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Abstract  
Immune dysfunction is implicated in the aetiology of psychiatric, neurodevelopmental, and 
neurodegenerative conditions, but the issue of causality remains unclear impeding attempts 
to develop new interventions. We have tested evidence for causality for 735 immune 
response-related biomarkers on 7 neuropsychiatric conditions, using cutting-edge genomic 
causal inference methods (Mendelian randomization and genetic colocalization) applied to 
genomic data on protein and gene expression across blood and brain. We provide robust 
evidence of causality for 21 biomarkers, including two previously unreported (LATS1, and 
FCN1), confirming a role of both brain specific and systemic immune response in the 
pathogenesis of several neuropsychiatric conditions especially schizophrenia, Alzheimer’s 
disease, depression, and bipolar disorder. Furthermore, 18 of the identified biomarkers are 
therapeutically tractable, including ACE, TNFRSF17, and CD40, with drugs approved or in 
advanced clinical trials, offering an opportunity for repurposing existing drugs for 
neuropsychiatric indications.  
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Introduction 

Psychiatric, neurodevelopmental, and neurodegenerative conditions (henceforth, 

neuropsychiatric conditions) are among the leading causes of disability worldwide1,2. These 

conditions are typically chronic, and affect mood, perception, cognition, and behaviour. 

Biological pathways contributing to these conditions are poorly understood, impeding 

attempts to identify effective new interventions3. For example, approximately one in three 

individuals with depression or schizophrenia do not respond to current medications which 

primarily target monoamine neurotransmitters4. This suggests that the current one-size-fits-

all approach to treatment for these conditions may not be tenable. Therefore, identifying 

biological pathways underpinning neuropsychiatric conditions to help prioritise novel 

intervention targets remains a key priority for mental health research5. 

Over the last two decades immune dysfunction has emerged as a promising mechanistic 

candidate for several neuropsychiatric conditions. For example, immune activating drugs 

induce depressive symptoms in hepatitis C patients6 and healthy volunteers7. Meta-analyses 

of case-control studies confirm atypical levels of cytokines in blood plasma and 

cerebrospinal fluid of individuals with schizophrenia, depression, and bipolar disorder8,9. 

Neuroimaging with positron emission tomography shows evidence of neuroinflammation in 

acute depression10. Nationwide cohort studies indicate associations between autoimmune 

conditions, infections and neuropsychiatric conditions, such as schizophrenia11,12, attention 

deficit hyperactivity disorder (ADHD)13, Alzheimer’s disease14, and depression15.  

However, inferring causality remains an important outstanding issue because the observed 

associations could be result of residual confounding or reverse causation. Mendelian 

randomisation (MR), a genetic causal inference method that can minimise these limitations 

by using genetic variants regulating levels/activity of biomarkers as proxies16–18, has 

provided some evidence for a potential causal effect of IL-6 and CRP in depression and 

schizophrenia19,20. RCTs suggest that broad spectrum anti-inflammatory drugs improve 

mood and psychotic symptoms in people with depression21 and schizophrenia22, but recent 

RCTs of monoclonal antibodies targeting specific cytokine pathways have yielded null 

findings23–25. This highlights the need for strengthening causal inference using 

complementary techniques and data sources to inform appropriate selection of therapeutic 

target/agent in future trials. Furthermore, as existing studies have typically focused on a 

small number of immunological biomarkers, a comprehensive approach allowing 

investigations across hundreds of available biomarkers is necessary to obtain a more 

complete understanding of the role of immune dysfunction in neuropsychiatric conditions. 
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We examined the causal influence of 735 genetically proxied immunological biomarkers on 

seven major neuropsychiatric conditions (schizophrenia, bipolar disorder, depression, 

anxiety, ADHD, autism, and Alzheimer’s disease), using cutting-edge genomic causal 

inference methods, MR and genetic colocalisation. We harnessed quantitative trait loci 

(QTL) data, capturing protein abundance (pQTL) and protein-coding gene expression 

(eQTL) in blood and brain, to gain mechanistic insights into potential systemic (blood) and 

brain-specific effects. We conducted a series of sensitivity analyses to examine the 

robustness of our findings, including the possibility of reverse causation. We used a 

systematic three-tier approach to appraise evidence of causality, by grouping biomarkers 

based on increasingly stringent criteria. Evidence of causality was complemented by the 

assessment of therapeutic tractability of identified causal biomarkers to inform future 

translation. 

Materials & Methods 

Please see Figure 1 for an overview.  

Genome-wide association studies (GWAS) of immunological biomarkers 

Blood plasma derived protein abundance (blood pQTLs) 

We used data from the largest genomic investigation of the human plasma proteome 

conducted in 34,557 European ancestry participants (discovery sample) of the UK Biobank 

(UKB)26 cohort, comprising 2,941 GWAS for 2,923 unique proteins assayed using the Olink 

Explore 3072 platform. Of these, we selected all proteins included in the Olink Inflammation 

panels I & II (n=735), which represent the most comprehensive collection of immunological 

biomarkers currently available (Supplementary Table 1). These 735 proteins formed the 

basis of our subsequent data extraction strategy from GWAS on blood and brain protein 

coding gene expression, and brain protein abundance. Details on the Olink Explore panels, 

assaying and genotyping in UKB can be found in the original publication26.     

Blood cell derived protein coding gene expression (blood eQTLs) 

We used data from the eQTLGEN Phase I27 study of blood-cell derived gene expression in a 

sample of 31,684 individuals. The study assessed the expression of 19,942 genes, including 

561 immunological protein coding genes present in the Olink Inflammation panels I & II. 

Brain tissue derived protein abundance (brain pQTLs) 

To gain insights into potential brain specific effects, we additionally looked up the proteins of 

interest in BrainQTL, the most comprehensive investigation of the brain proteome currently 

available28. It includes levels of 7,376 proteins in the dorsolateral prefrontal cortex (DLPFC) 

of 330 individuals from the Religious Orders Study (ROS) and Memory and Ageing Projects 
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(MAP). Brain pQTLs were available for 299 immunological proteins present in the Olink 

Inflammation panels I & II.  

Brain tissue derived protein coding gene expression (brain eQTLs) 

We used the latest meta-analysis of brain cortex gene expression (MetaBrain29) conducted 

in 6,601 RNA-seq samples (N=2,970) and covering 18,396 genes. This includes GWAS 

summary data for the expression of 715 genes encoding 715 proteins of interest in the brain 

cortex. Although MetaBrain provided data across different brain regions, the sample sizes 

were relatively small, and for this reason we used data for brain cortex rather than other 

brain regions (e.g., hippocampus, N= 168).  

Further details on the study samples, genotyping and QTL analyses from UKB, eQTLGEN, 

BrainQTL, and MetaBrain, can be found in the original publications26–29. 

GWAS of neuropsychiatric conditions 

We used the latest (at the time of analysis) available GWAS summary data on seven 

neuropsychiatric conditions. Specifically, two neurodevelopmental: autism30 (Ncases= 

18,381, Ncontrols= 27,969), attention deficit hyperactivity disorder (ADHD)31 (Ncases= 

38,691, Ncontrols= 186,843); four psychiatric: anxiety32 (Ncases= 7,016, Ncontrols= 14,745), 

depression33 (Ncases= 294,322, Ncontrols= 741,438), bipolar disorder34 (Ncases= 41,917, 

Ncontrols= 371,549), schizophrenia35 (Ncases= 76,755, Ncontrols= 243,649); and one 

neurodegenerative condition: Alzheimer’s disease36 (Ncases= 71,880, Ncontrols= 383,378). 

Details on the study samples, phenotype definition and genotyping can be found in the 

original publications30–36.  

Two-sample Mendelian randomization (MR) 

MR utilises the special properties of germline genetic variants to strengthen causal inference 

within observational data16. Here we implemented MR as an instrumental variables analysis 

using common genetic variants as instruments. The method can yield unbiased causal effect 

estimates under assumptions that the instruments should satisfy: (1) they must be 

associated with the exposure, (2) they must not be associated with any confounders of the 

exposure outcome associations, (3) they should operate on the outcome entirely through the 

exposure (i.e., no horizontal pleiotropy)37.  

For the present study, we performed two-sample MR, in which instrument-exposure and 

instrument-outcome effect sizes and standard errors were extracted from separate GWAS 

conducted in independent samples but representative of the same underlying population38. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2024. ; https://doi.org/10.1101/2024.02.16.24302885doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.16.24302885
http://creativecommons.org/licenses/by/4.0/


5 

 

Instrument selection 

For each exposure (immunological protein abundance, protein-coding gene expression), we 

used as genetic instruments common genetic variants that met the genome-wide 

significance threshold (p≤5*10-08) and were independent (r2<0.01; 10,000 kb). We assessed 

the strength of each instrument by estimating their F-statistic (F≥10 indicates adequate 

instrument strength)39. Genetic instruments with an F-statistic <10 were excluded to 

minimise weak instrument bias. As instruments, we selected a total of 1,791 plasma pQTLs 

for 644 unique proteins; 1,474 blood cell-derived eQTLs for 501 protein coding genes; 32 

DLPFC pQTLs for 32 proteins; 627 brain cortex eQTLs for 421 protein-coding genes.  

For blood pQTLs (UKB) and eQTLs (eQTLGEN), both cis and trans genetic instruments 

were available. Genetic instruments were categorised as cis-acting when they were located 

within proximity (±1Mb) to the gene regulatory region, and as trans-acting when located 

outside this window. Common genetic variants acting in cis to the protein-encoding gene are 

more likely to influence mRNA expression and protein levels (thus being less pleiotropic)40. 

On the other hand, trans-acting variants, are more likely to be pleiotropic due to their 

distance from the protein-encoding gene, but their inclusion can potentially increase the 

proportion of variance explained in the exposure, increasing the statistical power for MR 

analyses40,41. 

For brain pQTLs and eQTLs only cis-acting variants were used, because the BrainQTL study 

reported cis-pQTLs only. The MetaBrain study reported only the statistically significant trans-

eQTLs, without information on the respective regions around them, rendering genetic 

colocalization analyses for the trans-acting variants impossible (details on genetic 

instruments used across analyses in Supplementary Tables 2-5).  

Statistical Analyses 

For each exposure, genetic instrument effect sizes and standard errors were extracted from 

each neuropsychiatric condition GWAS, and the variant-exposure, variant-outcome alleles 

were harmonised to ensure that effect sizes correspond to the same allele. If the exposure 

had only one associated variant, Wald ratio was used to generate causal effect estimates, 

and two-term Taylor expansion was used to approximate standard errors29,42. When more 

than one variant were available for an exposure, inverse variance weighted (IVW)43 

regression was used. For IVW effect estimates, we also estimated Wald ratio estimates for 

each genetic instrument, to gain greater insight into the potential effects of individual variants 

(although these Wald ratio estimates were not prioritised in subsequent causal evidence 

appraisal, considering that the available multi-variant instruments for the respective IVW 

were likely to provide more reliable causal evidence). Details on the Wald ratio and IVW 
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methods can be found in Supplementary Note 1. We used the Benjamini-Hochberg method44 

to control false discovery rate (FDR) across our analyses (FDR<5%). In addition, we 

appraised findings using a strict Bonferroni-corrected p-value threshold 1.8*10-06 (0.05/ 

27,468).  

Genetic colocalisation 

Colocalisation analysis can complement MR by elucidating a distinct aspect of the identified 

causal relationship between an exposure and an outcome45. Specifically, colocalisation 

allows the assessment of the hypothesis that any identified causal effects are driven by the 

same causal variant influencing both exposure and outcome, instead of distinct causal 

variants that are in linkage disequilibrium (LD) with each other46. In practice, the approach 

harnesses SNP coverage within the same specified locus for two traits of interest and tests 

whether the association signals for each trait at the locus are suggestive of a shared causal 

variant46.  

Considering that genetic instruments used in our analyses comprised either single variants 

(MR Wald ratio estimates) or multiple cis and/or trans variants (MR IVW estimates), we 

followed three distinct approaches for variant selection for colocalisation analyses to help 

prioritise (where possible) variants with the highest biological relevance for the exposure of 

interest. Specifically, when the instrument consisted of variants of which at least one was cis, 

the cis variant(s) was tested for colocalisation. If the instrument consisted of multiple trans 

variants, we used the trans variant with the smallest p-value for colocalisation. Finally, if the 

instrument was a single variant, the variant was tested for colocalisation regardless of 

whether it was cis or trans.    

We extracted regions within ±500KB around the instrumented variant and implemented the 

algorithm described by Robinson et al47 to perform pairwise conditional and colocalisation 

(PWCoCo) analysis, which assesses all conditionally independent signals in the exposure 

dataset region against all conditionally independent signals in the outcome data. Genotype 

data from mothers in the Avon Longitudinal Study of Parents and Children (ALSPAC) 

cohort48 were used as the LD reference panel (N= 7,733; for ALSPAC cohort details and 

available genotype data see Supplementary Note 2). We ran these analyses using the 

default settings, as suggested by the authors in the original publications41,46. Evidence of 

colocalisation was considered if there was an H4 posterior probability of both traits having a 

shared causal variant ≥ 0.8, as proposed by the authors of the method.  

Steiger filtering 

We performed Steiger filtering to assess whether causal effect estimates were influenced by 

reverse causation49. The method assesses whether the genetic variants proxying the 
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exposure explain more variance in the outcome, which, if true, suggests that the primary 

phenotype influenced by the variant is the outcome rather than the exposure. 

Drug target prioritisation and validation 

We used a three-tier system to prioritise evidence of causality for the biomarkers, and to 

explore their potential as drug targets. Tier A included findings that had evidence which 

passed the Bonferroni threshold (≤1.8*10-06), passed Steiger filtering, and passed 

colocalisation (H4≥0.8). Tier B included findings that passed the FDR threshold (<%5), 

passed Steiger filtering, and passed colocalisation (H4≥0.8). Additionally, for both Tiers A 

and B, the biomarker had to be proxied by a genetic instrument which was either a cis 

variant or in the case of multiple available variants, it included at least one cis variant. Tier C 

included findings where the MR estimates were from trans variants but fulfilled the same 

requirements as Tier B.  

When there was Tier A, B or C evidence for a biomarker across different QTLs (eQTL & 

pQTL) and tissue types (brain & blood), we performed genetic colocalisation analyses using 

PWCoCo between the QTLs of the biomarker. This approach allowed us to investigate 

whether the effects on the outcome were driven by the same underlying variant across QTLs 

and tissue types, which increases reliability of that molecular marker’s relationship with the 

condition50.  

We looked up potential therapeutic tractability of the identified Tier A, B or C biomarkers 

using small molecule, antibody binding, and/or any other treatment modality51 in the Open 

Targets Platform (https://platform.opentargets.org/). The Open Targets Platform is a freely 

available online resource for drug target identification and prioritisation that integrates 

genetic and genomic data with existing evidence on protein structure and function, and 

information on approved drugs, and ongoing clinical trials51,52. Open Targets have 

categorised target tractability based on eight buckets/groups for small molecules and nine 

buckets/groups for antibodies (see https://github.com/chembl/tractability_pipeline_v2 ). In 

order to aid interpretation, we categorised tractability into three mutually exclusive groups, in 

line with previous work53: Group 1. Strong druggability evidence: buckets 1, 2 & 3 for small 

molecules, antibodies, other modalities; Group 2. Likely or potentially druggable: buckets 4-8 

for small molecules, 4 & 5 for antibodies; Group 3: Little or unknown druggability: remaining 

buckets. Data retrieved on 04/12/2023. 

Enriched pathways and phenotypes for the identified causal biomarkers 

To aid the interpretation of our findings and elucidate potential biological pathways 

underlying the identified causal biomarkers, we performed gene-set enrichment analyses 

using GeneNetwork54. Developed by the MetaBrain consortium, GeneNetwork allows 
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enrichment analyses using terms available on the Gene Ontology (GO), KEGG and 

Reactome pathway resources, as well as the Human Phenotype Ontology (HPO) database. 

We used the GeneNetwork browser (analyses conducted on 12/12/2023) and entered in the 

analyses the biomarkers that satisfied the Tier A, B and C criteria for each neuropsychiatric 

condition. These analyses were conducted only for neuropsychiatric conditions with at least 

five identified causal biomarkers (satisfying Tier A, B, or C criteria).  

Bi-directional two-sample MR 

To assess reverse causation, we tested the causal effects of genetic liability to each 

neuropsychiatric condition on circulating immunological proteins. Genetic instruments for 

each condition were extracted from the respective GWAS using a p-value threshold of 

≤5*10-08 (r2<0.01; 10,000 kb). The only exceptions were autism and anxiety, for which a p-

value threshold of ≤5*10-07 was used as there were insufficient instruments at the genome-

wide significance threshold (2 and 1 instrument respectively). Details on the instruments for 

each neuropsychiatric condition can be found in Supplementary Table 7. Genetic 

instruments were then extracted from the GWAS of the immunological proteins (735 

proteins)26 and their alleles were harmonised. Causal effects were estimated using the IVW 

approach (Supplementary Note 1)43. Due to the number of tests conducted (7 

phenotypes*735 immunological biomarkers available in UKB) we used Bonferroni correction 

(p≤9.7*10-06).  

Software  

Analyses were carried out using the computational facilities of the Advanced Computing 

Research Centre of the University of Bristol (http://www.bris.ac.uk/acrc/). Blood plasma 

pQTL data and blood cell derived eQTL data were extracted and processed using the 

gwasvcf package version 1.0 in R (https://github.com/MRCIEU/gwasvcf)55. Two-sample MR, 

Steiger filtering, and bi-directional MR analyses were conducted using functions from the 

TwoSampleMR R package version 0.5.6 (https://github.com/MRCIEU/TwoSampleMR)56 and 

the mrpipeline R package (https://github.com/jwr-git/mrpipeline). The PWCoCo algorithm 

was implemented using the Pair-Wise Conditional analysis and Colocalisation analysis 

package v1.0 (https://github.com/jwr-git/pwcoco)47. Pathway and phenotype enrichment 

analyses were conducted using the GeneNetwork browser v2.0 

(https://www.genenetwork.nl/)54.  

Data availability 

Across all analyses published summary-level data were used and no patient identifiable 

information was included. UKB blood pQTL data can be accessed through the portal: 

http://ukb-ppp.gwas.eu. deCODE blood pQTL data can be accessed through the platform: 
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https://www.decode.com/summarydata/. Brain pQTL data can be accessed through the 

Synapse portal: https://www.synapse.org/#!Synapse:syn24172458. Blood eQTL data can be 

accessed through https://www.eqtlgen.org/phase1.html. Brain cortex eQTL data can be 

accessed through the MetaBrain platform: https://www.metabrain.nl/. GWAS data on ADHD, 

autism, anxiety, bipolar disorder, and schizophrenia can be accessed at: 

https://pgc.unc.edu/for-researchers/download-results/. GWAS data on depression can be 

accessed at: https://ipsych.dk/en/research/downloads/. GWAS data on Alzheimer’s disease 

can be accessed at: https://ctg.cncr.nl/software/summary_statistics.  

Code availability 

A version of the code at time of publication will be available at the study-dedicated GitHub 

repository. 

Results 

Immunological drivers for neuropsychiatric conditions  

In total, we found evidence for 270 potentially causal relationships corresponding to 122 

unique immunological biomarkers that passed the FDR<5% (Supplementary Table 7). 

Among these 21 unique biomarkers met our strict Tier A, B or C criteria for causal evidence. 

One biomarker met the most stringent Tier A criteria (i.e., passed the stringent Bonferroni 

threshold:1.8*10-06, Steiger filtering, was supported by evidence of colocalisation, and the 

instrument consisted of cis variants). Twenty-one biomarkers (4 unique proteins and 17 

genes) met Tier B criteria (i.e., passed the FDR threshold, Steiger filtering, were supported 

by evidence of colocalisation, and the instruments consisted of cis variants). Six effects 

corresponding to 4 unique proteins met Tier C criteria (genetic instrument consisted of trans 

variants and fulfilled the Tier B requirements). Schizophrenia (n=64), depression (n=33), 

bipolar disorder (n=31) and Alzheimer’s disease (n=23) had the highest number of 

potentially causal immunological markers after FDR correction.   

Condition specific findings 

Neurodevelopmental conditions  

For autism, we identified 14 potentially causal immunological biomarkers after FDR 

correction, two of which met Tier B/C criteria. The effect of genetically proxied expression of 

ANXA1 in blood tissue (FDR= 0.002; H4>0.8) fulfilled the Tier B criteria. Genetically proxied 

levels of CEBPA in blood fulfilled the Tier C criteria (FDR=0.01, H4>0.8). For ADHD, 9 

potentially causal immunological biomarkers were identified after FDR, of which genetically 

proxied expression of GCHFR in blood fulfilled the Tier B criteria (FDR=0.006; H4>0.8). The 

results are visualised in Figures 2, 3, and detailed MR and colocalisation findings are 

available in Supplementary Tables 7 and 8. 
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Psychotic and affective disorders 

We found 64 potentially causal immunological biomarkers for schizophrenia after FDR 

correction, of which 8 met the Tier B criteria. Specifically, we found evidence of causal 

effects for genetically proxied expression of ACE in blood (FDR=0.008; H4>0.8) and brain 

cortex (FDR=0.002; H4>0.8), genetically proxied expression of PDIA3 (FDR= 3*10-05; 

H4>0.8) in blood, genetically proxied expression of TNFRSF17 (FDR=0.02; H4>0.8), CD40 

(FDR=0.004; H4>0.8), SERPINI1 (FDR=0.05; H4>0.8), EVI5 (FDR=0.003, H4>0.8) in brain 

cortex, and genetically proxied levels of RABEP1 (FDR= 0.01; H4>0.8), and DNER 

(FDR=0.008; H4>0.8) in blood. Furthermore, a blood trans pQTL of BTN2A1 (FDR= 2*10-15; 

H4>0.8) and a blood trans pQTL of MYOM3 (FDR=0.01, H4>0.8) fulfilled the Tier C criteria. 

See Figure 4, Supplementary Tables 7 and 8. 

Among the 33 potentially causal immunological biomarkers identified for depression, 

genetically proxied expression of AMN (FDR=0.03, H4<0.8) and EP300 (FDR=2*10 -06) in 

blood and genetically proxied expression of FCN1 (FDR=0.02, H4>0.8) and LATS1 

(FDR=0.006; H4>0.8) in the brain cortex fulfilled the Tier B criteria. In addition, genetically 

proxied levels of BTN2A1 in blood (FDR=4*10-06; H4>0.8) fulfilled the Tier C criteria. See 

Figure 5, Supplementary Tables 7 and 8.   

For bipolar disorder, we found 31 potentially causal biomarkers. Among these, genetically 

proxied levels of CD40 (FDR=0.01; H4>0.8) in blood and genetically proxied expression of 

CD40 in the brain cortex (FDR=0.002, H4>0.8), as well as genetically proxied expression of 

DNPH1 (FDR=0.04; H4>0.8) in blood fulfilled the Tier B criteria. Genetically proxied levels of 

BTN2A1 in blood (FDR=3*10-05, H4>0.8) fulfilled the Tier C criteria (Figure 6, Supplementary 

Tables 7 and 8).  

No estimated causal effects of genetically proxied immunological biomarkers on anxiety 

surpassed the FDR threshold (<5%; Supplementary Tables 7 and 8).  

Alzheimer’s disease 

We identified 23 potentially causal biomarkers for Alzheimer’s disease. Among these, 

genetically proxied expression of CR1 (FDR= 4*10-14; H4>0.8) in the brain cortex fulfilled the 

Tier A criteria. In addition, genetically proxied expression of ACE in blood (FDR= 0.006; 

H4>0.8) and brain (FDR=0.001; H4>0.8) as well as genetically proxied levels of APOE in 

blood (FDR= 3*10-06; H4>0.8) fulfilled the Tier B criteria. Genetically proxied levels of KLRB1 

(FDR=0.001, H4>0.8) fulfilled the Tier C criteria (Figure 7, Supplementary Tables 7 and 8).  

Drug target identification, prioritisation, and validation 

In total, 18 unique biomarkers meeting our strict Tier A, B or C criteria for causal evidence 

are therapeutically tractable (Table 1). Notably, ACE, which had Tier B evidence for both 
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schizophrenia and Alzheimer’s, has approved drugs for cardiovascular indications. CD40 

(Tier B evidence for both schizophrenia and bipolar disorder) has drugs in clinical trials. 

Furthermore, TNFRSF17 (Tier B evidence for schizophrenia) has approved drugs. See 

Supplementary Table 9 for details on drugs approved or in clinical trials for ACE, CD40 and 

TNFRSF17. 

Importantly, the effects of ACE on schizophrenia and Alzheimer’s were supported by both 

blood and brain eQTLs. The effects of CD40 on bipolar disorder were supported by a blood 

pQTL and a brain eQTL. The brain eQTL was also causal for schizophrenia (Figure 8a). We 

performed colocalisation analyses between the blood and brain eQTLs for ACE as well as 

the blood pQTLs and brain eQTL for CD40. We found evidence suggesting that the effects 

of ACE were driven by a shared underlying variant (H4=0.91; Figure 8b), whereas the 

effects of CD40 were driven by distinct causal variants (H3=0.99).   

Enriched pathways and phenotypes for the identified causal biomarkers 

Analyses were conducted for schizophrenia and depression, as these had enough (≥5) 

causal biomarkers satisfying the Tier A, B, or C criteria. For schizophrenia, 10 biomarkers 

were entered in GeneNetwork. The strongest evidence of enrichment (p≤2*10-05) was for 

reactome pathways belonging to the “metabolism of RNA” superpathway, which has been 

implicated in a number of neurological conditions57. We also found strong enrichment for 

HPO developmental phenotypes related to fetal abnormalities including congenital 

malformation of the great arteries (p=3*10-04) and thickened nuchal skin fold (p=2*10-03). For 

depression, the strongest evidence of enrichment (p≤6*10-04) was for reactome pathways 

belonging to the “DNA repair” superpathway. This superpathway has been implicated in 

cancer58. Similarly, there was strong evidence of enrichment for HPO cancer phenotypes. 

See Supplementary Table 10 for all enrichment findings, and Figure 9 for the five most 

significantly enriched pathways and phenotypes for schizophrenia and depression related 

biomarkers.  

Evidence of reverse causation 

In bidirectional MR analyses, none of the estimated causal effects of genetic liability to 

autism, ADHD, schizophrenia, bipolar disorder, or anxiety on levels of immunological 

proteins, surpassed the Bonferroni correction threshold (p≤9.7*10-06). However, we found 

evidence of causal effects of genetic liability to depression on levels of CXCL17 (p=5*10-08), 

PRSS8 (p=7*10-07) and TNFRSF13B (p=8*10-06). Similarly, we found that genetic liability to 

Alzheimer’s disease had causal effects on levels of APOA2 (p=8*10-09), APOE (p=1*10-18), 

APOF (p=6*10-12), ENPP7 (p=5*10-07), IL32 (p=3*10-11), C1orf56 (p=5*10-15), SMPDL3A 

(p=1*10-07), VNN1 (p=5*10-06). See Supplementary Table 11.  
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Discussion 

Recent decades have seen limited progress in new therapeutics for neuropsychiatric 

conditions. Despite converging evidence implicating immune dysfunction in several 

neuropsychiatric conditions, the success of immunotherapy clinical trials remains elusive. 

One key barrier is the lack of a clear understanding of causality to inform appropriate 

selection of therapeutic target/agent. In this study, using cutting-edge genomic causal 

inference methods applied to largescale proteomic and gene expression data from blood 

and brain, we have assessed evidence for causality for the largest available selection of 

immune-response related biomarkers in relation to seven neuropsychiatric conditions. We 

provide robust evidence for causality for 21 immunological biomarkers confirming that both 

brain specific and systemic immune response contribute to pathogenesis of neuropsychiatric 

conditions, especially schizophrenia, Alzheimer's disease, depression, and bipolar disorder. 

Our work highlights the potential opportunity for repurposing existing drugs for 

neuropsychiatric indications. 

Novel immunological biomarkers 

Among putative causal biomarkers identified, two related to depression are novel. 

Specifically, LATS1 (6q25.1) and FCN1 (9q34.3) are part of a broad network of genes 

related to type I interferon (IFN-I) signalling59,60, which  is implicated in inhibition of viral 

infections and tumour growth suppression61. Our finding is consistent with induction of 

depression in hepatitis C patients following treatment with interferon alpha6, which binds to 

and activates IFN-1 receptors. The potential IFN-1 mediated tumour related effect of these 

genes are in line with our gene-set enrichment findings indicating significant enrichment for 

cancer-related phenotypes. Of note, our results correspond to LATS1 and FCN1 expression 

in brain cortex, not blood. IFN-I type signalling in brain has been implicated in brain aging, 

Alzheimer’s disease, and multiple sclerosis62,63. Therefore, the possibility of distinct 

tissue/organ specific effects of these genes for different conditions requires further 

investigation. 

From causal biomarkers to drug targets for neuropsychiatric conditions 

Identifying causal immunological biomarkers for neuropsychiatric conditions is a pivotal step 

toward developing new or repurposing existing interventions. We found that 18 of the 

identified biomarkers are potentially druggable. Three of the identified biomarkers, ACE 

(effects on schizophrenia & Alzheimer’s), CD40 (effects on schizophrenia & bipolar), 

TNFRSF17 (effects on schizophrenia) have drugs approved or in advanced clinical trials for 

several indications including cardiovascular and autoimmune conditions, which provides an 

opportunity for drug repurposing. However, there are important considerations regarding 
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therapeutics development which we discuss below using our findings for schizophrenia (for 

which we identified the highest number of causal biomarkers) as an example.  

Pathways from transcription to translation 

The effects on schizophrenia for more than half of the 10 immunological biomarkers with Tier 

B or C evidence for causality identified were through genetic variants linked to gene 

expression (TNFRSF17, CD40, SERPINI1, EVI5, ACE, PDIA3) but not respective protein 

abundance. This could be a result of limited statistical power, as the brain pQTL dataset had 

a total sample size of 330 individuals. However, another potential explanation may be 

alternative splicing events. Alternative splicing has a central role in the pathway from 

transcription to translation as it results in the production of multiple proteins via different 

signalling pathways64. Alternative splicing events may play an important role in 

schizophrenia aetiopathogenesis65. Therefore, further studies with larger sample sizes for 

brain pQTL and studies using genomic data on alternative splicing (sQTLs) are required.  

Tissue specific effects 

Half of the identified biomarkers had effects on schizophrenia via gene expression in the 

brain cortex (TNFRSF17, CD40, SERPINI1, EVI5, ACE), suggesting that both systemic and 

brain-specific immunological processes are important for its aetiopathogenesis66. Particularly 

for ACE, the identified MR effects were supported by both blood and brain cortex eQTLs and 

the estimates were directionally consistent across both tissues. Furthermore, colocalisation 

analyses suggested that the effects were likely to be driven by the same underlying variant, 

increasing the confidence regarding a causal role of ACE in schizophrenia. Now 

interventional studies are required to assess the therapeutic potential of targeting ACE for 

schizophrenia. Epidemiological studies suggest associations of immune-mediated 

respiratory and gastrointestinal conditions with schizophrenia (e.g., asthma67, inflammatory 

bowel disease68). As ACE is expressed primarily in lung and small intestine69, our findings 

also highlight the potential relevance of the lung-brain or gut-brain axis for schizophrenia 

pathogenesis70. 

Effects across neuropsychiatric conditions  

We found that decreased expression of ACE in blood and brain cortex is linked to increased 

risk of both schizophrenia and Alzheimer’s disease. This is consistent with results from 

previous MR studies71,72. Considering that ACE inhibitors are widely used for the 

management of hypertension, these findings require further investigation. The identified 

effect for Alzheimer’s particularly may be a result of survival bias, considering that 

hypertension can lead to early mortality and therefore individuals may not live long enough 

to be diagnosed with the condition73,74. Beyond its effects on hypertension, ACE inhibition in 
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rats leads to memory and learning impairments75. Therefore, another possibility is that ACE 

inhibition does not causally influence risk to the conditions per se, but some of their common 

phenotypic expressions, such as cognitive decline, which is common to both schizophrenia 

and Alzheimer’s disease. Therefore, choosing the right outcome would be as important as 

choosing the right drug target in future RCTs. Similarly, CD40 expression in brain may 

influence risk of both schizophrenia and bipolar disorder by causally influencing psychotic 

symptoms, which are common to both conditions. These possibilities require further 

investigation. 

Effects on developmental stage and progression 

Our study design allowed us to investigate the causal effects of immunological biomarkers 

on the onset of neuropsychiatric conditions but not progression76. Identifying actionable 

treatment targets can be particularly complex for conditions with neurodevelopmental origins 

such as schizophrenia, where pathogenic changes could take place well before the 

emergence of clinical symptoms77. Our gene-set enrichment analyses show significant 

enrichment for early developmental phenotypes related to fetal abnormalities, suggesting 

that immune-mediated neurodevelopmental alterations could contribute to schizophrenia. 

Therefore, the question of the potential utility of the identified targets in conditions with 

neurodevelopmental origins remains, and requires careful consideration of conceptual, 

methodological, and ethical aspects.  

Limitations 

Our study has some methodological limitations. First, the study was conducted using GWAS 

data of European ancestry individuals, and therefore generalisability of our findings to other 

populations remains a concern. Second, although we used the largest GWAS data available 

the possibility of limited statistical power cannot be excluded, particularly for brain pQTL 

data, and the anxiety GWAS. Third, our enrichment analyses were based on a small number 

of causal biomarkers (10 in schizophrenia and 5 in depression), which may limit the reliability 

of these findings. Fourth, UKB proteomic GWAS had some sample overlap with some of the 

neuropsychiatric conditions, notably Alzheimer’s disease (>50%), depression (34%), and 

bipolar disorder (14%). Sample overlap can introduce a bias toward the observational 

estimate78, though this is unlikely to adversely influence hypothesis testing79  and we 

observed the highest number of associations for schizophrenia which had limited overlap 

with the proteomic GWAS sample. Fifth, though our results are strongly suggestive of causal 

relationship we are unable to prove causality due to potential horizontal pleiotropy or 

violations of other MR assumptions such as gene-environment equivalence and consistency 

of treatment effects. Interventional studies are required for the ultimate proof of causal 

relationship, which our findings should inform. 
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Conclusions 

Using a comprehensive analytic approach allowing the integration of genomic data on 

protein and gene expression across blood and brain, we identify causal effects for 21 

immunological biomarkers on seven neuropsychiatric conditions. Of these, 18 are 

therapeutically tractable suggesting that they could be potential targets for neuropsychiatric 

indications. Further validation of the identified biomarkers through interventional studies and 

understanding the mechanisms underlying these effects are now necessary for greater 

insight into pathogenesis of neuropsychiatric conditions and for developing new treatments 

to improve the lives of people with these conditions. 
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Tables 
Table 1. Therapeutic tractability of immunological genes identified as causal for neuropsychiatric 
conditions.   

HGNC  
Symbol 

Evidence 
Tier 

Genomic position* Outcome Open Targets Tractability 

CR1 A 1:207,496,147-207,641,765 Alzheimer’s Likely or potentially 
druggable 

GCHFR B 15:40,764,068-40,767,708 ADHD Likely or potentially 
druggable 

ANXA1 B 9:73,151,865-73,170,393 Autism Likely or potentially 
druggable 

RABEP1 B 17:5,282,265-5,386,340 Schizophrenia Likely or potentially 
druggable 

DNER B 2:229,357,629-229,714,555 Schizophrenia Likely or potentially 
druggable 

EVI5 B 1:92,508,696-92,792,410 Schizophrenia Little or unknown 
druggability 

PDIA3 B 15:43,746,394-43,773,279 Schizophrenia Likely or potentially 
druggable 

ACE B 17:63,477,061-63,498,380 Schizophrenia Strong druggability 
 B Alzheimer’s 

TNFRSF17 B 16:11,965,210-11,968,068 Schizophrenia Strong druggability 
 

SERPINI1 B 3:167,735,243-167,825,569 Schizophrenia Likely or potentially 
druggable 

CD40 B 20:46,118,271-46,129,863 Schizophrenia Strong druggability 
Bipolar 

DNPH1 B 6:43,225,629-43,229,481 Bipolar Likely or potentially 
druggable 

AMN B 14:102,922,663-102,933,596 Depression Likely or potentially 
druggable 

EP300 B 22:41,092,592-41,180,077 Depression Likely or potentially 
druggable 

FCN1 B 9:134,903,232-134,917,912 Depression Likely or potentially 
druggable 

LATS1 B 6:149,979,289-150,039,237 Depression Likely or potentially 
druggable 

APOE B 19:44,905,791-44,909,393 Alzheimer’s Likely or potentially 
druggable 

CEBPA C 19:33,299,934-33,302,534 Autism Little or unknown 
druggability 

KLRB1 C 12:9,594,551-9,607,916 Alzheimer’s Likely or potentially 
druggable 

MYOM3 C 1:24,382,531-24,438,625 Schizophrenia Little or unknown 
druggability 

BTN2A1 C 6:26,457,904-26,476,622 Schizophrenia Likely or potentially 
druggable Depression 

Bipolar 
* GRCh38/hg38 
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Figures 

Figure 1. Analytic pipeline for the investigation of causal immunological biomarkers for neuropsychiatric conditions.  
*Dorsolateral prefrontal cortex (DLPFC), **Cortex.  
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Figure 2. Volcano plot illustrating the combined results of the analyses investigating the causal effects of genetically proxied immunological 
biomarkers on autism.  

Red dashed lines denote the FDR threshold, and red dotted lines denote the Bonferroni threshold.  
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Figure 3. Volcano plot illustrating the combined results of the analyses investigating the causal effects of genetically proxied immunological 
biomarkers on ADHD.  

Red dashed lines denote the FDR threshold, and red dotted lines denote the Bonferroni threshold.  
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Figure 4. Volcano plot illustrating the combined results of the analyses investigating the causal effects of genetically proxied immunological 
biomarkers on schizophrenia.  

Red dashed lines denote the FDR threshold, and red dotted lines denote the Bonferroni threshold. 
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Figure 5. Volcano plot illustrating the combined results of the analyses investigating the causal effects of genetically proxied immunological 
biomarkers on depression.  

Red dashed lines denote the FDR threshold, and red dotted lines denote the Bonferroni threshold.  
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Figure 6. Volcano plot illustrating the combined results of the analyses investigating the causal effects of genetically immunological biomarkers 
on bipolar disorder.  

Red dashed lines denote the FDR threshold, and red dotted lines denote the Bonferroni threshold. 
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Figure 7. Volcano plot illustrating the combined results of the analyses investigating the causal links between genetically proxied 
immunological biomarkers on Alzheimer’s disease.  

Red dashed lines denote the FDR threshold, and red dashed lines denote the Bonferroni threshold.  
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Figure 8a.   Visual summary of the MR evidence suggesting causal effects of CD40 blood pQTLs and brain eQTLs on bipolar disorder and 
schizophrenia, as well as ACE brain and blood eQTLs on Alzheimer’s disease and schizophrenia.  

 

Figure 8b. Locus plot of the ACE brain and blood eQTLs.  
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Figure 9. Top five enriched pathways and phenotypes for causal immunological biomarkers identified in schizophrenia and depression.  
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