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Background: Deep-learning-based semantic segmentation algorithms, in combination with image 
preprocessing techniques, can reduce the need for human annotation and advance disease classification. 
Among established preprocessing techniques, CLAHE has demonstrated efficacy in enhancing the 
segmentations algorithms across various modalities.

Method: This study proposes a novel preprocessing technique, ps-KDE, to investigate its impact on 
deep learning algorithms to segment major organs in posterior-anterior chest X-rays. Ps-KDE augments 
image contrast by substituting pixel values based on their normalized frequency across all images. Our 
approach employs a U-Net architecture with ResNet34 (pre-trained on ImageNet) serving as the 
decoder. Five separate models are trained to segment the heart, left lung, right lung, left clavicle, and 
right clavicle.

Results: The model trained to segment the left lung using ps-KDE achieved a Dice score of 0.780 
(SD=0.13), while that trained on CLAHE achieved a Dice score of 0.717 (SD=0.19), p<0.01. ps-KDE 
also appears to be more robust as CLAHE-based models misclassified right lungs in select test images 
for the left lung model.

Discussion: Our results suggest that ps-KDE offers advantages over current preprocessing techniques 
when segmenting certain lung regions. This could be beneficial in subsequent analysis such as disease 
classification and risk stratification.
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1.  Introduction

With recent advances in artificial intelligence, deep-learning (DL) has emerged as a leading 
machine learning technique in medical imaging analysis, playing a transformative role in tasks 
such as image segmentation(1, 2, 3). This capability extends to various applications, including the 
segmentation of breast lesions(4, 5), classification of pulmonary cancer stages(6), tissue 
characterization(7), detection of cardiomegaly(8), and many more. The improved performance for 
these intricate tasks suggests the potential of computer-aided techniques to improve diagnosis via 
segmentation. 

Within the context of radiology, the segmentation of organs and tumors in medical images holds 
promise for disease diagnosis and treatment(7). Despite the improved performance in intricate 
tasks, the effectiveness of deep learning, with its efficient feature representation learning, is 
contingent upon extensive training data(7). This dependency, however, has spurred the evolution 
of novel image segmentation approaches. One such milestone was the fully convolutional network 
(FCN), pioneering pixel-to-pixel semantic segmentation(9). FCN’s innovation lies in replacing the 
last fully connected layer with a deconvolutional layer. Building upon this foundation, the U-Net 
model as a modification of FCN increases the number of deconvolutional layers and therefore 
effectively captures more context while requiring smaller training smaples(10). Notably, U-Net 
has found wide-spread application in segmenting medical images across various modalities, 
including X-rays, MRI, CT, and pathological images(3, 11, 12).

Image enhancement, prior to the introduction of DL algorithms, played a crucial role in studying 
medical images by providing human viewers with crucial information to facilitate analysis(13). 
Among the techniques employed, adaptive histogram equalization (AHE) emerged as a popular 
image preprocessing method that splits each image into tiles where the histogram of each tile is 
remapped to smooth tile boundaries(13, 14, 15). An enhancement upon traditional AHE methods, 
contrast limited adaptive histogram equalization (CLAHE) was introduced by clipping histograms 
to constrain the contrast(16). Recently, several studies have shown the advantages of CLAHE on 
DL-related tasks, such as predicting five stages of diabetic retinopathy(17), segmenting 
temporomandibular joint articular disks from magnetic resonance images(18), and classification of 
COVID-19 and other pneumonia cases(19). 

In this study, we propose a novel, histogram-based, image preprocessing method termed ps-KDE, 
aiming to assess its impact on segmentation algorithms applied to the anatomic structure of chest 
X-ray images. ps-KDE brings three notable contributions: 1) it presents an end-to-end data 
augmentation method characterized by its simplicity of implementation and adaptability for fine-
tuning to accommodate diverse datasets; 2) it demonstrates the efficacy of a density-based 
augmentation method in segmenting vital organs in chest X-rays; and 3) it establishes the 
robustness of segmentation algorithms through the interpretation of heatmaps generated by the 
model.  
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2.  Data and Methods

2.1.  Data

We used a publicly available database with 247 posterior-anterior (PA) chest radiographs collected 
from 13 institutions in Japan and one in the United States. The original radiographs are provided 
by the Japanese Society of Radiological Technology (JSRT) Database(20) and the manual mask 
annotations are provided by the Segmentation in Chest Radiology (SCR) Database(21). The chest 
radiographs are in PNG format, and the labels are in the form of binary masks. Each image in the 
database was scanned from film to a size of 2048*2048. Among the 247 images, 154 of them 
showed solitary pulmonary lung nodule, while the remaining 93 images exhibited no signs of lung 
nodules. The ethnic representation is unknown.

Among the subset of patients with nodules, gender distribution was observed as 68 males and 86 
females. In contrast, among patients without nodules, the gender distribution consisted of 51 males 
and 42 females. The mean age for patients with nodules is 60 years old. Each image has five 
matching masks generated manually by expert radiologists. Each binary mask delineates the 
boundary of one of the five anatomical structures: heart, left lung, right lung, left clavicle, and right 
clavicle. Since the original images are in grayscale, we added a singleton dimension to them, namely 
a single-color channel. This is necessary because our deep learning model expects the input to have 
color channels.

This study utilizes exclusively publicly available data and thus do not require Institutional Review 
Board (IRB) review per regulations set by the Office for Human Research Protections (OHRP) 
within the U.S. Department of Health and Human Services. The data was accessed on the third 
day of April of 2022. The authors had no access to information that could identify individual 
participants during or after data collection.

2.2.  Data Augmentation

Large quantities of data are often needed to train most deep learning algorithms successfully. Data 
augmentation is crucial when large datasets are not feasible in order to prevent overfitting and 
increase model performance. Five types of augmentation were simultaneously applied to each of the 
original images and its corresponding mask so that the masks correctly represent the anatomical 
structures on the augmented images. Augmentations include rotation, horizontal flip, vertical flip, a 
range for image zooms, and rescale. The rotation can occur between 90 degrees clockwise and 
counterclockwise of the original orientation. Horizontal and vertical flips occur at a probability of 
0.5. The range of zoom is between 0.5 and 1.5 for the original images. All images are then rescaled 
from the red-green-blue scale [0, 255] to [0,1] and resized to 256x256 pixels to help the predictive 
models achieve faster convergence and higher stability. Figure 1 contains examples of 
augmentation. Data augmentation was implemented with ImageDataGenerator from 
TensorFlow(22). 
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2.3.  Image preprocessing

2.3.1.  Contrast Limited Adaptive Histogram Equalization (CLAHE)

Histogram equalization (HE) is a widely used digital image processing method to enhance the 
contrast of images. It expands an image's distribution range, as some images might only occupy a 
small portion of the entire value range. The resulting distribution of the pixel value would become 
more similar to a uniform distribution. However, as most images usually use the whole range of 
intensity (for instance, 0-255 for a standard RGB image), the HE method would not have much 
impact on the image. The adaptive histogram equalization (AHE) method, as a result, was developed 
to overcome the short come(23). In AHE, images are divided into subsections, and each subsection 
is equalized separately. Compared to regular HE, AHE enhances local contrast but with the risk of 
over-amplifying noise in some regions. One of the improved versions of AHE, the CLAHE, clips 
the outliers in histograms and redistributes the values across the value range(16). An example of 
chest X-rays preprocessing with CLAHE is shown in Figures 2a, 2b. The equalization of histograms 
can be visualized in Figures 3a, 3b. The distribution of pixel values became more uniform after 
CLAHE.

2.3.2.  Pixel-wise substitution by Kernel Density Estimation (ps-KDE)

During the initial exploration of the data, we observed that the distribution of pixel values appeared 
to be different from organ to organ. We generated histograms of pixel values in different organs to 
validate our initial observation. We then performed kernel density estimation (KDE) to get a 
probability density function (PDF) for each organ (Algorithm 1, Figure 3c). The PDFs were 
calculated based on the training set and were stored as prior knowledge. For each image, we 
substitute each pixel with the density of that pixel value (Algorithm 2). The image would then be 
mapped to a 0-1 range to ensure consistency among images. In other words, our proposed ps-KDE 
substitute pixel value for frequency, so that more frequently occurring pixel values in an organ 
would have a higher value in the resulting plot. Similar to CLAHE, the results were visually 
appealing (Figure 2c).

Algorithm 1: Algorithm for generating estimated probability 
density function

Algorithm 2: Algorithm for substituting pixel value 
with density
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2.4.  Model development

We employed a deep learning method for the semantic segmentation of chest radiographs, 
leveraging the U-Net neural network designed for segmentation tasks(10). The network 
architecture consists of a contracting path and an expansive path. The original design for the 
contracting path consists of unpadded convolutions with size 3x3, followed by rectified linear 
units with a 2x2 max-pooling layer, whereas the expansive path applies upsampling for each 
feature map from the contracting path to restore the original input size. The final layer maps the 
feature vector to the number of classes. 

Implementation-wise, we used the Python package segmentation_models (Yakubovskiy, 2019, 
v1.0.1) with a ResNet34 backbone featuring pre-trained weights from ImageNet (Figure 4). 
ResNet won the ImageNet Large Scale Visual Recognition Challenge 2015 with a top-five test 
error of 3.567 percent in the image classification category(24). With a network depth of 152, 
ResNet surpasses VGGNet in depth by eight times(25). Referred to as the ResNetUnet model in 
our paper, this amalgamation of U-Net and ResNet34 structures incorporates additional 
enhancements such as batch normalization and zero padding to complement the original design.

A loss function is needed for machine learning models to learn through propagation. For image 
segmentation tasks, multiple different loss functions could be used. For example, three loss 
functions were proposed to have good performances: binary cross entropy (BCE), binary cross 
entropy with Jaccard loss (BCE+JCD), and Dice loss (DL). BCE is one of the most commonly used 
loss functions for machine learning in two-class classification tasks. For current work, the mask of 
each location is a zero or one matrix, which makes the task similar to a pixel-wise binary class 
classification. Therefore, BCE would be an appropriate loss function to use. The formula for BCE 
is shown below, considering the ground truth mask gt and the model predicted mask pr:

                         𝐵𝐶𝐸(𝑔𝑡, 𝑝𝑟) =  ―𝑔𝑡 · log(𝑝𝑟) ―  (1 ―  𝑔𝑡) · log(1 ―  𝑝𝑟)                      (1)

Another widely used loss function in segmentation tasks is the numeric sum of binary cross entropy 
and IoU score (Jaccard loss).

𝐵𝐶𝐸 +  𝐽𝐶𝐷 (𝑔𝑡, 𝑝𝑟) =  𝐵𝐶𝐸(𝑔𝑡, 𝑝𝑟) +  𝐼𝑜𝑈 (𝑔𝑡, 𝑝𝑟)                           (2)

The Dice coefficient (DC) is a commonly used metric to calculate similarities between images. The 
Dice coefficient is defined similarly as IoU:

𝐷𝐶(𝑔𝑡, 𝑝𝑟) =  𝐵𝐶𝐸(𝑔𝑡, 𝑝𝑟) +  𝐼𝑜𝑈 (𝑔𝑡, 𝑝𝑟)                                     (3)

We split our dataset into training and validation sets. The training set contains 50% of the 
radiographs, and the validation contains the other 50%. For optimizing the hyperparameters, we 
used five-fold cross-validation with all possible combinations of hyper-parameters, including the 
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optimizer, loss function, batch size, and learning rate. The list of tuning spaces for each hyper-
parameter is shown in Table 1. To search through the proposed space of hyper-parameters, we used 
a Bayesian optimization process through the scikit-optimize package. We first defined an objective 
function that took instances of hyper-parameters, trained the model, and returned the cross-
validation scores (CV scores). We then passed the scores to the optimization function of the package. 
The optimization process assumed the objective function results to follow a multivariate Gaussian 
distribution. It would take all observed scores until the current iteration, calculate a posterior 
distribution, and sample the next set of hyper-parameters instances out of the posterior distribution. 
The best combination of hyper-parameters is chosen for the final model training.

2.5.  Model Evaluation and Interpretability

We used intersection over union (IoU) and the Dice coefficient (i.e., F-score, Dice score) to evaluate. 
IoU, also known as Jaccard loss, is a commonly used metric in image segmentation tasks. Consider 
the ground truth mask gt and the model predicted mask pr:

𝐼𝑜𝑈 (𝑔𝑡, 𝑝𝑟) =
𝐴𝑟𝑒𝑎(𝑔𝑡 ∩  𝑝𝑟) 
𝐴𝑟𝑒𝑎(𝑔𝑡 ∪  𝑝𝑟)    (4)

We assume that both masks are image matrices of 0’s and 1’s. Therefore, the area of the mask would 
be a count of 1’s in the corresponding pixel matrix. A high IoU score indicates that more pixels are 
predicted correctly (more true positives) while fewer pixels are missed (less false negatives and false 
positives). F-score represents a weighted average between precision and recall. Specifically, 

𝐹 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 𝑏 = 1) = 2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙                                    (5)

After obtaining the optimized hyperparameters, we fitted models using the original images and two 
distinct pre-processing techniques (i.e. CLAHE, and ps-KDE) onto the five anatomic structures (i.e., 
heart, left lung, right lung, left clavicle, right clavicle) with the corresponding best-performing 
hyperparameters for that task, for a total of 15 models. Our predictive models were then trained with 
50 epochs, with 

# 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 ∗  2
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒  samples in each step. The validation loss is defined as the 

loss value when validated on the validating images during the last epoch. Within each dataset, we 
performed independent samples t-test assuming no equal variance using R (version 4.2.3). The 
significance level (p=0.01) was not corrected for multiple comparisons as none of the comparisons 
was tested more than once.

To understand our models’ classification, we randomly chose subjects and obtained the probability 
of each pixel being classified into the organ or clavicle. A heatmap was produced based on the 
probabilities using Matplotlib. In addition, we overlapped the model’s prediction with the original 
chest x-ray image to evaluate whether the segmentation has clinical merits.

3.  Result

3.1.  Cross-validation Results

The cross-validation results are shown in Table 2. The best loss function for all five locations was 
BCE+JCD, which considers pixel-wise information and intersection maximization. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2024. ; https://doi.org/10.1101/2024.02.15.24302871doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.15.24302871
http://creativecommons.org/licenses/by/4.0/


3.2.  ResNetUnet Evaluation

Using the original images (i.e., without CLAHE or ps-KDE transformation), the mean IoU ranged 
from 0.703 (SD=0.12) in the left clavicle, to 0.925 (SD=0.07) in the heart; the F1-score ranged from 
0.537 (SD=0.28) in left clavicle to 0.918(SD=0.13) in the heart. Across the five models trained with 
CLAHE transformation, the mean IoU ranged from 0.666 (SD=0.14) in the right clavicle, to 0.921 
(SD=0.08) in the heart; the F1-score ranged from 0.440 (SD=0.33) in right clavicle to 0.911 
(SD=0.14) in the heart. Lastly, using ps-KDE transformation, the five models achieved mean IoU 
ranging from 0.577 (SD=0.06) in the right clavicle to 0.927 (SD=0.05) in the heart; the F1-score 
ranged from 0.275 (SD=0.17) in right clavicles to 0.926 (SD=0.070) in the heart (Table 3; Figure 
5). In all three datasets, the best-performing model differed significantly from the worst-performing 
model (p<2.2 × 10―16).

Among the Dice score and mean IoU metrics, there is no difference in the ranked order of model 
performances. Therefore, we will present Dice score only as the five models achieved a lower 
performance compared to that measured by mean IoU. This is to give a conservative estimate of 
the effectiveness of ps-KDE. We observed significant differences in model performance between 
the regions classified using CLAHE and ps-KDE. Specifically, in the left lung region, CLAHE 
had a Dice score of 0.717 (SD=0.19), and ps-KDE had a Dice score of 0.780 (SD=0.13), p=0.0026 
(Table 3).  We observed no differences between the two datasets in heart segmentation. CLAHE 
transformation achieved a significant result than ps-KDE in the left clavicle, right clavicle, and 
right lung. 

Examples of model predictions with both processing techniques (CLAHE and ps-KDE) are shown 
in Figure 6. The probability heatmaps showed a decrease in confidence around the edges of the 
segmentation object. This is more prevalent in the heart and the left clavicle model. Visually, the 
overlap of the predicted segmentation from ps-KDE and the original x-ray pinpoints the regions that 
radiologists typically focus on. The partial misclassification in the right lung from the CLAHE 
technique is discussed in later sections.

4.  Discussion

In this study, we proposed a novel method, ps-KDE, to substitute the pixel value based on a 
normalized histogram distribution. Our investigation focused on evaluating the performance of the 
ResNetUnet architecture in the context of segmentation tasks, specifically applied to 247 chest X-
rays with PA projection. We assessed each model’s segmentation capabilities across five distinct 
anatomic structures, considering the impact of preprocessing techniques such as ps-KDE and 
CLAHE.

In the original, CLAHE, and ps-KDE processed models, there exists a tremendous gap between the 
best and worst Dice scores. These fluctuations should be concerning as test images came from the 
same dataset. This suggests that although U-Net is supposedly designed for end-to-end biomedical 
image segmentation with very few samples, this algorithm with validation on electronic microscopy 
image stacks may not generalize to radiographs(10).  We found that, in general, the model predicting 
lung regions and heart has the highest Dice scores, whereas in the clavicle regions, the Dice Score 
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may drop below 0.6. The higher performance in large regions suggests the model could recognize 
larger patterns but fell short of smaller ones within the X-Ray. 

We observed that models preprocessed with CLAHE have higher IoU and Dice scores (Figure 5 (a, 
b)) in left clavicle regions compared to the original image models. The ps-KDE method, on the other 
hand, showed better performance in the left lung model than CLAHE. This means in future studies 
we could explore the combined use of both preprocessing techniques through a dynamic voting 
algorithm, harnessing the advantage of CLAHE in smaller regions and that of ps-KDE in larger 
regions. The novelty of ps-KDE method lies within utilizing histogram values not only to generate 
density estimations but also to execute substitutions. Therefore, such combination allows the pixel 
substitution to benefit from CLAHE which has a more uniform overall distribution. By enabling 
accurate and consistent identification of anatomical structures, our proposed technique stands to 
enhance the precision of subsequent disease detection algorithms. 

The incorporation of heatmaps offers invaluable insights into areas of interest and uncertainty during 
the segmentation process. Notably, we observed a consistent decrease in probability around object 
edges in the majority of images. This gradual phasing out of probability as the model progresses 
into negative pixels is ideal, as models exhibiting abrupt switches between high and low confidence 
levels may lack stability. The visualization of heatmaps also serves to pinpoint regions requiring 
further investigation. For instance, in CLAHE models, a few misclassifications of the right lung 
were observed when predicting left lung regions (Figure 6). This may be attributed to image 
augmentation techniques such as horizontal flips and rotation ranges applied before inputting the 
images. We hypothesize that, given the small size of our dataset, the spatial distribution of the 
ground truth significantly influences segmentation outcomes. This suggests that ps-KDE may 
exhibit greater robustness against substantial image augmentation and small datasets.  Future studies 
could investigate the potential of applying transfer learning to ResNetUnet to mitigate the 
unintended impacts of augmentation(26, 27).

It's worth noting that the predicted lungs still adhere to the clinical expectation that the left lung is 
narrow and long. Even in the case of the misclassified instance, we can observe that the model still 
accurately outlines the shape and conforms to the expected characteristics of the right lung. 
Heatmaps have the potential to empower clinicians by visually assessing segmentation accuracy and 
quality, facilitating interpretation and informed clinical decision-making.

5.  Limitation

Our current dataset contains exclusively PNG images, whereas clinical practices heavily rely on 
the DICOM format for medical image analysis. While PNG is suitable for research and imaging 
information in DICOM can be easily converted to PNG format, it lacks the crucial metadata and 
standardized structure that DICOM would offer. This disconnection hinders the model's direct 
applicability in clinical settings where DICOM's comprehensive patient information and imaging 
details are essential.

To mitigate this limitation, the model needs further adaptation for DICOM data format. This 
involves adjusting the data processing pipeline to handle DICOM images and accounting for 
metadata intricacies. The model's effectiveness must be re-validated using DICOM data to ensure 
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its reliability in clinical workflows. Addressing this constraint is vital to bridge the gap between 
research-oriented PNG images and the practical demands of medical professionals who 
predominantly rely on DICOM for accurate diagnosis and treatment.

We also recognize that the size of our dataset is small for a deep learning algorithm. We also only 
trained ResNetUnet on 50 epochs because of computing resource constraints. Higher performance 
may be achieved in larger epochs. In addition, the smoothed histogram takes account of only the 
pixel distribution for this dataset. An additional limitation of our study is the absence of external 
validation for our models. From a dataset perspective, it remains uncertain how effectively the 
smoothed histograms can extend to external radiographs. Moreover, there is a potential for another 
enhanced U-Net architecture(28) to provide further validation regarding the applicability of the ps-
KDE technique across various model architectures.

6.  Conclusion

In conclusion, we significantly improved semantic segmentation of the left lung in chest radiographs 
using ps-KDE. The introduction of the ps-KDE preprocessing technique contributes to the available 
image contrasting methods for segmentation but should be treated with caution and further 
validations. 
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9.  Tables

Table 1. Search space for hyper-parameters. The categorical and integer variables (optimizer, loss function, and batch size) 
were initialized to have a uniform prior probability; the learning rate was initialized to have uniform prior distribution in 
log space (log-uniform). RMSprop: root mean squared propagation; Adam: adaptive Moment Estimation; SGD: stochastic 
gradient descent; BCE: binary cross entropy; BCE+JCD: binary cross entropy with Jaccard loss; DL: Dice loss.

Hyper-parameters Tuning Space

Optimizer RMSprop, Adam, SGD

Loss Function BCE, BCE+JCD, DL

Batch Size Integer [1, 6]
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Learning Rate Real [1 × 10−5]

Table 2. Cross-validation results. The best combination for each location is shown in the table. Note that for batch size, the 
actual batch size used in cross-validating and training models was the above batch size x 5. This multiplier was a result of 
the data augmentation, as we are loading the original image and augmented image all at the same time. 

Region Optimizer Loss Function Batch Size Learning Rate CV Score
Heart SGD BCE+JCD 1 0.07879 0.63121
Left Clavicle SGD BCE+JCD 1 0.10000 0.33311
Left Lung SGD BCE+JCD 1 0.00358 0.65930
Right Clavicle RMSprop BCE+JCD 1 0.00035 0.37285
Right Lung SGD BCE+JCD 1 0.00139 0.73626

Table 3. Model performance after applying preprocessing methods (CLAHE and ps-KDE) evaluated by IoU and Dice 
scores. IoU and Dice scores are shown as mean (SD). CLAHE: Contrast Limited Adaptive Histogram Equalization; Ps-
KDE: Pixel-wise substitution by Kernel Density Estimation; IoU: Intersection over Union. *:p<0.01 in model performance 
when comparing between CLAHE and ps-KDE for each segmentation region pair. 

Region IoU Dice Score
Heart 0.925 (0.07) 0.918 (0.13)
Left Clavicle 0.703 (0.12) 0.537 (0.28)
Left Lung 0.848 (0.11) 0.839 (0.16)
Right Clavicle 0.716 (0.09) 0.597 (0.17)

Original

Right Lung 0.863 (0.10) 0.855 (0.17)
Heart 0.921 (0.08) 0.911 (0.14)
Left Clavicle 0.778 (0.14) 0.667 (0.30)*
Left Lung 0.752 (0.12) 0.717 (0.19)*
Right Clavicle 0.666 (0.14) 0.440 (0.33)*

CLAHE

Right Lung 0.885 (0.05) 0.894 (0.06)*
Heart 0.927 (0.05) 0.926 (0.07)
Left Clavicle 0.706 (0.12) 0.545 (0.28)*
Left Lung 0.799 (0.09) 0.780 (0.13)*
Right Clavicle 0.577 (0.06) 0.275 (0.17)*

ps-KDE

Right Lung 0.848 (0.09) 0.850 (0.12)*

10.  Figure captions

Figure 1. Augmented images of three distinct individuals in the training set.
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Figure 2. An example of an X-ray image being processed. (a) Original chest X-ray image. (b) CLAHE processed 

chest X-ray image. (c) ps-KDE processed chest X-ray image (location: heart).

Figure 3. Normalized distribution of pixel values in X-ray images. (a) Histogram of original images. (b) Histogram of 

CLAHE-processed images. (c) KDE of pixel values in different organs.

Figure 4. ResNetUnet model. U-Net Model Architecture Implemented with ResNet34 Backbone

Figure 5. Model Performance Represented by Violin Plots for Each Anatomical Structure. a) IoU b) Dice score

Figure 6.. Prediction of a randomly selected subject. From left to right, the input of the model, the ground truth, the 
predicted segmentation overlap with the original x-ray, and the heatmap of the predicted probability. A) CLAHE 
processed, B) ps-KDE processed.
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