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ABSTRACT 

In chronic disease epidemiology, the investigation of disease etiology has largely focused on one 

endpoint, and the progression of chronic disease as a multi-state process is understudied, 

representing a knowledge gap. Most existing multi-state regression models require Markov 

assumption and are unsuitable to describe the course of chronic disease progression that is 

largely non-memoryless. We propose a new non-Markov framework that allows past states to 

affect the transition rates of current states, and the key innovation is the conversion of a non-

Markov to Markov process by conditioning on past disease history to divide disease states into 

substates. Specifically, we apply cause-specific Cox models, including past states as covariates, 

to obtain transition rates of substates, which were used to estimate transition probabilities using 

the discrete-time Aalen-Johansen estimator. In simulation study, the non-Markov model 

generated higher coverage rates of transition rates compared to Markov models, particularly for 

non-Markov process (By applying non-Markov and Markov models, coverage rates were 91% 

and 88% for Markov process with exponential distribution, 52% and 43% for Markov process 

with Weibull distribution, 92% and 49% for non-Markov process with exponential distribution, 

and 59% and 23% for non-Markov process with Weibull distribution). We applied our model to 

describe the course of coronary heart disease (CHD) progression, where CHD was modeled in 

healthy, at-risk, CHD, heart failure, and mortality states. In summary, the significance of our 

framework lies in the fact that transition parameters between disease sub-states may provide a 

more accurate description of disease course than Markov regression models and shed light on 

new mechanistic insight into chronic disease. Our method has the potential for wide application 

in chronic disease epidemiology.    
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1. INTRODUCTION 

In chronic disease epidemiology, investigation of disease etiology has largely focused on one 

single endpoint. However, the development of chronic disease is a multi-state process, with each 

state playing a crucial role in affecting its progression. Understanding the course of disease 

progression allows us to gain new mechanistic insight into the disease at the population level. 

However, this field is understudied and represents a knowledge gap in epidemiology.  

            Most existing methods describing the progression of chronic disease are Markov models, 

which assume that the future state depends only on the present state and not on past history. For 

the Markov process, transition probabilities can be estimated parametrically from transition rates 

with constant or Weibull distributions using Kolmogorov differential equations,1-4 and 

nonparametrically estimated for other types of distributions using Aalen-Johansen (A-J) 

estimators.5-7 To identify factors related to the transition rate, Markov regression models have 

been proposed that allow the inclusion of covariates.1, 8 However, they are unsuitable for 

modeling the progression of chronic diseases that are largely non-memoryless.9-11 This signifies 

the urgent need for non-Markov methods to advance the research in estimating the course of 

disease progression.  

        Non-Markov models are a largely unexplored field, with only several nonparametric 

methods proposed.12-18 Although the A-J estimator can consistently estimate transition 

probabilities from time 0 to t regardless of Markov assumption,14, 19, 20 it is systematically biased 

for any two random time points in the non-Markov process.16 The landmark Aalen-Johansen 

(LMAJ) estimator accounts for non-Markov assumption and estimates transition probabilities 

using landmarking by dividing participants into subgroups according to the state occupation 

probability at a certain time point.12 However, the subsampling of participants lowers the power 
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of estimation, and it is a non-parametrical method which may be difficult to incorporate 

covariates.21, 22  

             In this paper, we propose a new non-Markov regression framework that allows past 

states to affect the transition rates of current states, and the key innovation is that we divide 

disease states into substates to convert non-Markov to Markov process by conditioning on past 

disease history.  Specifically, we apply cause-specific Cox models, including past states as 

covariates, to obtain transition rates between sub-states, which are used to obtain transition 

probabilities using a discrete-time A-J estimator.8 

 

2. METHODS 

A multi-state non-Markov framework. While our method can be used for chronic disease in 

any number of states, we illustrate our method by assuming five states S0-S4 (Fig 1a). By 

conditioning on past states, a disease state can be divided into substates, and a non-Markov 

process can be converted to a Markov process (Fig 1b). Suppose we have survival data with 

disease states ascertained (Fig 2a), which are divided into subsets 1-4 by disease state (Fig 2b). 

Within each subset, we change the data structure from a wide form to a long-form to model 

transition rates with high flexibility and incorporate time-varying covariates into the framework 

(Fig 2c).  

2.1. Estimate transition rate, Q(t). Cause-specific Cox (CSC) models are used to estimate 

transition rates from one to multiple states. As an extension of the Cox model, CSC assumes 

different associations of each exposure with each specific event type.23 To estimate transition 

rates, we cut time into small intervals in changing data from wide to long-form and model time 

flexibly, such as using restricted cubic splines. Survival probability by the end of each interval 
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can be estimated using the ‘predict’ command of the ‘riskRegression’ package,24 and hazard can 

be estimated as (1-survival probability)/length of the time interval. In particular, for age used as a 

time scale, the predicted risk at the end of each time interval is approximate to the hazard in 

discrete time.24 We fit four CSC models (Models 1-4) to data subsets 1-4. The influence of past 

history of disease on transition rates can be accounted for in models 3 and 4 by including past 

disease history (as well as their interaction terms with time) as covariates in the model.  

Model 1 in subset 1 starting from S0 state: λc(t,X)=λ0c(t)exp(��  + ∑ ���x�� ), where c=rate of 

developing S1, S2, S3, or S4 states, and x� are the covariates. 

Model 2 in subset 2 starting from S1 state: λc(t,X)=λ0c(t)exp(�� + ∑ ���x�� ), where c= rate of 

developing S2, S3, or S4 states. 

Model 3 in subset 3 starting from S2 state: λc(t,X)=λ0c(t)exp(�� + ∑ ������ � ������� �

����:����), where c=rate of developing S3 or S4 states, and ��� is the past S1 state.        

Model 4 in subset 4 starting from S3 state: λc(t,X)=λ0c(t)exp(�� + ∑ ������ � ������� �

������� �����:���� � ����:����), where c=rate of developing S4 state, and ��� and ��� are past 

states S1 and S2, respectively. 

The estimated hazards are used to construct transition rate matrix Q(t) (Figure 3), where λ01(t), 

λ02(t), λ03(t), and λ04(t) are the predicted risks at time t from model 1, λ12(t), λ13(t), and λ14(t) are 

predicted from model 2, λ23|0(t), λ24|0(t), λ23|0_1(t), and λ24|0_1(t) are predicted from model 3 with or 

without history of S1, λ34|0(t), λ34|0_1(t), λ34|0_2(t), and λ34|0_1_2(t) are predicted from model 4 with 

or without history of S1 and S2. 

2.2. State occupational probabilities, P(t), are defined as the proportion of participants 

occupied in each state at t and can be expressed as functions of transition rates. As �’�t� � ��t� �

��t�, ��t 	 1� � ��t� 	 �’�t� � ��t� 	 ��t� � ��t� � ��t� � ��� 	 ��t��  � ��t � 1� 	 �’�t � 1�� �
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�� 	 ��t��  � ��t � 1� � ��� 	 ��t � 1�� � ��� 	 ��t�� � ��t � 0� � ∏ ��� 	 ��t����
��� �, where 

��t� � �p��t�, p��t�, p�|��t�, p�|�_��t�, p
|��t�, p
|�_��t�, p
|�_��t�, p
|�_�_��t�, p��t��, ��t	 is the 

transition rate matrix, and 
	 is an identity matrix. 

2.3. Transition probabilities, TP (k1, k2), is defined as the probability of state transition over a 

period and can be estimated using a discrete-time A-J estimator, where ���k�, k�	= ∏ �I �
���

���

��t		. 

2.4. Use Bootstrap to obtain 95% CIs. We adopted a parametric bootstrapping approach to 

repeatedly draw transition rates from their corresponding distributions to estimate the variability 

of the parameter estimate. We repeat the resampling process 1000 times in each estimation by 

the CSC model. Statistically, the resulting 1000 parameter estimates represent the empirical 

distribution. They can be summarized with median values and 95% CI defined by 2.5th to 97.5th 

percentiles of the empirical distribution. 

 

3. SIMULATION STUDY 

3.1. Simulation methods. We performed a simulation study to validate the utility of the non-

Markov model and compare it to the Markov model. Data were simulated in five states, and four 

scenarios were considered: Markov or non-Markov processes with exponential or Weibull 

distribution. Transition rates were simulated as constant for exponential distribution and 

increasing/decreasing with time for Weibull distribution. Parameters of transition rates differed 

by past states for the non-Markov process. We simulated survival data starting from each disease 

state using ‘crisk.sim’ package in R, and the parameters used for the simulation study are shown 

in Table S1. Processes with exponential distribution were a special case of Weibull distribution, 
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with the ancillary parameters fixed at 1. We simulated the datasets 1000 times, with a sample 

size of 5000 for each simulation.  

          For each scenario, we compared the performances of the non-Markov and Markov models 

in the transition rates estimation of sub-states. In changing data from wide to long format, we cut 

time into intervals by 0.05. However, if the Cox model did not converge due to scarce cases 

within some intervals, we cut it by 0.1. Restricted cubic splines were used to model the event 

indicator highly flexibly at each time interval. In the non-Markov framework, we included past 

disease history and the interaction terms with time in models 3-4. Survival probability by the end 

of each interval was obtained, and the hazard was estimated as (1-survival probability)/length of 

time interval. We estimated transition rates at time points 0.3, 0.6, 0.9, 1.2, and 1.5 when most 

simulated participants developed the endpoint. The estimated transition rates were compared to 

theoretical rates, calculated as  

�/ ��
��

 ����������� 	���
�����^��/ ��
��� 
� ���/ ��
��� ��.  

Mean squared error (MSE), coverage, and width of 95% CI were obtained. MSE is the average 

squared difference between the estimate and true value. Coverage is defined as the proportion of 

95% CIs covering the true value over all simulated datasets. We compared the coverage to 

determine which method was closer to the 95% nominal coverage rate. Width of 95% CI is the 

difference between 95% upper and lower levels. To compare transition rates across models in a 

summarized manner, we calculated mean MSE, coverage, and width of 95% CI across all states 

and all time points.  

3.2. Simulation results. In Markov scenarios, both Markov and non-Markov models worked 

well, as expected (Table 1). In non-Markov scenarios, the non-Markov model outperformed the 

Markov model by showing lower MSE and higher coverage rates. For a non-Markov process 
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with exponential distribution, the coverage rates were 92% and 49%, respectively, using non-

Markov and Markov models. For a non-Markov process with Weibull distribution, the coverage 

rates were 59% and 23% using the non-Markov and Markov models, respectively. The better 

performance of non-Markov compared to the Markov model was mainly due to the lower MSE 

and higher coverage rates in estimated transition rates from states 2 and 3 and transition rates 

from states 3 to 4, which were affected by past disease history (Table 2).  

 

4.  APPLICATION STUDY 

4.1. Study population. The Atherosclerosis Risk in Communities Study (ARIC) study was 

designed to investigate the causes of atherosclerosis and its clinical outcomes, as well as 

variations in cardiovascular risk factors and disease by sex and race.25 The enrolled participants 

ARIC underwent a phone interview and clinic visit at baseline and were followed up by 

telephone calls and re-examinations. Participants were contacted periodically by phone and 

interviewed about interim hospital admissions, cardiovascular outpatient diagnoses, and deaths. 

Participants who reported CVD-related events were asked to provide medical records that were 

reviewed by physicians.26 For each event, the month and year of diagnosis were recorded as the 

diagnosis date. Heart failure was ascertained by surveillance calls or clinic visits and was 

verified from death certificates, medical records, and outpatient diagnoses. Deaths were 

identified from systematic searches of the vital records of states and of the National Death Index, 

supplemented by reports from family members and postal authorities.27 We obtained ARIC data 

through BioLINCC, an open repository created by NHLBI, with the IRB deemed exempt by the 

University of North Carolina (UNC)-Chapel Hill Review Board. 
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4.2. Methods. We modeled coronary heart disease (CHD) progression in five states: Healthy, at 

risk, CHD, heart failure, and mortality. At-risk state was defined as development of hypertension, 

hyperlipidemia, or diabetes. Hypertension was defined as blood pressure ≥140/90 mmHg or a 

history of hypertension or use of blood pressure medications.28 Hyperlipidemia included primary 

hypertriglyceridemia (≥175 mg/dL) or primary hypercholesterolemia (LDL-c 160–189 mg/dL, 

and/or non-HDL-c 190–219 mg/dL).29 Diabetes was defined as fasting glucose ≥7.7mmol/L.30 

We calculated the time of incidence of at-risk state as the earliest time that any of the risk factors 

were documented. 

           We assume a forward model of CHD progression while recognizing that it can be 

backward (e.g., some participants may develop CHD before at-risk state). Our model can deal 

with this reverse scenario by treating CHD to at-risk state as a new transition. However, given 

the low proportion of participants who develop CHD before the at-risk state, including this 

transition may lower study power. Instead, we classify those following reverse transition to a 

path of forward transition (e.g., ‘healthy → CHD → at risk → mortality’ is classified to the path 

‘healthy → CHD → mortality’). 

       We applied our non-Markov framework to examine the dynamics of CHD progression. 

Briefly, we divided the longitudinal data into four subsets, “individuals start from healthy state to 

incidence of at-risk, CHD, heart failure, or mortality, whichever outcome came first,” 

“individuals start from at-risk state to incidence of CHD, heart failure, or mortality,” “individuals 

start from CHD state to incidence of heart failure or mortality,” and “individuals start from heart 

failure state to incidence of mortality.” Within each subset, we changed the data into a long 

format by cutting them into small intervals by age. We modeled age flexibly in cubic terms and 

included past disease history and the interaction terms with age as covariates in models 3 and 4.  
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4.3. Results. Our study included 15,027 participants who did not develop CHD or heart failure at 

baseline. During a median of 27 years of follow-up, our study documented 13,043 at-risk 

participants, 2565 incident cases of CHD, 3283 incident cases of heart failure, and 7677 incident 

cases of mortality. The transition rates from healthy, at-risk, or CHD states to subsequent states 

were low at mid-age and gradually increased with age (Figure 4). There was a drastic increase in 

the transition rate from healthy or at-risk status to mortality after 80 years. The transition rate 

from heart failure to mortality was higher across all ages compared to transition rates between 

other states. For the transition from heart failure to mortality, participants with a disease history 

had a higher rate of mortality than those without, with the highest transition rate observed among 

participants with a history of risk factors and CHD. We provided transition rates between 

substates at ages 70 and 90 years in Table 3. 

         We estimated the transition probability from each state to the following states starting from 

45 years old (Figure 5). Participants who started from a healthy state were very likely to develop 

at-risk state over follow-up. The transition probability from healthy to at-risk state first increased 

and then decreased due to participants’ transition to next states. The risk of mortality was higher 

for participants who had CHD at 45 years old with a history of risk factors than those without. 

For participants who had heart failure at 45 years old, the risk of mortality was greater than 90% 

at age 70 years without disease history and even higher for those with a history of risk factors 

and CHD. We provided transition probabilities between substates at ages 70 and 90 years in 

Table 4. 

          We estimated state occupational probability for participants starting from healthy states at 

age 45. The proportion of participants in the healthy state decreased over time, and the 

proportion in the mortality state increased over time (Figure 6). The proportion of at-risk 
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participants first increased and then decreased because these participants moved on to the next 

states, such as CHD, heart failure, or mortality states. At each age, the proportions of participants 

in CHD or heart failure states were low, either due to their low incidences from previous states or 

their high risks of moving to the next states. For example, the proportion of participants who 

were in healthy, at-risk, CHD, heart failure, and mortality states at age 90 years were 1.17, 13.28, 

1.85, 6.12, and 77.47%, respectively (Table 5). Most of the participants in CHD or heart failure 

states had a history of risk factors: 87% of CHD participants had risk factors, and 82% of heart 

failure participants had risk factors or CHD history. 

 

5. DISCUSSION 

We proposed a new non-Markov regression model that allows past states to affect current states, 

and the innovation lies in that a non-Markov process is converted to a Markov process by 

conditioning on past states and dividing disease states into substates. The simulation study 

showed that our method generated less biased transition rates for the non-Markov process 

compared to Markov regression models, which was observed for both exponential and Weibull 

distributions. In the application study, we applied our model to describe the course of CHD 

progression. 

          As the leading cause of mortality in the U.S.,31 the etiology and prevention of CHD have 

been investigated for decades and studies have demonstrated that CHD is largely preventable, 

with modifiable risk factors accounting for 82% of CHD events,32 including smoking,33 body 

mass index (BMI),34-36 diet quality,37-39 and physical activity.40, 41 However, these studies largely 

focused on one single endpoint, such as incidences of hypertension, CHD, or heart failure.42-47 A 

paucity of studies examined CHD progression in small sample sizes using Markov models, 
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leading to imprecise estimation and limited generalizability of the findings.48-51 Markov models 

are unsuitable to describe CHD progression for two reasons. First, CHD progression is largely 

non-memoryless: Once a person is diagnosed with CHD-related disease, that diagnosis typically 

persists. Second, the Markov model is memoryless and thus does not allow for multimorbidity, a 

common condition that accelerates CHD progression and shortens life expectancy.9-11  

            The implication of our application study lies in two aspects. First, the estimated age-

specific transition rates indicate disease mechanisms and can guide disease state-specific 

precision strategies targeting participants at risk of CHD. For example, compared to those 

without past disease history, participants with past disease history were more likely to transit 

from one state to another, showing the importance of disease control in the early stages of the 

progression. With high transition rates from heart failure to mortality observed across all ages, 

our study highlighted the urgency of prevention of mortality for heart failure patients starting 

from mid-age. Second, life expectancy in the U.S. has drastically increased over the past 50 

years, primarily driven by a continuous increase in survival rate after CVD prognosis.52, 53 This 

has led to increased demand for health services and high costs for treatment and residential care. 

The state occupational probabilities of disease states over time can provide a more accurate 

estimation of disease burden and facilitate medical resources planning for real-time. Moreover, 

the ARIC data has unique advantages for our application, including the long-term follow-up to 

capture the CHD course, CHD endpoints ascertained by medical records, and access to the data 

through an NHLBI data repository, BioLINCC.  

           In summary, we developed a multi-state, non-Markov framework that allows past states to 

affect the transition rates of current states. The transition parameters between substates may 

enhance our understanding of new mechanisms of disease progression and stimulate new 
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approaches to disease prevention. Our framework is highly suitable for estimating the 

progression of non-memoryless chronic diseases and has potentially broad applications in 

chronic disease epidemiology. 
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Figure 1. Convert non-Markov to Markov process by splitting disease states into substates. 
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Figure 2. Data preparation for applying the non-Markov framework. 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3. Transition rate matrix Q(t). 
 

 
 
 
 
 
 
 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2024. ; https://doi.org/10.1101/2024.02.15.24302901doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.15.24302901


 
Table 1. A simulation study estimating transition rates (%) compared the non-Markov regression 
model to Markov model under different scenarios.  
 

 Markov process with 
exponential distribution 

Markov process with Weibull 
distribution 

 Cox Markov 
model 

Non-Markov 
model 

Cox Markov 
model 

Non-Markov 
model 

MSE 8.88 16.80 60.30 59.46 
Width of 95% CI 8.85 13.12 8.93 11.88 
Coverage rate 88% 91% 43% 52% 
 Non-Markov process with 

exponential distribution 
Non-Markov process with 

Weibull distribution 
 Cox Markov 

model 
Non-Markov 

model 
Cox Markov 

model 
Non-Markov 

model 
MSE 482.94 17.37 420.89 47.52 
Width of 95% CI 6.63 11.25 5.07 10.16 
Coverage rate  49% 92% 23% 59% 

 
 
Mean squared error (MSE) is defined as the average squared difference between estimated value 
and true value. Width of 95% confidence interval (CI) is defined as the difference between 95% 
upper and lower levels. Coverage is defined as the proportion of 95% CIs including the true 
value over all simulated datasets. 
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Table 2. A simulation study estimating transition rates (%) by disease substates compared the non-Markov regression model to 
Markov model under different scenarios.  

 

  
TR01 TR02 TR03 TR04 TR12 TR13 TR14 TR23|0 TR24|0 TR23|0_1 TR24|0_1 TR34|0 TR34|0_1 TR34|0_2 TR34|0_1_2 

Scenarios Models MSE 
Markov process with 
exponential distribution 

Markov  1.21 2.15 1.93 1.34 23.75 20.26 19.63 11.25 10.35 11.31 10.40 5.40 5.40 5.41 5.41 
Non-Markov  1.21 2.14 1.94 1.34 23.91 20.11 19.35 13.22 12.29 36.17 34.83 7.42 28.31 12.10 39.84 

Non-Markov process with 
exponential distribution  

Markov  1.28 1.88 1.95 1.23 23.34 20.22 20.06 25.10 23.35 1251.50 1273.01 107.85 4.20 893.30 3582.44 
Non-Markov  1.28 1.88 1.95 1.23 23.58 20.46 19.97 0.80 1.62 33.86 43.10 1.33 10.97 20.63 171.59 

Markov process with 
Weibull distribution 

Markov  8.95 8.15 14.28 6.21 116.55 39.88 87.35 84.49 135.21 84.12 134.50 96.33 96.33 96.31 96.31 
Non-Markov  8.96 8.15 14.29 6.21 116.60 39.87 87.31 82.96 134.74 79.67 132.29 98.77 97.29 100.82 86.86 

Non-Markov process with 
Weibull distribution 

Markov  8.82 8.47 14.57 6.47 115.56 40.39 87.90 66.66 86.43 1825.49 1695.88 103.89 329.20 1103.26 888.71 
Non-Markov  8.82 8.47 14.58 6.47 115.49 40.39 87.93 13.84 16.50 67.41 113.79 0.86 16.36 96.31 136.29 

Scenarios Models Width of 95% CI 
Markov process with 
exponential distribution 

Markov  3.73 4.52 4.52 3.73 16.85 15.52 15.40 10.87 10.87 10.88 10.87 6.33 6.33 6.33 6.32 
Non-Markov  3.73 4.52 4.52 3.73 16.89 15.52 15.45 12.02 12.11 22.51 22.56 8.55 19.22 12.11 23.74 

Non-Markov process with 
exponential distribution  

Markov  3.72 4.50 4.50 3.71 17.22 15.58 15.62 3.86 4.92 3.87 4.91 4.35 4.35 4.35 4.35 
Non-Markov  3.71 4.50 4.50 3.71 17.24 15.56 15.59 3.38 4.73 21.86 23.59 4.31 12.39 15.32 32.44 

Markov process with 
Weibull distribution 

Markov  4.71 5.36 5.38 4.68 10.86 10.32 10.15 19.04 19.45 19.05 19.43 5.53 5.53 5.53 5.53 
Non-Markov  4.71 5.36 5.38 4.68 10.86 10.31 10.15 19.89 20.29 24.04 24.80 7.36 16.75 11.19 19.25 

Non-Markov process with 
Weibull distribution 

Markov  4.71 5.35 5.37 4.67 10.84 10.32 10.13 2.84 3.53 2.84 3.53 3.02 3.02 3.02 3.02 
Non-Markov  4.71 5.35 5.37 4.67 10.85 10.31 10.13 1.69 2.52 21.38 22.11 2.30 14.14 23.16 18.27 

Scenarios Models Coverage rate (%) 
Markov process with 
exponential distribution 

Markov  91 88 90 91 92 94 93 90 91 89 91 80 80 80 80 
Non-Markov  91 88 90 91 92 94 94 90 91 93 94 87 91 91 92 

Non-Markov process with 
exponential distribution  

Markov  91 90 90 91 93 93 94 2 15 0 0 0 70 0 0 
Non-Markov  91 91 89 91 93 93 94 94 93 93 92 93 93 89 80 

Markov process with 
Weibull distribution 

Markov  49 63 42 60 21 48 24 80 65 80 65 14 14 14 14 
Non-Markov  49 63 43 60 21 48 24 82 66 84 70 18 60 35 69 

Non-Markov process with 
Weibull distribution 

Markov  49 62 41 59 21 48 23 0 15 1 0 24 0 0 0 
Non-Markov  49 62 42 59 22 49 23 87 58 84 69 73 92 70 41 

 
TR: transition rates. TR23|0: Transition rate from state 2 to state 3 with a history of state 0. TR34|0_1_2: Transition rate from state 3 to 
state 4 with a history of states 0, 1, and 2.  
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Figure 4. Age-specific transition rates (cases per 100 persons) from age 45 to 94 years estimated 
using the non-Markov framework in the Atherosclerosis Risk in Communities Study (ARIC) 
study. 
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Figure 5. Transition probabilities (%) starting from age 45 years estimated using the non-
Markov framework in the Atherosclerosis Risk in Communities Study (ARIC) study. 
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Figure 6. State occupational probabilities (%) starting from age 45 years estimated using the 
non-Markov framework in the Atherosclerosis Risk in Communities Study (ARIC) study. 
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Table 3. Transition rates (cases per 100 persons) at age 70 and 90 years estimated using the non-
Markov framework in the Atherosclerosis Risk in Communities Study (ARIC) study. 
 

Age 70 years Age 90 years 
Transition from healthy state 

Healthy → at-risk 4.21 (3.99, 4.41) 2.39 (2.12, 2.66) 

Healthy → CHD 0.21 (0.17, 0.26) 0.75 (0.34, 1.15) 

Healthy → heart failure 0.45 (0.38, 0.52) 5.13 (3.78, 6.52) 

Healthy → mortality 1.34 (1.22, 1.47) 19.12 (16.39, 21.63) 
Transition from at-risk state 

At-risk → CHD 0.51 (0.48, 0.54) 0.91 (0.78, 1.03) 

At-risk → heart failure 0.83 (0.80, 0.88) 4.85 (4.46, 5.27) 

At-risk → mortality 1.28 (1.23, 1.33) 10.58 (10.00, 11.25) 
Transition from CHD state with no risk factors 

CHD → heart failure  2.81 (1.69, 3.94) 3.42 (1.58, 5.24) 

CHD → mortality  5.25 (3.60, 6.84) 12.02 (7.14, 16.51) 
Transition from CHD state with risk factors 

CHD → heart failure  3.99 (3.51, 4.43) 4.87 (3.49, 6.41) 

CHD → mortality  5.27 (4.72, 5.77) 11.96 (8.87, 15.26) 
Transition from heart failure state with no risk factors or CHD 
Heart failure → mortality  15.80 (13.59, 17.91) 19.33 (15.61, 23.06) 
Transition from heart failure state only with risk factors 
Heart failure → mortality  14.60 (13.78, 15.45) 17.82 (15.12, 20.32) 
Transition from heart failure state only with CHD  
Heart failure → mortality  13.43 (6.21, 20.91) 16.96 (7.96, 25.24) 
Transition from heart failure state with risk factors and CHD  
Heart failure → mortality  17.65 (15.91, 19.61) 21.54 (17.67, 25.02) 
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Table 4. Transition probabilities (%) from age 45 years to age 70 and 90 years estimated using 
the non-Markov framework in the Atherosclerosis Risk in Communities Study (ARIC) study. 
 

Age 70 years Age 90 years 
Transition from healthy state 
Healthy → Healthy 20.68 (20.35, 21.00) 1.17 (1.09, 1.25) 
Healthy → at risk 58.67 (58.37, 58.96) 13.28 (13.05, 13.52) 
Healthy → CHD 2.91 (2.85, 2.98) 1.85 (1.72, 1.97) 
Healthy → heart failure  3.20 (3.13, 3.26) 6.22 (5.97, 6.50) 
Healthy → mortality 14.54 (14.40, 14.69) 77.48 (77.11, 77.82) 
Transition from at-risk state 
At risk → At risk 74.50 (74.32, 74.71) 14.34 (14.08, 14.60) 
At risk → CHD 3.84 (3.75, 3.92) 1.89 (1.74, 2.04) 
At risk → heart failure 3.91 (3.83, 3.98) 6.17 (5.88, 6.48) 
At risk → mortality 17.76 (17.59, 17.90) 77.61 (77.21, 77.97) 
Transition from CHD state with no risk factors 
Remain in CHD state 22.39 (20.75, 24.06) 1.90 (1.58, 2.28) 
CHD → heart failure  7.69 (6.42, 9.21) 1.31 (1.02, 1.71) 
CHD → mortality  69.90 (67.81, 72.06) 96.78 (96.20, 97.27) 
Transition from CHD state with risk factors 
Remain in CHD state 17.10 (16.52, 17.71) 1.10 (0.97, 1.23) 
CHD → heart failure  6.59 (6.30, 6.93) 0.73 (0.66, 0.81) 
CHD → mortality  76.30 (75.62, 76.99) 98.17 (98.01, 98.32) 
Transition from heart failure state with no risk factors 
Remain in heart failure state 2.21 (1.96, 2.52) 0.05 (0.04, 0.06) 
Heart failure → mortality  97.79 (97.48, 98.04) 99.95 (99.94, 99.96) 
Transition from heart failure state only with risk factors 
Remain in heart failure state 3.08 (2.95, 3.23) 0.09 (0.08, 0.10) 
Heart failure → mortality  96.92 (96.77, 97.05) 99.91 (99.90, 99.92) 
Transition from heart failure state only with CHD 
Remain in heart failure state 3.96 (2.79, 5.59) 0.14 (0.09, 0.25) 
Heart failure → mortality  96.04 (94.41, 97.21) 99.86 (99.75, 99.91) 
Transition from heart failure state with risk factors and CHD 
Remain in heart failure state 1.40 (1.27, 1.53) 0.02 (0.02, 0.02) 
Heart failure → mortality  98.60 (98.47, 98.73) 99.98 (99.98, 99.98) 
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Table 5. State occupational probabilities (%) from age 45 years to age 70 and 90 years estimated 
using the non-Markov framework in the Atherosclerosis Risk in Communities Study (ARIC) 
study. 
 
 Age 70 years Age 90 years 
Healthy 20.68 (20.37, 21.01) 1.17 (1.09, 1.26) 
At-risk 58.67 (58.38, 58.94) 13.28 (13.06, 13.52) 
CHD with no risk factors  0.54 (0.50, 0.58) 0.24 (0.21, 0.28) 
CHD with risk factors 2.38 (2.33, 2.43) 1.61 (1.49, 1.74) 
Heart failure with no risk factors or CHD 0.48 (0.44, 0.51) 0.65 (0.59, 0.72) 
Heart failure only with risk factors 2.24 (2.19, 2.29) 5.00 (4.76, 5.25) 
Heart failure only with CHD 0.09 (0.07, 0.11) 0.08 (0.06, 0.10) 
Heart failure with risk factors and CHD 0.39 (0.37, 0.41) 0.49 (0.44, 0.54) 
Mortality 14.54 (14.39, 14.70) 77.47 (77.13, 77.84) 
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Table S1. Parameters used for simulation study using the ‘crisk.sim’ package in R.  
 

 
Status 

Markov process with 
exponential distribution 

Markov process with 
Weibull distribution 

 
Status 

Non-Markov process with 
exponential distribution 

Non-Markov process 
with Weibull distribution 

Ancillary 
parameters 

beta0 Ancillary 
parameters 

beta0 Ancillary 
parameters 

beta0 Ancillary 
parameters 

beta0 

Dataset 1     Dataset 1     
S0 to S1 1 -log(0.2) 1.5 -log(0.2) S0 to S1 1 -log(0.2) 1.5 -log(0.2) 
S0 to S2 1 -log(0.3) 1.3 -log(0.3) S0 to S2 1 -log(0.3) 1.3 -log(0.3) 
S0 to S3 1 -log(0.3) 1.5 -log(0.3) S0 to S3 1 -log(0.3) 1.5 -log(0.3) 
S0 to S4 1 -log(0.2) 1.4 -log(0.2) S0 to S4 1 -log(0.2) 1.4 -log(0.2) 
Dataset 2     Dataset 2     
S1 to S2 1 -log(0.4) 2 -log(0.4) S1 to S2 1 -log(0.4) 2 -log(0.4) 
S1 to S3 1 -log(0.3) 1.3 -log(0.3) S1 to S3 1 -log(0.3) 1.3 -log(0.3) 
S1 to S4 1 -log(0.3) 2 -log(0.3) S1 to S4 1 -log(0.3) 2 -log(0.3) 
Dataset 3     Dataset 3.1     
S2 to S3 1 -log(0.5) 0.9 -log(0.3) S2|0 to S3  1 -log(0.1) 0.3 -log(0.1) 
S2 to S4 1 -log(0.5) 0.9 -log(0.3) S2|0 to S4  1 -log(0.2) 0.5 -log(0.2) 

 Dataset 3.2     
S2|0_1 to S3  1 -log(0.5) 1.2 -log(0.5) 
S2|0_1 to S4  1 -log(0.6) 1.4 -log(0.6) 

Dataset 4          
S3 

to 
S4 

1 -log(0.5) 1.8 -log(0.4) Dataset 4.1. S3|0 to S4 1 -log(0.2) 0.5 -log(0.2) 
Dataset 4.2. S3|0_1 to S4 1 -log(0.3) 1.2 -log(0.3) 
Dataset 4.3. S3|0_2 to S4 1 -log(0.6) 2 -log(0.6) 
Dataset 4.4. S3|0_1_2 to S4 1 -log(0.9) 3 -log(0.9) 
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