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Abstract  

The ability to read is an important life skill and a major route to education. Individual differences in 

reading ability are influenced by genetic variation, with a heritability of 0.66 for word reading, 

estimated by twin studies. Until recently, genomic investigations were limited by modest sample size. 

Here we use a multivariate genome-wide association study (GWAS) method, MTAG, to leverage 

summary statistics from two independent GWAS efforts, boosting power for analyses of reading 

ability; GenLang meta-analysis of word reading (N = 27 180) and the 23andMe, Inc., study of 

dyslexia (Ncases = 51 800, Ncontrols = 1 087 070). We increase effective sample size to N = 102 082, 

representing the largest genetic study of reading ability, to date. We identified 35 independent 

genome-wide significant loci, including 7 regions not previously reported. Single-nucleotide 

polymorphism (SNP) based heritability was estimated at 24%. We observed clear positive genetic 

correlations with cognitive and educational measures. Gene-set analyses implicated neuronal synapses 

and proneural glioblastoma pathways, further supported by enrichment of neuronally expressed genes 

in the developing embryonic brain. Polygenic scores of our multivariate results predicted between 

2.29-3.50% of variance in reading ability in an independent sample, the National Child Development 

Study cohort (N = 6 410). Polygenic adaptation was examined using a large panel of ancient genomes 

spanning the last ~15k years. We did not find evidence of selection, suggesting that reading ability 

may not have been subject to recent selection pressure in Europeans. By combining existing datasets 

to improve statistical power, these results provide novel insights into the biology of reading. 
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Introduction 

Reading is a key academic skill and an important component of education. Difficulties with reading 

are associated with poorer life outcomes, lower socioeconomic status, and can greatly impact quality 

of life1. Unravelling the biological basis of this complex trait is essential in understanding the 

aetiology of reading, and why some people struggle with reading throughout their lives. A recent 

twin-based meta-analysis found that reading ability is highly heritable at 0.662, 3, although prior 

estimates from classical twin models varied widely (0.03-0.83). Allelic variation in a number of genes 

have been associated with reading-related traits and dyslexia4, although with mixed support from 

replication studies. The largest genome-wide association study (GWAS) of quantitative reading skill5 

(meta-analysis of 33 959 individuals from 19 cohorts) by the GenLang Consortium identified a single 

locus associated with word reading (rs11208009, P = 1.10x10-8) containing three candidate genes 

(DOCK7, ANGPTL3 and USP1). Here, we improve statistical power using a much larger GWAS of 

dyslexia4 in a multivariate GWAS to improve gene discovery in investigations of reading ability. 

Dyslexia, a common neurodevelopmental learning difference occurring in 5-10% of school age 

children6, is characterised by difficulties with accurate and/or fluent word reading, and poor spelling. 

Some diagnostic definitions of dyslexia extend to reduced performance on measures of verbal 

memory and processing speed, and/or emphasise a discrepancy between reading and other cognitive 

abilities7. Dyslexia tends to cluster within families8 and shows high heritability in twin-studies (0.4-

0.6)9. Doust et al (2022)4 performed the largest GWAS of this trait to-date, using 23andMe, Inc. self-

reported dyslexia diagnosis in 51 800 cases and 1 087 070 controls. Forty-two significantly associated 

regions were identified, including 27 not previously reported in studies of educational attainment or 

cognitive traits. Noteworthy for the current study, strong genetic correlations have been observed 

between dyslexia and quantitative measures of reading and spelling, ranging from -0.7 to -0.75 with 

CI 95% spanning -0.6 to -0.865. These strong genetic correlations are consistent with the view that 

dyslexia is, to a large degree, representative of the low extreme of normal varying reading ability10, 11 

rather than being a qualitatively distinct phenotype.  
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GWAS for dyslexia4 and quantitative reading skill5 clearly demonstrate the importance of large 

sample size to detect genetic effects that underlie reading traits. Eising et al’s (2022)5 GWAS meta-

analysis of varied reading and spelling traits in up to 34 000 individuals made many important 

discoveries including revealing genetic correlations with other traits, significant SNP heritability (e.g., 

estimated at h2
snp = 0.19 (SE = 0.02) for word reading), and clarifying the genetic structure among 

measures of reading, spelling, language, general cognitive ability, and educational attainment. 

However, it was relatively underpowered to detect single SNP variant associations that exceeded 

genome-wide thresholds. It is clear from studies of the genetics of reading5, 12, and also from other 

neurodevelopmental traits such as autism spectrum disorder (ASD)13 and attention deficit 

hyperactivity disorder (ADHD)14 with case sample sizes of 18 381 and 38 691, respectively, that 

analysing large sample sizes is key to improving resolution of associated variants. For 

neurodevelopmental measures of literacy collected in childhood, it has historically been challenging 

to gather sufficient sample size, primarily due to the fact that reading skill is not perceived as 

medically relevant. Meta-analysis approaches are appropriate for addressing this issue. 

One of the alternative methods to collecting and phenotyping new cohorts for a trait of interest, multi-

trait analysis of GWAS approach (MTAG)15 which uses the shared genetic architecture of related 

phenotypes (multivariate) to increase gene discovery power. For example, Grove and colleagues13 

used MTAG to increase their ASD GWAS power by adding GWAS for schizophrenia, educational 

attainment, and major depression. This showed stronger evidence for previously reported regions, and 

seven novel regions shared with educational attainment or depression. More recently, multivariate 

analyses were used across five psychiatric traits (ASD, ADHD, bipolar disorder, schizophrenia, and 

depression)16. Again, this increased the number of associated loci identified for each individual trait, 

particularly bipolar disorder, which increased from 8 genome-wide significant loci to 54. In addition 

to statistical power gain, this multivariate associated approach permits to delineate the shared and 

separate genetic profiles of related conditions.  

Given the strong genetic correlation between dyslexia and word-reading skills4, we applied the 

multivariate method to boost sample size of the word reading GWAS and identify novel associated 
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loci. We note that minimal sample overlap is expected, given that the GWAS of dyslexia includes a 

single sample of adult predominantly US-based 23andMe, Inc. research participants and the GWAS of 

word reading is a meta-analysis of cohorts of children and young adults with a minority from the US. 

Moreover, MTAG uses bivariate LD score regression to control for sample overlap between cohorts. 

By increasing effective sample size through multivariate GWAS, we aimed to achieve the following. 

Firstly, improved power to detect novel loci associated with reading, uncovering biological pathways 

at the gene and functional level, and linking to biological mechanisms that underlie reading ability 

through the availability of developmental brain gene-expression datasets17. Secondly, obtaining 

sufficient power to generate reliable polygenic scores to predict reading variation in independent 

cohorts. Doust et al4 generated a polygenic score from the dyslexia GWAS which significantly 

predicted variance in reading performance measures in independent samples, for example, accounting 

for 3.6% in nonword reading in the Brisbane Adolescent Cohort and 5.6% of variance in word 

recognition in a US cohort enriched for individuals with reading difficulties (Colorado Learning 

Disabilities Research Centre)4. Finally, we used a novel method to determine if the polygenic scores 

for word reading showed evidence of selection in the past 15 000 years18, 19.  
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Materials / Subjects and Methods 

Ethics approval statement 

The study made use of existing data sets and was granted ethical approval by the University of 

Edinburgh School of Philosophy, Psychology and Language Sciences research ethics committee 

(PPLSREC 29-1819/8).  

Multivariate GWAS 

GWAS summary statistics for quantitative measures of word reading were available in the GenLang 

meta-analysis of 27 180 (male = 13 874, female = 13 202, no information = 104) participants of 

European ancestry only across 18 studies5. Participants were children or young adults ranging from 5-

26 years5. Measures depended on the contributing cohort and are detailed in Eising et al5, with the 

Test of Word Reading Efficiency (TOWRE) and Wide Range Achievement Test (WRAT) most 

common. Summary statistics without genomic-control correction were used. 

Summary statistics for self-reported dyslexia diagnosis (23andMe, Inc.) were reported in Doust et al 

(2022)4. Participants responded “Yes” to “have you been diagnosed with dyslexia” (Ncases = 51 800, 

female = 30 287, male = 21 513), and Ncontrols = 1 087 070 responded “No” (female = 641 016, male = 

446 054). All participants were over 18 years of age (mean 49.6 (cases) and 51.7 years (controls)). 

Participants with non-European ancestry were excluded prior to analysis. Summary statistics without 

genomic-control correction were used4.  

Both sets of summary statistics were annotated with rsIDs (build hg19), formatted for MTAG, and Z 

scores were calculated in R. Variants with imputation quality <0.8 or minor allele frequency of <0.01 

were excluded prior to analysis. Multivariate GWAS was performed with MTAG15 using default 

settings and false discovery rate (FDR) calculation. Associations were visualised using ggplot220. 

Individual regions were visualised using LocusZoom (http://locuszoom.org). FUMA version v1.5.0 

was used to annotate the associated regions that met the genome-wide significance threshold21 (P 

≤5x10-8, R2 <0.6, and <250kb maximum distance between LD blocks to merge into one genomic 

locus).  
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Heritability and Genetic Correlation 

SNP-based heritability (h2
snp) was estimated using LDSC v1.0.122. European LD reference panel was 

obtained from https://alkesgroup.broadinstitute.org/LDSCORE. GWAS summary statistics were 

obtained from the Complex-Traits Virtual Genetics Lab (CTG-VL) platform (https://vl.genoma.io), 

except for ASD13 and ADHD14 which were downloaded from the Psychiatric Genomics Consortium 

repository (https://www.med.unc.edu/pgc/download-results). Genetic correlations were performed 

using LD-Score v1.0.1 within the CTG-VL platform and considered significant at a Bonferroni 

corrected threshold of P ≤ 3.478x10-5 from 1438 tests. 

Due to the difference in sample size between the Dyslexia and GenLang univariate summary 

statistics, we cross-checked genetic correlations between each set of summary statistics and the 

MTAG output to check that the contributions were approximately equivalent, assessed by false 

discovery rate (FDR).   

 

Gene-based and Gene-set Analysis 

Gene-based associations were calculated using MAGMA v1.0823 using SNP2GENE within the 

FUMA interface (https://fuma.ctglab.nl/) for 18 842 genes and were considered significant at a 

Bonferroni corrected threshold of P ≤ 2.65x10-6. Gene-set analyses of biological pathways defined by 

gene ontology (GO) pathways and curated gene-sets were examined using MAGMA. GO terms and 

gene-sets containing fewer than 20 genes were excluded from analysis, so a total of 9 113 biological 

pathways were tested and a Bonferroni corrected threshold of P ≤ 5.49x10-6 was applied.  

 

Functional Mapping, Annotation and Partitioned Heritability 

Fine mapping and annotations were performed using the Variant Effect Predictor (VEP) online tool 

(http://grch37.ensembl.org/) on the list of candidate SNPs present with R2 ≤0.6 with an independent 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2024. ; https://doi.org/10.1101/2024.02.15.24302884doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.15.24302884
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

significant SNP generated by FUMA, and includes tagged SNPs extracted from the 1000 genomes 

reference panel. Variants were considered potentially damaging if they were annotated as probably 

damaging by PolyPhen2 and deleterious by SIFT. Expression QTL analysis was performed using 

PsychENCODE eQTLs, BRAINEAC, eQTLcatalogue BrainSeq, and GTEx v8 Brain databases within 

FUMA.  

MAGMA, within FUMA, was used to test for enrichment of tissue-specific annotations. For this, we 

used bulk RNA-seq expression profiles from 53 tissue types from GTEx v8, and BrainSpan RNA-

sequencing from 29 ages spanning 11 developmental stages.  

To interrogate cell- and region-specific resolution, we accessed single-cell RNA-seq (scRNA) data via 

the Cell Type function within FUMA. Expression data from human embryonic ventral mid-brain (6-

11 weeks post gestation) (GSE76381), human embryonic prefrontal cortex (8-26 weeks post 

gestation) (GSE104276), and human adult and fetal cortex (GSE67835) datasets were tested.  

We partitioned SNP heritability using stratified LDSC, as described by Finucane et al24, to determine 

if significantly more SNPs clustered within tissue-specific chromatin modification patterns than 

expected by chance, based on the proportion of SNPs that map within these types of genomic regions. 

Annotations were based on data from the Roadmap Epigenomics project and Enhancing GTEx project 

(ENTEx). LD scores, regression weights and European allele frequencies were obtained from 

https://alkesgroup.broadinstitute.org/LDSCORE.  

  

Polygenic Score Analysis 

Word-reading polygenic scores were calculated for SNPs based on increasing P value thresholds 

spanning the full range. Scores were calculated for the National Child Development Study (NCDS); a 

large UK birth cohort study born in 195825, with extensive genetic and longitudinal reading measures 

as described in Bridges et al26. Individuals genotyped on one of the two lowest resolution arrays 

(Illumina 15k Custom chip and Affymetrix 500k) were excluded prior to analysis due to lack of 

available data from chromosome X, resulting in a cohort of N = 6 410 with imputed genotypes. Six 
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measures of functional reading were used, consisting of composite measures at ages 7, 11, 16 and 

across all time points, and binary measures of difficulties at ages 23 and 3326. Polygenic scores were 

estimated using PRSice2 v2.3.527, and sex, array and 10 principal components were used as 

covariates, as previously described26. 

 

Polygenic Selection Analysis 

We sought to identify evidence of polygenic selection for reading ability using a large panel of 1015 

imputed ancient genomes, sampled from across West Eurasia19, 28. This dataset represents a dense 

transect of ancient individuals sampled over the last 15k years with local ancestry contributing to 

present day Europeans. We ascertained statistically independent SNPs associated with reading ability 

by filtering our genome-wide summary statistics to only retain positions imputed with high 

confidence in the ancient dataset. LD-clumping was performed using Plink 1.90b4 with a window size 

of 250kb, maximum R2 threshold of 0.05, and maximum P ≤ 5x10-8 using the 1000 Genomes Project 

phase 3 European populations (GBR, FIN, TSI) as the reference panel. We then inferred allele 

frequency trajectories and selection coefficients using CLUES29 and exported the posterior likelihood 

densities. Finally, we modelled the polygenic selection gradient for reading ability with PALM30 

using imputed ancestral data generated and method described by Barrie et al18.   
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Results  

Multivariate GWAS of Reading Ability 

The genetic correlation between the univariate summary statistics of word reading and dyslexia 

(Europeans only, without GC correction) was -0.71 (SE = 0.05, Z = -15.06), and indicative of a high 

degree of shared genetic aetiology enabling multivariate GWAS analysis with MTAG15. The analysis 

produced an equivalent sample size of 102 082 individuals for reading ability and used 5 449 985 

DNA variants that were shared between the two sets of univariate summary statistics. This provided 

87% power to detect additive trait variance of up to 0.04% (N = 102 082, α = 5x10-8). We identified 

35 genome-wide significant (P ≤ 5x10-8) independent loci (r2 <0.6, and <250kb maximum distance 

between LD blocks to merge into one genomic locus) (figure 1a), containing 86 independent 

significant SNPs, independent from each other at an R2 of 0.1. Twenty-six of these regions were 

previously reported in the dyslexia GWAS4, 6 regions can be considered novel but were present in the 

uncorrected dyslexia summary statistics, and 1 region is novel (figure 1, table 1). The region 

previously reported as significant in the GenLang word reading meta-analysis5 was not associated in 

the present study. Quantile-Quantile (Q-Q) plots indicated (supplementary figure 1) that the data were 

appropriately controlled for population stratification, as markers showing low association with word 

reading did not deviate from the expected quantile. Similarly, LDSC lambda genomic control 

statistics (1.28), intercept (0.84, SE = 0.01) and ratio (<0) support an absence of genomic inflation. 

The maximum FDR for MTAG was moderate at 0.06, indicating that 6% of associated regions may 

be false positives. Constituent univariate GWAS χ2 statistics were calculated by MTAG for dyslexia 

(χ2 = 1.66) and GenLang word reading (χ2 = 1.08), and multivariate GWAS (χ2 = 1.35). Individual 

LocusZoom plots for each region are presented in supplementary figure 2:1-35. Summary statistics 

for SNPs reaching suggestive significance (P ≤ 1x10-5) are presented in supplementary table 1.   

[Figure 1 and Table 1 about here] 

The most significantly associated loci were consistent with regions previously reported in the 

univariate dyslexia GWAS4. The top locus, chr3q22.2 (rs13082684, P = 1.87x10-17) containing 
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PPP2R3A (table 1, supplementary figure 2-14) is consistent with the top SNP of the dyslexia GWAS, 

although the association has become more highly significant in the MTAG analysis. Both the second 

and third top loci, chr20q13.13 (rs348258) (supplementary figure 2-34) and chr17q12 (rs1075218) 

(supplementary figure 2-30), also show more significant associations than the dyslexia source GWAS. 

However, for both loci, the top SNPs have changed and fall within different genes.   

The lead SNP identified by the GenLang word-reading meta-GWAS5, rs11208009, did not reach 

genome-wide significance in the present multivariate study (P = 2.71x10-6). However, it fell within a 

region that reached suggestive significance (chr1:62900811-63199936) at P = 1.96x10-7 in which 

rs1168114 (LD = 0.636) was now the lead SNP. This suggestive locus overlaps completely with the 

original study, therefore including candidate genes DOCK7, ANGPTL3, and USP1 (supplementary 

figure 3).  

 

Novel Regions Associated with Reading Ability 

Our multivariate analysis detected seven novel regions that did not previously reach genome-wide 

significance in either univariate GWAS for word reading or dyslexia (table 2). One of the lead SNPs 

in these regions, rs362307, has been previously linked to a range of phenotypes, the most relevant of 

which include educational attainment31, cognitive ability32, and a “worry” phenotype key to 

neuroticism33, 34. The remaining six regions all contained lead SNPs detected by the Doust et al 

dyslexia univariate GWAS4 and present in the GWAS Catalogue, but at suggestive significance 

threshold of P ≤1x10-5. Interestingly, SNP rs2158266 in region chr16:72333576-72697419 containing 

gene AC004158.2, was previously associated with phoneme awareness, considered a cognitive marker 

of dyslexia35, although we note that the discovery cohort from that prior study was included in the 

GenLang word reading GWAS, and therefore contributed also to the current investigation.  

[Table 2 about here] 
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Multivariate GWAS of Dyslexia 

We also examined the dyslexia output of MTAG which produced an effective sample size of 1 228 

832 individuals and identified 80 independent loci that met the genome-wide significance threshold 

(figure 1b). Of these 80 associated loci, 41 were genome-wide significant loci in the original 

univariate dyslexia GWAS, and 19 were reported as suggestively significant4. The 7 novel loci 

presented in our reading ability multivariate GWAS, including lead SNP rs362307 in HTT, were also 

significantly associated in our dyslexia multivariate analysis. Finally, this analysis identified 13 novel 

loci, not previously associated with dyslexia. These novel regions are presented in supplementary 

table 2. Summary statistics for SNPs reaching suggestive significance (P ≤ 1x10-5) are presented in 

supplementary table 3. Subsequent genetic and biological analyses are focussed on the reading-ability 

multivariate summary statistics due to the substantial increase in power for follow-up analyses, as 

compared to the original univariate GWAS.  

 

Heritability and Genetic Correlations of Reading Ability 

LDSC analysis of the reading-ability multivariate GWAS revealed a high SNP-based heritability 

estimate (h2
snp) of 0.24 (SE = 0.01), an increase on the previous estimate of 0.19 (SE = 0.02) 

previously reported for word reading5. Modest evidence of population stratification was indicated by 

lambda genomic-control estimate of 1.28, while mean χ2 and genomic correction having been applied 

by MTAG as reflected by the intercept ≤1 (0.84) and ratio <0.  

Genetic correlations were estimated between multivariate reading ability and 1438 traits including 

recently published summary statistics for ASD13 and ADHD14. Statistically significant genetic 

correlations (Bonferroni corrected threshold of P ≤ 3.48x10-5) were found for 305 traits. A subset of 

relevant significant correlations is presented in figure 2, with full results in Supplementary table 4.  

Reading ability showed strongly positive correlations (rg) with measures of intelligence, specifically 

cognitive performance (0.57, SE = 0.02) (SSGAC) and verbal-numerical reasoning (UKBiobank) 

(0.61, SE = 0.02). Consistent with previous findings, higher reading ability was positively genetically 
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correlated with academic achievement and education level, including educational attainment (0.30, SE 

= 0.02) (SSGAC), completing college or a university degree (0.32, SE = 0.02) and completing GCSEs 

or equivalent (0.58, SE = 0.02). Reading ability showed negative genetic correlations with achieving 

either vocational qualifications (NVQ or HND or HNC: -0.57, SE = 0.05; CSEs or equivalent: -0.48, 

SE = 0.04) or not completing any qualifications (-0.39, SE = 0.02).  

In terms of neurodevelopmental traits, ADHD14 showed a negative correlation with reading ability (-

0.43, SE = 0.03). This was weaker than that shown by the dyslexia study alone (0.53, SE = 0.12)4, and 

while not reported by Eising et al5, we calculated rg for the univariate word-reading GWAS as -0.40 

(SE = 0.05). In contrast, ASD did not show a significant correlation (-0.08, SE = 0.04, P = 3.15x10-2) 

with reading ability. 

Major depressive disorder showed a negative correlation (-0.13, SE = 0.03), as did measures linked to 

poorer wellbeing including manic episodes, risk taking and mood swings. Measures of pain and use of 

pain medications were also negatively correlated, including toothache (-0.39, SE = 0.06), pain all over 

the body (-0.45, SE = 0.06) and back pain (UKBB) (-0.24, SE = 0.03). A moderately strong positive 

correlation was seen between reading ability and no pain experienced in the last month (0.34, SE = 

0.03). Reading ability showed negative genetic correlations with measures of lower socio-economic 

status and less desirable workplace conditions, and positive correlations with higher socioeconomic 

and health measures.  

As the two constituent univariate summary statistics were derived from GWAS efforts with different 

sample sizes (N = 27 180 versus Ncases = 51 800/ Ncontrols = 1 087 070) and type of measure 

(quantitatively assessed continuous measure versus self-reported binary), we investigated whether the 

multivariate GWAS for reading ability was overpowered by signal from the dyslexia study. To do this 

we estimated genetic correlations between multivariate reading ability and univariate dyslexia (rg = -

0.98, SE = 0.00, Z = -334.76, P = 0.00), and between multivariate reading-ability and univariate 

GenLang word reading (rg = 0.84, SE = 0.03, Z = 27.63, P = 4.66 x 10-168). Whereas these correlations 

suggested a bias from the dyslexia GWAS, there was clear evidence that the multivariate reading-
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ability results were indeed capturing the genes associated with quantitative reading ability with the 

genetic correlation almost reaching 0.90.  

 

[Figure 2 about here] 

 

Gene and Gene-set Associations 

Gene-based analysis of the multivariate reading ability summary statistics identified 103 genes, 

meeting the Bonferroni-derived α level for 18,842 tests (P < 2.65x10-6). Most of these genes 

associated with reading ability (N = 79) were also present in associated regions detected by GWAS, 

while 24 fell outside of associated regions from the SNP-based screen (supplementary table 5). The 

overall number of associated genes (N = 103) was lower than the 173 detected by Doust et al (2022) 

in the gene-based testing of the original dyslexia study4. Fourteen genes were statistically associated 

in the present study but not in Doust et al (supplementary table 5). Only three of these genes fall 

within regions that met genome-wide significance in the present multivariate reading ability GWAS.  

Eising et al (2022) did not report a gene-based association analysis. However, when we perform this 

using FUMA, only one gene meets the Bonferroni significance threshold (AC079354.1, P = 7.4x10-7), 

with candidate genes DOCK7 and USP1 showing the next strongest associations just above the 

Bonferroni threshold5.  

MAGMA gene-set analysis detected enrichment of two biological pathways from 9 113 curated gene 

sets and gene ontology (GO) terms, tested with a Bonferroni-derived threshold (P < 5.49x10-6). The 

Gene-Set Enrichment Analysis term for Verhaak glioblastoma proneural (genes correlated with 

proneural type of glioblastoma multiforme tumours) containing 170 genes showed significant 

association (Beta = 0.35, SE = 0.08, P = 2.08x10-6). Similarly, the GO term for cellular compartment 

(GOCC) synapse containing 1 390 genes showed significant association (Beta = 0.12, SE = 0.03, P = 

2.71x10-6). See supplementary table 6 for the full gene-set enrichment analysis.  
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Variant Mapping and Functional Annotation 

Candidate SNPs (N = 7 548) found in LD (R2 ≤ 0.6) with one of the independent significant SNPs, 

including tagged SNPs from the 1000 Genomes reference panel, underwent variant annotation using 

the Variant Effect Predictor (VEP) online tool (http://grch37.ensembl.org/). A total of 14 985 

individual annotations were identified for candidate SNPs, due to multiple allelic variants per SNP. 

Intronic variants were most common (58%) with coding variants making up 0.68% (supplementary 

figure 4a). Of the coding variants, 51% were missense and 8% were stop-gains (supplementary figure 

4b).  

Six variants predicted as damaging by SIFT and PolyPhen and with CADD scores > 25, an indication 

for possible deleterious effects of the variants, were found: rs11142 (chr1:109897103) in SORT1, 

rs1983864 (chr10:100017453, tag SNP) in LOXL4, rs1064213 (chr2:198950240, tag SNP) in PLCL1, 

rs1130146 (chr 20:47859217, tag SNP) in DDX27, and rs10891314 (chr11:111916647) in DLAT with 

two allelic variants, G/A and G/T (supplementary table 7). Two of the variants with CADD scores > 

25 (but not annotated by SIFT or PolyPhen) were predicted to result in stop gain changes: rs3764090 

(chr13:50008301) in AL136218.1 and rs2424922 (chr20:31386449, T/A) in DNMT3B.  

At the gene level, 591 genes were contained within genome-wide significant regions (supplementary 

table 8). Sensitivity to loss-of-function was annotated with probability of loss-intolerance scores (pLI) 

and sensitivity to non-coding variation in regulatory sequences was annotated with non-coding 

residual intolerance scores (ncRVIS). One-hundred and twenty-five genes (21.2%) were predicted as 

loss-of-function intolerant by pLI ≥0.9, and seven (1.2%) were predicted as less tolerant to non-

coding variation by ncRVIS ≥2.0. Three genes (SIK2, PTPN14 and XYLT1) were predicted as 

intolerant by both metrics (pLI ≥0.9 and ncRVIS ≥2.0). 

Ninety-seven genes (N = 97/591) located within associated regions showed evidence of association 

with expression QTLs (eQTL) in brain tissue (P ≤ 5.94x10-5) (supplementary table 8). The strongest 
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eQTL associations were for DHRS11 (P = 6.36x10-77), CYB561 (P = 1.41x10-69) and SETDB2 (P = 

7.10x10-52).  

 

Functional Enrichment using Partitioned Heritability and Gene Property Analysis 

To examine the tissue-specific expression profiles of genes implicated in reading ability, we used 

MAGMA gene property analysis within FUMA. Using RNA-seq data from the Genotype-Tissue 

Expression (GTEx) project, we found significant enrichments of genes associated with reading ability 

in brain tissue: 11 brain regions tested showed significantly higher expression levels of reading ability 

associated genes, particularly the cerebellum, cerebellar hemisphere and frontal cortex 

(supplementary figure 5, supplementary table 9) at a Bonferroni threshold of P < 4.03x10-4 corrected 

for 124 tests (GTEx and BrainSpan combined). As MAGMA analysis corrects for the average 

expression level in the dataset, a significant association indicates that genes associated with reading 

ability have a higher expression in that tissue relative to the average expression within the dataset.  

Next, we tested for enrichment within the BrainSpan data set, consisting of RNA-seq from 11 

developmental stages (supplementary figure 6, supplementary table 10) and 29 ages (supplementary 

figure 7, supplementary table 11) of human brains. No associations met Bonferroni correction for 124 

tests (P < 4.03x10-4).   

To further investigate enrichment of gene expression within the developing human brain, we tested 

for associations with specific cell types in single cell RNA-seq (scRNA) data using MAGMA within 

FUMA. Embryonic ventral midbrain from 6-11 post conception weeks (pcw) embryos (GSE76381) 

revealed enrichment in three cell types at Bonferroni corrected threshold of P < 6.58x10-4 for 76 tests 

(figure 3a, supplementary table 12). These were GABAergic neurons (Gaba, P = 1.07x10-5), 

neuroblast GABAergic neurons (NbGaba, P = 3.79x10-4), and red nucleus neurons (RN, P = 2.03x10-

4). Embryonic prefrontal cortex scRNA-seq data from pcw 4-26 (GSE104276) showed significant 

enrichment in GABAergic neurons at 26 pcw (P = 5.00x10-7), neurons at 26 pcw (P = 2.85x10-4), and 

neurons at 16 pcw (P = 5.59x10-5), meeting the Bonferroni corrected threshold (76 tests, P <6.58x10-4) 
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(figure 3b, supplementary table 13). Finally, scRNA-seq data from foetal and adult human cortex 

(GSE67835) showed significant expression in adult cortex neurons (P = 1.10x10-5) (76 tests, P 

<6.58x10-4) (figure 3c, supplementary table 14).   

Heritability partitioning by LDSC identified statistically significant enrichment of variants associated 

with reading ability in chromatin signatures annotated in foetal and adult brain tissues obtained from 

the Roadmap Epigenomics project and Enhancing GTEx project (ENTEx) (figure 4, supplementary 

table 15). Out of 489 chromatin signatures tested, twenty-nine annotations were significantly enriched 

(Bonferroni corrected threshold P <1.02x10-4), from foetal brain (N = 6), adult brain (N = 21) and 

primary neuronal cultured cell lines (N = 2), across a range of chromatin signatures of (active) 

enhancers and promoters and actively transcribed regions.  

 

[Figure 3 about here] 

[Figure 4 about here] 

 

Polygenic Scores Prediction in NCDS 

Polygenic scores from the multivariate GWAS of reading ability were computed in an independent 

cohort across five developmental stages, plus an overall composite measure. The reading-ability PGS 

explained between 2.29 and 3.50% of variance in reading ability in the NCDS cohort. Predictions for 

composite measures of reading proficiency were 2.78% at age 7 years (N = 5 712), 2.61% at age 11 

years (N = 5 528), and 2.29% at age 16 years (N = 4 809). Binary measures of struggling with reading 

scored highest at 3.5% at age 23 (Ncases = 167, Ncontrols = 5 288) and 2.55% at age 33 (Ncases = 203, 

Ncontrols = 5 497). The prediction for the overall composite measure of reading proficiency across all 

ages was 3.32% (N = 3 089) (supplementary figures 8-13; supplementary table 16).    

 

Polygenic Selection Analysis  
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The polygenic selection analysis examined if there was evidence of selection on alleles associated 

with reading ability seen through the past 15 000 years of human history. Essentially, this looks for 

differences in allele frequencies in variants associated with a trait, between the ancient ancestral 

population(s) and the present day. Such shifts in frequency indicate that selection acted to change the 

allele frequency of that variant in response to environmental pressures. From the 86 significant 

independent variants within 35 loci associated with reading ability in the multivariate GWAS, 42 were 

retained after clumping and present at high quality in the previously generated imputed ancestral data 

set18, 19, 28. Overall analyses of these SNPs identified no evidence of directional selection acting on 

reading ability over the past 15 000 years (P = 0.89) (figure 4). Of the 42 SNPs submitted for analysis, 

eight SNPs individually showed statistically significant evidence of directional selection, after 

accounting for the number of tests (Bonferroni threshold of P < 1.12x10-3 for 42 tests) (supplementary 

table 17).  

rs10774624 in gene LINC02356 showed the most pronounced increase in allele frequency over time 

and showed a positive effect on reading ability. The variant is also associated with a wide range of 

traits including arterial disease36 and rheumatoid arthritis37. Two further SNPs associated with positive 

effects on reading ability were rs1317140 in gene TRAIP (proxy to rs13316065), which is also 

associated with body mass index38 and urate measurement39, and rs7204631 with no reported 

association. However, both these SNPs showed a decrease in allele frequency over time.  

The strongest signal in alleles associated with poorer reading ability was rs17687323 on chromosome 

17 with no prior associations with other traits and showed a reduction in allele frequency over time. 

The remaining four SNPs also associated with poorer reading performance, were at increased 

frequency in modern populations; rs72916919 (no reported associations with other traits), rs9879531 

in gene NCK1 (linked to blood urea nitrogen measurement40), rs787995 (no association), and 

rs9880211 in STAG1 (previously associated with body height41). It is plausible that these eight 

variants individually showed modest directional selection because of their contributions to traits other 

than reading ability, given that our overall analyses showed no evidence of selection for the latter 

through the past 15 000 years.  
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[Figure 4 about here] 

Discussion 

We performed a multivariate GWAS using MTAG on reading ability using summary statistics from 

the two largest reading-related cohorts to increase the effective population size to 102 082, which is 

substantially larger than previous studies. We detected 35 independent loci associated with reading 

ability, including 7 novel loci that were not significantly associated in either of the original univariate 

GWAS studies. The majority of loci (N = 26) were previously reported in the univariate dyslexia 

GWAS4. The most significantly associated independent SNPs in the multivariate GWAS; rs13082684 

(PPP2R3A), rs348258 (STAU1) and rs1075218 (MRM1), were consistent with loci reported in the 

dyslexia GWAS4.  

The most significantly associated SNP identified by the GenLang word-reading meta-GWAS5, 

rs11208009, did not reach genome-wide significance in the present multivariate study (P = 2.71x10-6). 

It fell within a region that reached suggestive significance (chr1:62900811-63199936, P = 1.96x10-7), 

fully overlapping with the previously reported region.  

We also used the multivariate approach to identify novel loci for dyslexia, increasing the effective 

population size to 1 228 832. We detected 80 loci using the multivariate approach including 13 novel 

loci, boosting 19 regions that were previously suggestive, and seven that were novel and present in 

both of our multivariate analyses. However, we focussed the follow-up analyses on the reading ability 

output, and not on dyslexia output, because the vast increase in effective sample size compared to the 

respective univariate analysis, providing substantially more power than in the original GenLang study.    

Annotation of associated variants indicated only six genes (seven variants) that contained potentially 

deleterious coding variants associated with reading ability, as predicted damaging by SIFT, PolyPhen 

and CADD. At the gene level, of the 591 genes contained within the associated regions, only 125 

(21.2%) were predicted as loss-of-function intolerant, and seven (1.2%) were predicted as less tolerant 

to non-coding variation. Three genes (SIK2, PTPN14 and XYLT1) were predicted as intolerant by both 
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metrics. SIK2 was previously reported in the prior dyslexia GWAS4, where as PTPN14 and XYLT1 are 

novel. eQTL associations revealed a large number of genes (N = 97) with evidence of expression 

associations in brain tissue, similar to those identified in the prior dyslexia GWAS, the strongest 

associations were identified in genes DHRS11 and CYB561. 

We identified seven novel loci that were not previously significantly associated with either word 

reading or dyslexia in the original univariate GWASs. The novel lead SNP, rs362307 within HTT, has 

been associated with a range of cognitive traits relevant to reading ability in prior studies, including 

cognitive function32 and educational attainment31. Genomic structural equation modelling and genetic 

correlation analyses have shown that reading-related traits have substantial genetic overlaps with 

educational attainment and IQ4, 5, and therefore SNPs involved in general cognition are likely to be 

important across traits. The remaining six loci were identified in the univariate dyslexia study at a 

sub-genome-wide association threshold4, but are present in the GWAS Catalogue42. One of these 

regions, chr16:72333576-72697419 in gene AC004158.2 (rs2158266) was previously reported by 

Gialluisi and colleagues as suggestively associated with phoneme awareness, deficits of which are 

considered a marker of dyslexia35. That study included 3 093 individuals of European ancestry from 

the Neurodys, CLDRC and UKdys cohorts, which also formed part of the GenLang meta-GWAS, 

meaning that these findings are not fully independent.  

We predicted a maximum of 3.5% of trait variance in reading measures in the NCDS using the 

multivariate word reading polygenic scores derived from our multivariate reading ability GWAS. This 

is an improvement on the previous predictions using the dyslexia GWAS on measures of word 

reading in similar population-based cohorts where 2.9% of variance was explained in adolescents and 

~2% in adults4. Predictions across longitudinal measures at five ages within the NCDS ranged from 

2.29-3.5% suggesting that this part of the genetic contribution of reading is stable through schooling 

and into adulthood. Other studies have used phenotypically related PGS to predict reading outcomes. 

For example, Selzam et al (2017)43 used a years-in-education PGS44 to predict 5% of reading variance 

at 14 years of age. Future studies might test whether our reading ability PGS explains incremental 
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variance in reading variation above an educational attainment PGS, which is a broader phenotype 

encompassing cognitive and non-cognitive factors.  

Genetic correlations between the multivariate reading-ability trait and other phenotypes showed a 

high degree of similarity to the profiles of genetic correlations seen for both the univariate GWAS 

studies of word reading and dyslexia. Key findings were consistent with the univariate GWAS, such 

as strong genetic correlations with educational attainment, completing a college or university degree, 

and a negative correlation with manual jobs. Notably, the strongest correlation for the multivariate 

reading-ability GWAS was verbal-numerical reasoning in the UKBiobank (0.61, SE = 0.02), which 

was also among the strongest correlations for Dyslexia at -0.5 (SE = 0.03)4.  

Correlations with other neurodevelopmental traits were reasonably consistent for the univariate and 

multivariate reading-ability GWASs. The strongest correlation of the dyslexia GWAS was with 

ADHD at 0.53 (SE = 0.01)4, and although this correlation was lower in absolute magnitude for the 

multivariate reading-ability analysis (-0.43, SE = 0.03), it remains consistent with the literature 

linking ADHD with reading and language outcomes9, 45. The observation that genetic correlation with 

ADHD is stronger with dyslexia than with reading ability overall may indicate that dyslexia diagnosis 

is influenced by more than just reduced reading performance, and that these other considerations 

overlap with indicators of ADHD. Consistent with previous findings that there is no significant 

genetic correlation between autism spectrum disorder (ASD) and reading ability4, 5, no significant 

correlation was found in the multivariate reading-ability investigation carried out here.  

Gene-set analysis revealed two enriched biological pathways implicated in reading ability: the gene-

ontology term for cellular compartment (GOCC) neural synapses, and for Verhaak glioblastoma 

proneural (genes correlated with proneural type of glioblastoma multiforme tumours). Both gene-sets 

hint at essential neuronal mechanisms.  

Our analysis of expression patterns of associated genes in the developing human brain offered further 

evidence for a role in early developmental processes, implicating GABAergic and red neurons in 

embryonic prefrontal cortex and midbrain, as well as cortex neurons in adults. These findings echo the 
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cell type analysis reported in the GenLang paper, where an enrichment in red nucleus neurons and a 

trend towards enrichment in fetal GABAergic neurons was observed5. Price and colleagues reported 

evidence supporting neuronal migration/axon guidance as potential pathways using a candidate gene-

set approach for known neurodevelopmental genes in a hypothesis-driven association analysis of 

word reading which included the GenLang meta-GWAS46. More recently, the same research group 

implicated glutamatergic (excitatory) and GABAergic (inhibitory) neurons in the adult cortex in word 

reading, using a subset of the GenLang cohorts (N = 5 054)17. The sample used in the present study 

overlaps with that of the prior work, which may contribute to the consistency between the two sets of 

results. Despite the small GWAS sample size used by Price and colleagues, their work offers support 

for the GABAergic inhibitory system as a future focus for connecting genetics to neuronal 

mechanisms. 

Polygenic selection analysis found no significant selection observed from ancestral populations 

suggesting that the genetic influences on reading skills were not specifically selected for or against in 

the transition between hunter gatherer and farmers in Europeans. This finding may be considered 

unsurprising since reading is many thousands of years old but has only very recently become 

widespread and has no obvious selection pressure or effect on reproductive fitness. However, because 

reading processes are highly dependent on brain circuits that evolved in support of spoken language, it 

was still possible that we may have detected signals related to language evolution. The consistency of 

the PGS through the past 15k years of history in northern Europe suggests it has not been affected by 

any major social or societal changes that have taken place in history such as the transition to farming, 

although it is important to note that our PGS accounts for only a small proportion of heritable reading 

ability. We identified eight SNPs that showed individually significant changes through recent history; 

five showed evidence of negative selection over time and three showed signs of positive selection, 

although their direction of effect on reading-ability were mixed. Considering that reading ability is 

likely a neutral trait with regard to biological fitness, we speculate that the patterns observed for these 

eight SNPs are most likely due to selection pressures acting on pleiotropic traits.   
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Analysis that examines further back through evolution (30 million years ago to 50 000 years ago) was 

performed in both the Eising et al5 and Doust et al4 papers. Based on findings of human brain 

structure evolution47, five annotations reflecting aspects of human evolution were examined. Doust et 

al found no evidence of enrichment for annotations related to human evolution. Eising et al found 

evidence of an enrichment in archaic deserts; long regions in the human genome where there is an 

absence of Neanderthal admixture, suggesting these regions may be intolerant to gene flow and 

therefore harbouring variants essential to Homo sapiens. The findings suggested that these archaic 

desert regions could contain genetic variations that contribute more to reading and language traits in 

modern humans than expected by chance.  

In terms of limitations of the current study, we note that the false discovery rate (FDR) was moderate 

at 6%, primarily because of the size imbalance between the constituent summary statistics. Genetic 

correlation between the multivariate reading ability phenotype was marginally stronger with dyslexia 

than GenLang word reading. When considered along with the MTAG modest FDR, they suggest the 

observed patterns of genetic associations may be influenced by the larger dyslexia GWAS.  

In summary, through implementation of multivariate GWAS analysis combining work on quantitative 

measures with self-report of disorder, we have produced the largest genetic study of reading ability 

(effective N = 102 082) to date. Our findings account for 24% (h2
snp) of the observed variability of 

reading ability in our datasets. We identified seven novel loci associated with quantitative reading 

ability and implicated early brain developmental processes in the biological underpinnings of reading.  
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Figure Legends 

Figure 1: Manhattan plot of the multivariate GWAS of a) reading ability and b) dyslexia. The y axis 

indicates the -log10 P value for association. The threshold for genome-wide significance (P< 5x10-8) 

is represented by a dashed grey line. Significant loci that were previously reported in the GenLang 

word reading GWAS are represented in red, and those reported in the dyslexia GWAS are shown in 

purple.  

 

Figure 2: Genetic correlations of reading ability with selected relevant phenotypes. Significant (P ≤ 

3.561 x 10-5) genetic correlations (rg) between multivariate analysis of reading ability and other 

selected phenotypes  

 

Figure 3: MAGMA gene property analyses of reading ability associated genes with single cell gene 

expression data from a) embryonic ventral midbrain from 6-11 post gestational weeks (pgw), b) 

embryonic prefrontal cortex from 4 – 26 pgw, c) human fetal and adult cortex. Neuronal cell lineages 

in a) are: DA0-1 – dopaminergic neurons, Endo – endothelial cells, Gaba – GABAergic neurons, Mgl 

– microglia, NbGaba - neuroblast GABAergic, NbM – medial neuroblast, NbML1-5 – mediolateral 

neuroblasts, NProg – neuronal progenitor, OMTN - oculomotor and trochlear nucleus, OPC – 

oligodendrocyte precursor cells, Peric – pericytes, ProgBP – progenitor basal plate, ProgFPL – 

progenitor medial floorplate, ProgM – progenitor midline, Rgl1-3 – radial glia-like cells, RN – red 

nucleus, Sert – serotonergic 

 

Figure 4: Partitioned heritability enrichment analysis of chromatin signatures. SNP-based 

heritability of the multivariate reading-ability GWAS is significantly enriched in brain enhancers, 

promoters and transcribed regions. 489 annotation of tissue-specific chromatin signatures were used 
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to analyse the GWAS results with LDSC heritability partitioning. Only brain-related annotations are 

shown. P values are plotted on the y axis as -log10. 

 

Figure 5:  No evidence for directional selection of reading ability associated SNPs. Stacked line plot 

of the ancient ancestry PALM analysis, showing the contribution of SNPs to reading ability over time. 

SNPs are shown as stacked lines, the width of each line being proportional to the population 

frequency of the positive effect allele, weighted by its effect size. When a line widens over time the 

positive effect allele has increased in frequency, and vice versa. SNPs are sorted by the magnitude 

and direction of selection, with positively selected SNPs at the top, negatively selected SNPs at the 

bottom, and neutral SNPs in the middle. SNPs are coloured by their corresponding P-value in a 

single locus selection test. The asterisk on the scale bar marks the Bonferroni corrected significance 

threshold, and nominally significant SNPs are shown in yellow and labelled by their rsIDs. The Y-axis 

shows the scaled average polygenic score (PGS) in the population, ranging from 0 to 1, with 1 

corresponding to the maximum possible average PGS (i.e. when all individuals in the population are 

homozygous for all positive effect alleles) and the X-axis shows time in units of thousands of years 

before present (kyr BP). 
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Table 1: Loci associated with reading ability detected by multivariate GWAS (MTAG), with the lead 

SNP indicated. Genes which were significant in the gene-based test are indicated in bold, and those 

unavailable to test are indicated by *. Regions previously reported are indicated by A (Doust et al 

2022) or B (Eising et al 2022). Where the previous lead SNP or genes have changed in the current 

analysis, these are indicated in bold. $ indicates regions that were called as one locus in Doust et al 

2022, and two in the present analysis. 

 

Table 2: Novel regions associated with reading ability from multivariate GWAS using MTAG. Table 

shows associated region, lead SNP, minimum P-value, and the number of significant SNPs within the 

regions. The closest gene to the Lead SNP is listed, as well as other genes falling within the 

associated region. Relevant known associations output from FUMA are listed for both the SNP and 

the gene, listed as SNP: gene.  
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Tables 

Cytoband Lead SNP Independent Significant 

SNPs at locus 

Effect 

allele 

Frequency Effect SE MTAG P Nearest Gene(s) to 

lead SNP 

Previous Lead 

SNP 

Previous P Previous 

Gene(s) 

chr1p32.1 rs12723322 rs890292 T 0.125 -0.039 0.006 5.00 x 10-10 [C1orf87] rs12737449A 1.40 x 10-11 [C1orf87] 

chr1p13.3 rs3853500 
 

T 0.287 0.031 0.005 3.75 x 10-9 [SORT1] rs2091329A 1.94 x 10-9 CYB561D1-[]-

AMIGO1 

chr1q21.3 rs11264291 
 

T 0.437 0.026 0.005 1.58 x 10-8 PMVK--[]--PBXIP1 rs4845687A 1.08 x 10-9 KCNN3--[]--

PMVK 

chr1q41 rs17043436 
 

G 0.156 0.033 0.006 3.12 x 10-8 [ESRRG]* rs35570426A 4.10 x 10-8 [ESRRG] 

chr2p22.1 rs906549 rs2217363 T 0.345 -0.030 0.005 3.15 x 10-11 SLC8A1---[]---

AC010739.1* 

rs906549A 1.40 x 10-9 SLC8A1---[]---

C2orf91 

chr2q22.3 rs2381977 rs10432338; rs1376383 T 0.392 0.028 0.005 1.1 x 10-9 AC062032.1*---[]---

RP11-279E17.1* 

rs497418A 3.00 x 10-9 []---ACVR2A 

chr2q32.2 rs719166 
 

G 0.161 -0.032 0.006 1.82 x 10-8 AC092638.2*--[]---

RP11-305O20.1* 

rs719166B 1.46 x 10-7 
 

chr2q33.1 rs72916919 rs7571545; rs1560277 T 0.463 0.029 0.004 3.15 x 10-11 [RFTN2] rs72916919A 4.10 x 10-12 [RFTN2] 

chr2q33.1 rs11692189 rs2084735 G 0.309 -0.026 0.005 2.51 x 10-8 AC018717.1*---[]-

SATB2 

rs6435017A 4.92 x 10-9 [SATB1] 

chr3p24.3 rs12493567 
 

G 0.434 0.024 0.004 3.80 x 10-8 [TBC1D5] rs1374197A 2.33 x 10-9 [TBC1D5] 

chr3p21.31 rs13316065 
 

T 0.304 -0.027 0.005 2.16 x 10-8 [TRAIP] rs2624839A$ 3.00 x 10-9 [SEMA3F] 
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chr3p21.31 rs6800021 
 

G 0.398 0.025 0.004 1.64 x 10-8 [RP11-493K19.3]* 

chr3p12.1 rs4856600 
 

C 0.350 0.025 0.005 3.54 x 10-8 [CADM2] rs10511073A 4.61 x 10-10 []---CADM2 

chr3q22.3 rs13082684 rs34153877; rs7644471; 

rs13066401; rs35304385; 

rs28489326; rs7626676 

G 0.215 0.043 0.005 1.87 x 10-17 [PPP2R3A] rs13082684A 1.00 x 10-16 [PPP2R3A] 

chr4p16.3 rs362307 
 

T 0.063 -0.047 0.008 1.91 x 10-8 [HTT] na 5.71 x 10-7 
 

chr4q31.3 rs6840360 rs6832872; rs361170; 

rs6831644 

G 0.483 0.029 0.004 6.40 x 10-11 [PET112] rs4696277A 4.80 x 10-11 [FAM160A1] 

chr5q34 rs31730 rs2591580 T 0.254 -0.030 0.005 2.47 x 10-9 RPL7P20*--[]---

RP11-67M9.1* 

rs41012A 1.34 x 10-10 [] 

chr6p22.3 rs4282415 rs10807604 G 0.325 0.026 0.005 3.37 x 10-8 ATXN1---[]--

STMND1 

rs2876430A 3.69 x 10-8 ATXN1---[]--

STMND1 

chr7q11.22 rs3735260 
 

G 0.062 -0.046 0.008 2.90 x 10-8 [AUTS2] rs3735260A 4.71 x 10-8 [AUTS2] 

chr9q34.11 rs9696811 rs4295766; rs10988208; 

rs10988229 

T 0.276 0.036 0.005 3.70 x 10-14 PTPA*--[]--RP11-

247A12.7* 

rs9696811A 1.00 x 10-14 PTPA--[]--

IER5L 

chr10q24.2 rs11189513 rs55917128; rs10883026 G 0.306 0.030 0.005 2.97 x 10-10 [R3HCC1L] rs10786387A 1.10 x 10-10 CRTAC1--[]--

R3HCC1L 

chr11p14.1 rs532395 rs653452; rs564832; 

rs573434; rs11605215; 

rs704660; rs4141920 

T 0.286 -0.031 0.005 2.01 x 10-10 [MPPED2:RP4-

710M3.2*] 

rs676217A 1.10 x 10-11 KCNA4---[]--

FSHB 

chr11q23.1 rs10891314 rs55945818 G 0.326 -0.030 0.005 1.31 x 10-10 [DLAT] rs138127836A 1.70 x 10-13 [PPP2R1B] 
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chr12q24.12 rs1265564 rs7970490; rs10774624; 

rs6490029 

C 0.431 0.031 0.004 2.78 x 10-12 [CUX2] rs7310615A 1.10 x 10-10 [SH2B3] 

chr13q14.2 rs7996852 rs7327520 T 0.310 0.027 0.005 1.84 x 10-8 [SETDB2] rs7328782B 1.24 x 10-7 
 

chr13q21.2 rs9538299 
 

G 0.333 -0.026 0.005 3.50 x 10-8 POLR3KP1*--[]--

RP11-105A24.2* 

rs9538299B 2.63 x 10-7 
 

chr16p12.13 rs2015573 
 

C 0.338 -0.026 0.005 2.40 x 10-8 CTD-3229J4.1*--[]--

CTA-481E9.4* 

rs6498749B 2.51 x 10-7 
 

chr16q22.2 rs2158266 
 

T 0.171 0.032 0.006 4.56 x 10-8 [AC004158.2]* rs11646282B 4.50 x 10-7 
 

chr17q12 rs1075218 rs11263775; rs9906189; 

rs62070737 

T 0.395 -0.036 0.005 3.82 x 10-15 [MRM1] rs34349354A 8.20 x 10-15 [GGNBP2] 

chr17q12 rs12453682 rs1565920; rs57448077 T 0.313 -0.031 0.005 6.48 x 10-11 NEUROD2-[]--

PPP1R1B 

rs12453682A 2.90 x 10-12 NEUROD2-[]--

PPP1R1B 

chr17q23.3 rs72841392 rs8066571 G 0.205 -0.033 0.005 3.44 x 10-10 [TANC2] rs72841395A 5.40 x 10-9 [TANC2] 

chr18q11.2 rs7505854 
 

G 0.435 -0.025 0.004 2.68 x 10-8 [AQP4-

AS1*:CHST9] 

rs7505854B 3.20 x 10-7 
 

chr20q11.21 rs4911109 rs10875486; rs293566; 

rs6087992 

C 0.350 0.029 0.005 2.82 x 10-10 [DNMT3B] rs4911257A 7.50 x 10-14 [DNMT3B] 

chr20q13.13 rs348258 rs6067019; rs13038202; 

rs6125596; rs6012558; 

rs79186842 

T 0.291 0.038 0.005 2.02 x 10-15 [STAU1] rs11393101A 2.20 x 10-16 [ARFGEF2] 
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chrXq27.3 rs6626462 
 

T 0.365 0.027 0.005 1.13 x 10-8 TMEM257---[]--

AL445258.1* 

rs5904158A 3.30 x 10-9 TMEM257---[]-

--CXorf51B 

 

Table 1 
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Associated region Lead SNP P 

Number 

of GWAS 

sig SNPs 

Top SNP 

gene(s) 

Other genes in 

region 
Relevant known associations (SNP: gene) 

chr2:193965614-194320930 rs719166 1.82 x 10-8 11 AC092638.2 RP11-305O20.1 Dyslexia (not GWsig) : Dyslexia (not GWsig) 

chr4:3142660-3273010 rs362307 1.91 x 10-8 3 HTT MSANTD1 

Educational attainement, general cognitive ability, type 2 diabetes, household income, 

predicted visceral adipise tissue, automobile speeding propensity, brain morphology, 

worrying too long after an embarrassing experience, worry/vulnerability (special factor 

of neuroticism), walking pace, drinks per week, years in education : as for SNPs 

chr13:50002976-50101159 rs7996852 1.84 x 10-8 101 SETDB2 CADB39L, PHF11 
None : Dyslexia (not GWsig), mean spheric corpuscular volume, mean corpuscular 

volume, AFP levels 

chr13:59485233-59706143 rs9538299 3.50 x 10-8 113 POLR3KP1 RP11-105A24.2 
Dyslexia (not GWsig) : Age at first sexual intercourse, externalizing behaviour, 

chronotype, intelligence, dyslexia (not GWsig) 

chr16:17886842-18050926 rs2015573 2.40 x 10-8 55 CTD-3229J4.1 CTA-481E9.4 
None : Dyslexia (not GWsig), self-reported math ability,  smoking initiation, cognitive 

empathy, disruptive behaviour, externalizing behaviour 

chr16:72333576-72697419 rs2158266 4.56 x 10-8 150 AC004158.2 
LINC01572, RNU6-

385P, AC092289.1 

None : Dyslexia (not Gwsig), intelligence, height, smoking initiation, risk-taking, bmi, 

age at first sexual intercourse, phoneme awareness, schizophrenia  

chr18:24627620-24652744 rs7505854 2.68 x 10-8 14 CHST9 AQP4-AS1 Dyslexia (not GWsig) : Dyslexia (not GWsig) 

Table 2 
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Figures 

 

Figure 1a  
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Figure 1b 
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Figure 4  
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Figure 5 
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Availability of Data and Materials 

 

The univariate GWAS summary statistics for word reading are available to download from the 

GenLang website https://www.genlang.org/downloads.html. The full GWAS summary statistics for 

the 23andMe discovery data set will be made available through 23andMe to qualified researchers 

under an agreement with 23andMe that protects the privacy of the 23andMe participants. Please visit 

https://research.23andme.com/collaborate/#dataset-access/ for more information and to apply to 

access the data. The multivariate summary statistics for reading ability generated by this study are 

available through 23andMe to qualified researchers, as described.   
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