjects (BWH) using the

model trained on the HCP (60 mins) dataset for the left and right hand contrasts. b) Prediction

accuracies for the model predicting subjects within and across the scanner. We examined 3

sets of data: HCP subjects looking at only 4 minutes of resting-state data (HCP4), HCP

subjects looking at 60 minutes of data (HCP60), healthy controls in our clinical scanner with
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four minutes of resting-state data (BWH). The first part of the term on the x-axis refers to the

training data set, and the second refers to the testing data. e.g., HCP4->HCP60 refers to the

model trained using four mins of resting state data in the HCP dataset and applied to a

different set of HCP subjects with 60 minutes of (test) resting-state data. The compared training

and testing data sets always examined different groups of participants. We see that

within-scanner predictions are better for the HCP dataset. Cross-scanner predictions are

strongly dependent on the amount and quality of resting state data on the testing side.

Cross-scanner predictions of the BWH data from HCP data sets were in all cases as accurate

as the within-scanner predictions using the BWH data. These data support the feasibility of

developing CF models from data collected off-site and then applied to data collected in clinical

scanning environments.
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Figure 8: Presurgical patient prediction: a) Patient #10 with a Oligodendroglioma (highlighted in

red box in the sagittal, coronal and axial planes) in the left frontal post central region extending

into superior frontal sulcus. b-f) Prediction using HCP60 model on the patient for different

contrasts (LH-AVG, RH-AVG, LF-AVG, RF-AVG, T-AVG) in volume space. Top panel is the

actual activations and the bottom panel are the CF model predictions with a high degree of

accuracy for hand and foot task activations (r > 0.3, p < 0.0001).
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Figure 9: Patient prediction: a) Another presurgical patient (#16) with a grade IV glioblastoma

(highlighted in red in the sagittal, coronal and axial planes) around the motor region in left

frontal cortex. b-f) Prediction using the HCP60 model on the patient for different contrasts
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(LH-AVG, RH-AVG, LF-AVG, RF-AVG, T-AVG) in volume space. The top panel is the actual

activations and the bottom panel are the CF model predictions. Although this subject produced

very little task activation for either the right or left foot contrasts, the CF models made robust

predictions. This illustrates the capacity of CF models to reveal functional organization in

conditions where standard task-based fMRI fails.

Figure 10: Patient prediction: a) Another presurgical patient (#11) with a grade III astrocytoma in

the left prefrontal cortex (highlighted in red in the sagittal, coronal and axial planes). b-d)
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Prediction using the HCP60 model on the patient for different contrasts (T-AVG, LH-AVG, and

RH-AVG) in volume space. The top panel is the actual activations and the bottom panel are the

CF model predictions. The model significantly predicts the mouth (tongue) and the left hand

motor regions but the overlap is not strong for the right hand motor region on the left

hemisphere possibly due to the presence of the large tumor.
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Figure 11: Patient prediction: a) Motor network predictions for patient 14 with a grade II diffuse

astrocytoma in the left fronto-temporal region (highlighted in red in the sagittal, coronal and

axial planes). b-d) CF model predictions using the HCP60 model on the patient for different

contrasts (T-AVG, LH-AVG, and RH-AVG) in volume space. The top panel is the actual motor

task activations and the bottom panel is the CF model predictions. For this patient, our model

performs well (p < 0.0001) across all the contrasts.
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Figure 12: Mouth (tongue) motor network predictions for patients 3 and 15. a) Patient (#3) had

a grade III anaplastic astrocytoma in the left fronto-temporal cortex (highlighted in red in the

sagittal, coronal and axial planes). b) Mouth movement predictions in the right hemisphere

were non significant for this subject. c) Another patient (#15) had a grade II diffuse astrocytoma

in the prefrontal cortex, dorsal to the central sulcus. d) CF model predictions using the HCP60
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model on the patient for mouth motor representation (T-AVG) in volume space. The model

significantly predicted (p < 0.001) the voxel-wise task activations but the effect size was small.
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Figure 13: Motor network predictions for patient 5 with a) a grade II oligodendroglioma along

the right parietal cortex spreading across frontal regions (highlighted in red in the sagittal,

coronal and axial planes). b-e) CF model predictions using the HCP60 model on the patient for

different hand and foot contrasts (LF-AVG, RF-AVG, LH-AVG, and RH-AVG) in volume space.

The model predicted significantly for the left limb predictions in the right hemisphere but failed

to predict well for the right limb activations in the left hemisphere.

Figure 14: Presurgical patient predictions in the absence of task fMRI data: a) Predicting two

patients without motor task data. Red boxes represent the tumor in the three planes. The
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subject (#4) on the left has a glioblastoma in the left inferior temporal cortex whereas the

subject (#6) on the right has a glioneuronal tumor on the left superior temporal lobe. b)

Predictions across the five conditions in the volumetric space. Warm colors represent both

hand conditions, cool colors represent the foot conditions and green colors represent the

tongue movement condition. c) Predictions across the five contrasts in the surface space.

Table 1: Patient information in the clinical BWH dataset. We list the patient diagnosis, tumor

location, tumor volume in cubic centimeters, any preoperative disruption in motor function,

number of motor runs in the fMRI dataset (H - Hand, F - Foot, L - Lip pursing/Mouth) and if

structural and functional preprocessing was successful or not.

No. Gender Diagnosis Tumor
Location

Tumor
Volume
(cm3)

Preop
Motor

Function

Motor
Runs

Preproc
Success

ful
1 F Glioblastoma

WHO Grade IV
Left Parietal 13.40 Normal NA No

2 M Metastatic
Melanoma

Left Frontal 8.14 Normal NA Yes

3 M Anaplastic
Astrocytoma
WHO Grade III

Left Frontal 40.9 Normal L Yes

4 M Glioblastoma
WHO Grade IV

Left Temporal 7.40 Normal NA Yes

5 M Oligodendroglio
ma WHO Grade II

Right Parietal 30.00 Normal H, F Yes

6 F Papillary
Glioneuronal
Tumor WHO
Grade I

Left Temporal 0.13 Normal NA Yes

7 F Oligodendroglio
ma WHO Grade II

Left Temporal 51.52 Normal NA Yes

8 M Glioblastoma
WHO Grade IV

Left Temporal 19.81 Normal NA Yes
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9 M Rare
Gemistocytic
Astrocytes

Right Temporal 1.69 Normal NA Yes

10 F Oligodendroglio
ma WHO Grade II

Left Frontal 10.86 Normal H, F, L Yes

11 F Anaplastic
Astrocytoma
WHO Grade III

Left Frontal 149.5 Normal H, L Yes

12 F Metastatic High
Grade Serous
Carcinoma

Left Temporal 4.18 Normal NA No

13 M Glioblastoma
WHO Grade IV

Left Temporal 12.72 Normal NA Yes

14 M Diffuse
Astrocytoma
WHO Grade II

Left Frontal 56.55 Normal H, L Yes

15 M Diffuse
Astrocytoma
WHO Grade II

Left Frontal 22.90 Normal L Yes

16 M Glioblastoma
WHO Grade IV

Left Frontal 0.38 Right-sid
ed

weaknes
s

H, F, L Yes

Table 2: Prediction accuracy (r) means and standard deviations for the various contrasts across

various parcellations schemes (HCP-MMP, Schaefer1000, Schaefer400) and search spaces

(somatomotor and motor only). The last three columns depict Tukey's post hoc comparisons

among the various parcellations schemes for each contrast. 

Search Space

Somatomotor
 

HCP-MM
P

Sch1000 Sch400 Sch1000 vs
MMP

t(136), p

Sch400 vs
MMP

t(136), p

Sch1000 vs Sch
400

t(136), p

LF-Avg 0.473  ±
.135

0.645  ±
0.159

0.627
±0.154

17.82,  

p < 0.00001

15.51, 3.71,

p = 0.0004
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p <
0.00001

LH-Avg 0.473  ±
0.130

0.678  ±
0.131

0.661
±0.134

20.28,

p < 0.00001

17.67,

p <
0.00001

5.82,

p < 0.00001

RF-Avg 0.468  ±
0.128

0.630  ±
0.122

0.631
±0.126

17.28,

p < 0.00001

21.42,

p <
0.00001

0.24,

p < 0.84

RH-Avg 0.474  ±
0.107

0.673  ±
0.115

0.667
±0.114

22.87,

p < 0.00001

22.96,

p <
0.00001

3.57,

p < 0.00001

T-Avg 0.517  ±
0.094

0.689  ±
0.107

0.678
±0.105

20.89,

p < 0.00001

19.30,

 p <
0.00001

6.52,

p < 0.00001

Motor         t(136), p  t(136), p  t(136), p

LF-Avg 0.552 ±
0.135

0.689 ±
0.173

0.674
±0.176

14.60,

p < 0.00001

12.57,

p <
0.00001

3.22,

p = 0.002

LH-Avg 0.548 ±
0.145

0.744 ±
0.136

0.730
±0.133

16.54,

p < 0.00001

15.82,

p <
0.00001

6.47,

p < 0.00001

RF-Avg 0.576 ±
0.149

0.719 ±
0.122

0.686
±0.129

13.42,

p < 0.00001

11.07,

p <
0.00001

10.95,

p < 0.0001

RH-Avg 0.584 ±
0.120

0.741 ±
0.107

0.731
±0.108

14.19,

p < 0.00001

13.97,

p <
0.00001

4.52,

p < 0.00001

T-Avg 0.639 ±
0.117

0.757 ±
0.124

0.745
±0.125

13.81,

p < 0.00001

12.38,

 p <
0.00001

6.23,

p < 0.00001
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