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Abbreviations 

Abbreviation Full name 

AD Alzheimer’s disease 
APP amyloid precursor protein 
Aβ amyloid-β 
CI confidence interval 

EOAD early-onset Alzheimer’s disease 
eQTL expression Quantitative Trait Loci 

G protein guanine nucleotide-binding protein G(k) subunit alpha 
GDP guanosine diphosphate 
Gln glutamine 
GTP guanosine triphosphate 

GWAS genome-wide association study 
HLA human leukocyte antigen 
IVW Inverse Variance Weighted 
LD linkage disequilibrium 

LDL  low density lipoprotein 
LOAD late-onset Alzheimer’s disease 

MR Mendelian randomization 
MRAD Mendelian randomization for Alzheimer's disease 

OR odds ratio 
PSME1 proteasome activator complex subunit 1 

RCT randomized controlled trial 
SIGLECS sialic acid-binding immunoglobulin like lectins 

SNPs Single nucleotide polymorphisms 
SNXs Sorting Nexins 
TBCA tubulin-specific chaperone A 
TBCs tubulin-specific chaperones 
VLDL very low density lipoprotein 
VPS29 vacuolar protein sorting-associated protein 29 
WHO World Health Organization 
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ABSTRACT  

Alzheimer's disease (AD) is a complex degenerative disease of the central 
nervous system. Traditional epidemiological studies have reported several risk 
factors for AD. However, most epidemiological studies are insufficient to draw 
definitive conclusions on causal association due to the potential for reverse 
causality and confounding bias. Therefore, elucidating its pathogenesis 
remains challenging. Mendelian randomization (MR) was developed for 
assessing causality using genetic variants as a new approach in 
epidemiological research. In this study, we used MR analysis to investigate 
potential AD risk factors to support extensive AD research. We used the 
inverse-variance weighted (IVW) model as the major analysis method to 
perform hypothesis-free Mendelian randomization analysis on the data from 
MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and 
conducted sensitivity analysis with six models, to assess the robustness of the 
IVW results, to identify various classes of risk or protective factors for AD, 
early-onset AD, and late-onset AD. We generated 400,274 data entries in total, 
among which the major analysis method of IVW model consists of 73,129 
records with 4840 exposure traits, which fall into 10 categories: Disease 
(n=17,168), Medical laboratory science (n=15,416), Imaging (n=4,896), 
Anthropometric (n=4,478), Treatment (n=4,546), Molecular trait (n=17,757), 
Gut microbiota (n=48), Past history (n=668), Family history (n=1,114), and 
Lifestyle trait (n=7,038). For the convenience of display and operation, an 
online platform called MRAD has been developed using the Shiny package 
with MR analysis results. MRAD can be freely accessed online at 
https://gwasmrad.com/mrad/. Moreover, novel potential AD therapeutic targets 
(CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 
was positively associated with the main outcome traits of AD, as well as with 
both EOAD and LOAD. TBCA and VPS29 were negatively associated with the 
main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and 
PSME1 were negatively associated with the main outcome traits of AD, as well 
as with LOAD, but had no significant causal association with EOAD. This is 
one of the most comprehensive studies in this field. The findings of our 
research advance understanding of the etiology of AD. 

Keywords: Alzheimer's disease; Mendelian randomization; Interactive 
platform; Causal association; Therapeutic target 
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Background 

Alzheimer's disease (AD) is a progressive degenerative disease of the central 
nervous system, characterized by cognitive impairment, reduced functional 
capacity for daily living, and behavioral changes. It can be divided into two 
types: early-onset AD (EOAD, age of onset ≤ 65 years) and late-onset AD 
(LOAD, age of onset > 65 years); the proportion of LOAD in patients with AD is 
approximately 95%, with LOAD having a stronger genetic predisposition than 
EOAD[1–3]. According to the latest data from the World Health Organization 
(WHO), the population with AD is currently over 50 million worldwide and is 
expected to rise to 115 million by 2050[4,5]. With the increasing aging 
population, the incidence of AD continues to rise, making AD the fifth leading 
cause of death worldwide. Given that AD is a chronic complex disorder 
involving multiple pathophysiological changes, it is likely caused by the joint 
action of various factors in a multifaceted pathological process, and this 
intricate nature of AD contributes to the current challenges in its diagnosis and 
treatment, such as low consultation rates, high rates of misdiagnosis at initial 
consultations, and low rates of long-term standardized treatment[6], thereby 
making AD one of the most perplexing diseases. Consequently, examining the 
pathogenic mechanisms of AD, identifying its risk factors, and conducting 
timely and effective early screening and diagnosis are of utmost importance. 

Traditional epidemiological studies have reported common risk factors for AD. 
Some metabolic co-morbidities are highly associated with AD, such as 
cardiovascular disease[7,8], obesity[9,10], and diabetes[11,12]. Serological 
parameters such as C-reactive protein[13], lipids[14,15], and vitamin levels[16–18] 
have been previously reported as potential biomarkers for AD. In addition, 
some factors related to lifestyle, family history, education, economic level, and 
environment correlate with AD[19–22]. However, most epidemiological studies 
are insufficient to draw definitive conclusions on causal association due to the 
potential for reverse causality and confounding bias. 

Mendelian randomization (MR) analysis is an emerging method to explore the 
causal association between AD and various factors[23–25]. MR analysis reduces 
confounding and reverse causality due to the segregation and independent 
assortment of genes passed from parents to offspring[26]. In the absence of 
pleiotropy (that is, genetic variation related to a disease via other pathways) 
and demographic stratification, MR can present a clear estimate of risk of 
disease[27, 28]. MR analysis is increasingly used to determine a causal 
relationship between potentially modifiable risk factors and outcomes[29]. 
These advantages make MR a valuable tool to better elucidate the potential 
risk or protective factors for AD.  
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Chen et al. [30] used MR analysis to reveal the causal relationship between AD 
and factors including sociodemographic and early life status. However, the 
study revealed they are restricted by the available variables from the UKB 
database, which lead to variables such as air pollution, blood glucose 
measures and so on were not included. And also, due to the high degree of 
heterogeneity present in AD subtypes, which have different biological and 
genetic characteristics. Thus, the previous studies cannot offer a systematic 
and complete viewpoint. Our study uses the MRC IEU OpenGWAS database 
as the sample source for MR analysis to address the aforementioned 
limitations. The MRC IEU OpenGWAS database, the largest open GWAS 
database globally, has compiled 42,335 GWAS summary datasets from 
sources such as the UK Biobank, FinnGen Biobank, and Biobank Japan. 
Analyzing large-scale datasets will break new ground for MR research on AD.  

MR requires a combination of background knowledge in biology, computer 
science, software studies, and statistics, which often leads to a dilemma where 
biologists are not well-versed in computer and statistical fields, while computer 
science experts struggle to adopt a medical biology mindset. Consequently, 
the vast majority of available GWAS data have not been effectively utilized 
through MR. Therefore, the construction of a multi-level data platform 
specifically for AD based on MR analysis of massive GWAS data is of great 
strategic significance, and it will facilitate researchers and clinicians worldwide 
to conveniently and rapidly obtain risk factors that are causally associated with 
AD. 

In summary, in this work we attempt to identify risk or protective factors 
causally associated with AD from a holistic and systematic perspective, 
thereby providing new ideas for understanding the AD pathogenesis, achieving 
early diagnosis, and developing clinical drugs. In the first place, this study uses 
a hypothesis free data mining approach to studying the possible etiology of 
Alzheimer's disease based on Mendelian randomization (MR), with specific 
attention to different AD subtypes (EOAD and LOAD). Based on this, we 
developed an online open integrated platform, MRAD (Mendelian 
randomization for Alzheimer's disease, https://gwasmrad.com/mrad/). 
Moreover, the platform was further enriched by including related targets’ 
information such as functions and pathways retrieved from the public database 
Uniprot. The platform is the first multi-dimensional, integrated, shared, and 
interactive comprehensive platform for AD MR research to date. 

 

Methods 

Database and software   
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The following databases and software packages were used in this study: MRC 
IEU OpenGWAS[31] (https://gwas.mrcieu.ac.uk/), UniProt[32] 
(https://www.uniprot.org/), EVenn[33] (http://www.ehbio.com/test/venn/#/), R 
(version 4.1.2) software[34]. 

 

MR design for AD (Figure 1) 

Data sources 

Exposure traits 

Inclusion criteria: datasets of the European population. 

Exclusion criteria: (i) eQTL-related datasets; (ii) AD-related datasets. 

In this study, the GWAS datasets selected were derived from 42,335 GWAS 
datasets in the public database (MRC IEU OpenGWAS, 
https://gwas.mrcieu.ac.uk/). Based on the above inclusion and exclusion 
criteria, 19,942 eQTL-related datasets were excluded first, leaving 22,393 
GWAS datasets. Next, the datasets with the European population were 
selected, and 18,117 GWAS datasets were obtained. Finally, 20 AD-related 
datasets were excluded; 18,097 GWAS datasets were obtained at the end as 
the exposure traits of this study (See Table S1 for basic information). 

 

Outcome traits 

Inclusion criteria: (i) datasets of patients with AD with complete information and 
clear data sources; (ii) datasets of the European population. 

Exclusion criteria: (i) Number of SNPs <1 million; (ii) datasets with unspecified 
sex; (iii) datasets with a family history of AD; (iv) datasets with dementia. 

Based on the above criteria, 16 GWAS datasets of outcome traits were 
selected from the MRC IEU OpenGWAS database, comprising datasets of AD 
from Alzheimer Disease Genetics Consortium (ADGC), Cohorts for Heart and 
Aging Research in Genomic Epidemiology Consortium (CHARGE), The 
European Alzheimer’s Disease Initiative (EADI), and Genetic and 
Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk 
for Alzheimer’s Disease Consortium (GERAD/PERADES) 2019 (ieu-b-2); AD 
from Benjamin Woolf 2022 (ieu-b-5067); AD from International Genomics of 
Alzheimer's Project (IGAP) 2013 (ieu-a-297) as the datasets of main outcome 
traits for AD, as well as 13 datasets from FinnGen biobank 2021 corresponding 
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to various AD subtypes, referred to as AD-finn subtypes. (as shown in Figure 
2) 

 

Selection of instrumental variables 

SNPs serve as instrumental variables for MR research. In this study, 18,097 
exposures-variable SNPs were selected for MR research from the GWAS data 
(as mentioned in Exposure traits) respectively, with the selected SNPs fulfilling 
the following requirements: (i) a genome-wide significant association with risk 
factors (p < 5×10-8) in the European 1000 Genomes Project reference panel; (ii) 
independent of one another (that is, the r2 of linkage disequilibrium (LD) is less 
than 0.001 within a 10,000-kb distance) to avoid potential biases caused by LD 
between SNPs in the analysis. 

 

Statistical models for causal effect inference 

A random-effects IVW model was used in this study as the major analysis 
method to uncover potential risk or protective factors for AD. The 
random-effects IVW model as the gold standard for MR studies, its principle is 
to calculate the inverse of the variance of each IV as its weight, assuming all 
IVs are valid. The regression does not include an intercept term, and the final 
result is the weighted average of the effect estimates from all IVs [35]. This 
model indicates that the true effect values may vary across different studies 
due to both sampling error and the heterogeneity of the true effect. The weight 
of each study is jointly determined by its inverse variance and the estimated 
heterogeneity variance. Thus, as long as there is no pleiotropy, even when 
there is significant heterogeneity (p < 0.05), this method remains the best MR 
model.  

To assess the robustness of the IVW results, sensitivity analysis was 
performed using six additional models: (i) MR-Egger: MR-Egger’s biggest 
difference from IVW is that it considers the intercept term during regression to 
evaluate bias caused by horizontal pleiotropy. The intercept represents the 
magnitude of horizontal pleiotropy, with a value close to 0 indicating minimal 
pleiotropy. The primary purpose is to detect and correct for horizontal 
pleiotropy. Thus, when significant horizontal pleiotropy is observed (p < 0.05), 
this method is preferred [36,37]. (ii) Weighted median: The weighted median 
method is a technique for evaluating causal relationships using a majority of 
genetic variants (SNPs). If at least 50% of the SNPs are valid IVs, the median 
of the causal estimates will tend toward the true causal effect. This method 
provides an unbiased estimate (i.e., the “majority validity” assumption) [38]. (iii) 
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Simple mode: Involves comparing the frequencies or proportions of genotypes 
or phenotypes between control and experimental groups. Moreover, it can 
illustrate whether the observed differences in genotypes or phenotypes 
between the two groups are statistically significant. (iv) Weighted mode: The 
weighted mode method is a technique for combining multiple Mendelian 
randomization estimates. This method assigns weights to the causal effect 
estimates of different genetic variants on the trait and then takes the weighted 
mode as the final estimate of the causal effect. In genetic variant estimates, 
the method can decrease bias caused by outliers. (v) Maximum likelihood: 
This method is used when it is known that a random sample follows a 
particular probability distribution; however, the specific parameters of that 
distribution remain unknown, and it involves conducting multiple experiments, 
observing the results, and using those results to infer the approximate values 
of the parameters [39]. (vi) Penalized weighted median: An enhanced version of 
the weighted median estimate that provides a consistent estimate of the causal 
effect. (vii) Heterogeneity and horizontal pleiotropy assessment use the 
heterogeneity tests [40] and Egger intercept tests [41], respectively. 

The above analyses were performed using the TwoSampleMR[42] package in 
the R (version 4.1.2) software. Association of exposures with outcomes was 
assessed using odds ratio (OR) and 95% confidence interval (95% CI), with 
OR > 1 indicating a positive association (risk factor) and 0 < OR < 1 indicating 
a negative association (protective factor). Differences with a two-sided p < .05 
were considered statistically significant. Furthermore, owing to the relatively 
large number of exposure and outcome traits included in this study, the 
multiple testing correction method Bonferroni correction was added to identify 
significant hits, threshold for Bonferroni-corrected was 0.05 divided by 289,552 
tests (p <1.727e-07). 

 

Building the MRAD platform 

In this study, the online MRAD platform was developed using the Shiny 
package[43] in R (version 4.1.2) and hosted on an Ubuntu 20.04 server. By 
leveraging Shiny, we combined the computational capabilities of R with 
modern web technologies, allowing to construct an interactive user interface 
with novel approaches. 

 

Results 

Results of hypothesis-free Mendelian randomization analysis for 
Alzheimer's disease 
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Based on hypothesis-free Mendelian randomization analysis for Alzheimer's 
disease, this study generated a total of 400,274 data points. The major 
analysis method of IVW model consists of 73,129 records with 4840 exposure 
traits, which fall into 10 categories: Disease (n=17,168), Medical laboratory 
science (n=15,416), Imaging (n=4,896), Anthropometric (n=4,478), Treatment 
(n=4,546), Molecular trait (n=17,757), Gut microbiota (n=48), Past history 
(n=668), Family history (n=1,114), and Lifestyle trait (n=7,038), as shown in 
Figure 3. To assess the robustness of the IVW results, sensitivity analysis was 
performed using six other models (MR-Egger with a total of 50,804 records, 
Weighted median with a total of 50,804 records, Simple mode with a total of 
50,804 records, Weighted mode with a total of 50,804 records, Maximum 
likelihood with a total of 73,125 records, and Penalized weighted median with a 
total of 50,804 records).  

 

MRAD platform integration 

Based on the 400,274 data points stated above, we created herein is an online 
data analysis platform for identifying the risk or protective factors for AD called 
MRAD (Mendelian randomization for Alzheimer's disease, 
https://gwasmrad.com/mrad/). It contains six modules: (i) Home; (ii) Study 
Design; (iii) IVW interactive; (iv) IVW static; (v) Sensitivity analysis interactive; 
and (vi) Sensitivity analysis static; The platform provides a user-friendly search 
interface, allowing users to search, interactively visualize, analyze, and 
download the obtained results (MRAD User Guide see Supplementary 
Material for details). In our view, as the first interactive comprehensive platform 
for AD MR research to date, this online platform would benefit the field of 
scientific research in AD in numerous ways. On the one hand, it would allow 
researchers to quickly identify risk or protective factors from their own research 
and generate novel hypothesis regarding the molecular mechanism of AD. On 
the other hand, it would allow researchers with complementary expertise to 
provide multiple characterizations of the same data. As the platform is hosted 
on a server and accessed through a web interface, which could meet the 
multi-terminal compatibility, thereby MRAD’s online presence could increase 
access to potential users. 

 

MRAD utility data mining 

To demonstrate the utility of MRAD platform, we focus on the IVW 
model-identified exposure traits that have significantly and consistently effect 
across three main outcome traits of AD to demonstrate the performance of the 
MRAD platform. Detailed investigation and reporting of other factors will be 
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carried out in future research. 

In this study, MR analysis was first performed on the three main outcome traits 
of AD to explore their potential risk or protective factors, leading to 
identification of a total of 80 exposure traits (p<0.05), which fell into five 
Classification I categories: Medical laboratory science (n=51), Family history 
(n=10), Disease (n=9), Molecular trait (n=7), and Lifestyle trait (n=3). A total of 
63 exposure traits (risk factors) were positively associated with all the three 
main outcome traits, while 16 exposure traits (protective factors) were 
negatively associated with the three main outcome traits, with Ulcerative colitis 
(ebi-a-GCST000964) being negatively associated with the AD outcome traits 
of ieu-b-2 and ieu-a-297, and positively associated with the AD outcome traits 
of ieu-b-5067. MR analysis was performed on the outcome traits of 13 different 
AD-finn subtypes to further examine the causal association between the 
above-identified key common exposure traits and different subtypes of AD 
outcome traits. The results are provided below in detail.  

 

Causal association between medical laboratory science and the main outcome 
traits of AD  

In this study, the 51 medical laboratory science items that each had a causal 
effect on the main outcome traits of AD were grouped into three Classification 
II categories (blood lipids and lipoproteins (n=36), immunological tests (n=12), 
and plasma protein tests (n=3)). 

 

1 Blood lipids and lipoproteins 

A total of 36 blood lipids and lipoproteins items as exposure traits had effects 
on the main outcome traits of AD: (1) 32 of which were positively associated 
with the main outcome traits, 7 of which, e.g., apolipoprotein B (ieu-b-108),  
were positively associated with EOAD (finn-b-AD_EO) and LOAD 
(finn-b-AD_LO); free cholesterol in IDL (met-c-868) was positively associated 
with EOAD (finn-b-AD_EO); 4 of which, e.g., phospholipids in small LDL 
(met-d-S_LDL_PL), were positively associated with LOAD (finn-b-AD_LO) , as 
shown in Figure 4A. The corresponding sensitivity analysis and Bonferroni 
correction results are shown in Figure S1 and Table S2. (2) four of which were 
negatively associated with the main outcome traits, apolipoprotein A-I 
(ieu-b-107) was negatively associated with both EOAD (finn-b-AD_EO) and 
LOAD (finn-b-AD_LO), and the negative causal association was slightly 
stronger for EOAD than for LOAD; phospholipids to total lipids ratio in 
chylomicrons and extremely large VLDL (met-d-XXL_VLDL_PL_pct) was 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.02.15.24302839doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.15.24302839
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

negatively associated with LOAD (finn-b-AD_LO). These findings are 
illustrated in Figure 4B. The corresponding sensitivity analysis and Bonferroni 
correction results are shown in Figure S2 and Table S2. 

 

 

2 Immunological tests 

A total of 12 immunological test items as exposure traits had positive effects on 
the main outcome traits of AD. Six of which, e.g., CD33 on Monocytic 
Myeloid-Derived Suppressor Cells (ebi-a-GCST90001952), were positively 
associated with LOAD (finn-b-AD_LO) , as shown in Figure 4C. The 
corresponding sensitivity analysis and Bonferroni correction results are shown 
in Figure S3 and Table S2. 

 

 

3 Plasma protein tests 

A total of 3 plasma protein tests items as exposure traits had negative effects 
on the main outcome traits of AD. The three exposure traits were C-reactive 
protein (ukb-d-30710_raw, ukb-d-30710_irnt, and ieu-b-4764). All the three 
exposure traits were negatively associated with EOAD (finn-b-AD_EO) and 
LOAD (finn-b-AD_LO), as shown in Figure 4D. The corresponding sensitivity 
analysis and Bonferroni correction results are shown in Figure S4 and Table 
S2. 

 

Causal association between family history and the main outcome traits of AD  

A total of 10 family history items as exposure traits had causal effects on the 
main outcome traits of AD. In particular, a parental or family history of AD 
increased the overall risk of developing AD, and was positively associated with 
both EOAD (finn-b-AD_EO) and LOAD (finn-b-AD_LO), as shown in Figure 4E. 
The corresponding sensitivity analysis and Bonferroni correction results are 
shown in Figure S5 and Table S2. 

 

Causal association between diseases and the main outcome traits of AD 

In this study, the 9 diseases items that each had a causal effect on the main 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2024. ; https://doi.org/10.1101/2024.02.15.24302839doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.15.24302839
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

outcome traits of AD were grouped into four Classification II categories 
(dementia (n=5), neurodegenerative diseases (n=2), mental disorders 
associated with neurological diseases (n=1), and digestive system diseases 
(n=1)). Their causal effects with the main outcome traits of AD and the 
outcome traits of EOAD (finn-b-AD_EO) and LOAD (finn-b-AD_LO) are shown 
in Figure 4F. The corresponding sensitivity analysis and Bonferroni correction 
results are shown in Figure S6 and Table S2. 

 

Causal association of molecular traits with the main outcome traits of AD 

A total of 7 molecular trait items as exposure traits had causal effects on the 
main outcome traits of AD, among which Myeloid cell surface antigen CD33 
(prot-a-439) was positively associated with the main outcome traits of AD, as 
well as with both EOAD (finn-b-AD_EO) and LOAD (finn-b-AD_LO). The 
remaining six were all negatively associated with the main outcome traits of AD, 
and their causal effects on the outcome traits of 13 AD-finn subtypes were as 
follows: (i) tubulin-specific chaperone A (TBCA; prot-a-2930) and vacuolar 
protein sorting-associated protein 29 (VPS29; prot-a-3203) were negatively 
associated with both EOAD (finn-b-AD_EO) and LOAD (finn-b-AD_LO); (ii) 
guanine nucleotide-binding protein G(k) subunit alpha (GNAI3 ; prot-a-1226) 
and proteasome activator complex subunit 1 (PSME1; prot-a-2420) were 
negatively associated with LOAD (finn-b-AD_LO), but had no significant causal 
association with EOAD (finn-b-AD_EO) (p>0.05); and (iii) neither glutamine 
(met-c-860) nor glutamine (met-d-Gln) had significant causal association with 
EOAD (finn-b-AD_EO) or LOAD (finn-b-AD_EO) (p>0.05), as shown in Figure 
4G. The corresponding sensitivity analysis and Bonferroni correction results 
are shown in Figure 5 and Table S2. 

 

Causal association of lifestyle traits with the main outcome traits of AD 

A total of 3 lifestyle trait items as exposure traits had causal effects on the main 
outcome traits of AD. Their causal effects with the main outcome traits of AD 
and the outcome traits of EOAD (finn-b-AD_EO) and LOAD (finn-b-AD_LO) 
are shown in Figure4H. The corresponding sensitivity analysis and Bonferroni 
correction results are shown in Figure S7 and Table S2. 

 

Discussion 

Despite decades of research on AD, controversy still remains regarding which 
factors play an important in its pathogenesis. This study carried out 
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hypothesis-free Mendelian randomization analysis for Alzheimer's disease, 
which provided a thorough and comprehensive evaluation with regard to risk or 
protective factors for AD. This MR study covers most exposure traits that are 
causally associated with AD outcome traits, including diseases, medical 
laboratory science items, imaging items, anthropometric items, treatments, 
molecular traits, gut microbiota, past histories, family histories, and lifestyle 
traits, and reveals the causal associations between these exposure traits and 
different AD subtypes. 

Based on this, for the convenience of display and operation, a user-friendly 
prediction platform was built online called MRAD. The MRAD provides a 
one-stop online analysis service for researchers worldwide, including data 
retrieval → visualization → personalized analysis → data download. Users can 
obtain analysis results of different MR models (the main IVW model and six 
sensitivity analysis models) on 18,097 exposure traits and 16 AD outcome 
traits, totaling 400,274 records, and are allowed to set personalized 
parameters to meet different analysis needs. Additionally, the MRAD provides 
interactive visualization interfaces and download functions for the above 
results.  

MRAD platform provides a unique resource for systematically identifying risk 
or protective factors of AD, which facilitates early identification, diagnosis, 
prevention, and treatment, with significant clinical and social value. It could 
have several strengths: (i) The current methods for identifying AD mainly rely 
on assessment scales, cerebrospinal fluid (CSF) examinations, and brain 
PET/MRI. However, assessment scales can be biased by factors such as the 
anxiety and nervousness of the subjects. CSF examinations require an 
invasive lumbar puncture, leading to low patient acceptance. PET/MRI scans 
are expensive and have limited equipment accessibility. These limitations 
restrict early AD identification. Thus, there is a pressing clinical need for readily 
available, time- and cost-effective, and accurate detection methods. In this 
study, the Medical laboratory science and Molecular trait used could be less 
expensive, faster to detect, easier to operate, and more accessible for 
widespread adoption. They hold great value for early AD identification and 
have the potential to become crucial tools for identifying AD in the future. (ii) 
Imaging acts as a powerful assistive tool for diagnosing Alzheimer’s disease. 
Traditional imaging examinations mainly depict changes in the brain’s 
macroscopic structure, while research on microstructural changes in 
disease-related areas is relatively limited. Studies have demonstrated that 
microstructural neurodegenerative processes are extensive and pronounced 
during AD progression. Our study results cover traditional macroscopic 
neuroimaging results and reveal numerous potential causal relationships 
between brain microstructure and AD. The combination of macroscopic and 
microstructural insights will provide more valuable information for clinical 
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diagnosis. (iii) Clarifying patient’s disease, past history, and family history can 
aid in preventing AD at an early stage, and prevention of AD could be attained 
through monitoring anthropometric indicators, improving gut microbiota, and 
adjusting lifestyle traits. (iv) Currently, the development of new drugs for AD is 
mainly underscored by Aβ, Tau, and other inhibitors. Since 2000, global 
pharmaceutical companies have invested hundreds of billions of dollars in the 
development of new drugs for AD, and these drugs have not yielded 
successful results. AD drug development has thus been perceived as having 
the highest failure rate of all drug research, reaching 99.6%. Hence, further 
research on molecular traits to find new targets and develop new drugs for 
these targets will provide new pathways for AD treatment.  

To briefly demonstrate the performance of MRAD, we explored the IVW 
model-identified exposure traits that had significantly consistently effect across 
all the three main outcome traits of AD. 

The association of lipids and lipoproteins, C-reactive protein, family histories, 
neurological disorders, glutamine, and education level with AD has been 
widely reported[23,44–67] and is consistent with the results of this study. Moreover, 
given that the prevalence of LOAD is about 95% in patients with AD and that 
LOAD has a stronger genetic predisposition than EOAD[1–3], identifying new 
risk genes for LOAD is crucial for understanding its potential etiology. 
Therefore, this study further explored the relationships between these traits 
and different AD subtypes, leading to the following findings: (i) apolipoprotein B, 
cholesterol, total, LDL cholesterol, Low density lipoprotein cholesterol levels, 
total cholesterol in LDL, total cholesterol in medium LDL, cholesterol to total 
lipids ratio in large LDL, free cholesterol in large LDL, free cholesterol in LDL, 
phospholipids in small LDL, parental or family history of AD, parental longevity 
(mother's attained age), dementia, vascular dementia, dementia with Lewy 
bodies, other degenerative diseases of the nervous system, and organic, 
including symptomatic, mental disorders were all positively associated with 
LOAD; (ii) apolipoprotein A-I, phospholipids to total lipids ratio in chylomicrons 
and extremely large VLDL, C-reactive protein, parental longevity (both parents 
in top 10%), and qualifications: A levels/AS levels or equivalent were all 
negatively associated with LOAD. These findings suggest that the above traits 
may have critical impacts on LOAD. 

Moreover, some novel potential therapeutic targets of AD were identified as 
follows: CD33 on Monocytic Myeloid-Derived Suppressor Cells, CD33 on 
CD33+ HLA DR+ CD14dim, CD33 on CD33+ HLA DR+, CD33 on CD33+ HLA 
DR+ CD14-, CD33 on CD33dim HLA DR -, CD33 on CD33dim HLA DR+ 
CD11b-, and Myeloid cell surface antigen CD33 were positively associated 
with all the three main outcome traits of AD and the risk of LOAD. It has been 
reported that CD33 is a 67 kDa glycosylated transmembrane protein, a 
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member of the sialic acid-binding immunoglobulin like lectins family (SIGLECS 
family), which is an important receptor for cell growth and survival, as well as a 
critical receptor for the clathrin-independent endocytosis pathway and the 
innate and adaptive immune system functions. CD33 is mainly expressed in 
microglia, which are a type of glial cells in the central nervous system[68]. 
Meanwhile, the splicing efficiency of CD33 affects microglia activation[69]. 
Several genome-wide association studies have demonstrated that CD33 is a 
high-risk gene for AD[70-71]. In animal models, knockdown of CD33 significantly 
reduced amyloid plaque levels and knockout mice did not exhibit other health 
defects. Sialylated glycoproteins and glycolipids on amyloid plaques bind to 
CD33, which is most likely the cause of the amyloid "immune escape"[72]. 
Furthermore, polymorphisms in CD33 can increase the risk of AD by causing 
neuronal degeneration in the hippocampal and parahippocampal regions of 
the brain[73]. Downregulation of the sialic acid-binding domain of CD33 can 
reduce the risk of developing AD. Therefore, inhibiting CD33 is an effective 
approach to inhibit the development of AD, and the sialic acid-binding site on 
CD33 is a promising pharmacophore[74]. 

Tubulin-specific chaperone A (TBCA) was negatively associated with all the 
three main outcome traits of AD, as well as EOAD and LOAD (pval is 
significant at the Bonferroni threshold). TBCA is an important member of the 
tubulin-specific chaperones (TBCs) family. Tian et al. and Nolasco et al. 
demonstrated that TBCA can regulate the proportion of α and β-tubulin, 
enabling them to correctly aggregate into cellular microtubules[75]. Cellular 
microtubules play important roles in many biological functions, especially in 
cell movement, cell division, intracellular transport, and cell structure. After 
silencing TBCA, abnormal microtubule aggregation occurs in mammalian cells, 
and the cells cannot grow and divide normally, ultimately leading to 
apoptosis[76,77]. Moreover, studies have shown that TBCA plays a crucial role in 
correct β-tubulin folding and α/β-tubulin heterodimer formation[78]. Protein 
misfolding can lead to many diseases, such as neurodegenerative diseases. 
Additionally, higher levels of TBCA are significantly associated with lower AD 
risk[79]. These findings suggest that TBCA may serve as a potential protective 
factor against AD. 

Vacuolar protein sorting-associated protein 29 (VPS29) was negatively 
associated with all the three main outcome traits of AD, as well as EOAD and 
LOAD (pval is significant at the Bonferroni threshold). VPS29 is a component 
of the retromer complex and is highly expressed in the brain, heart, and 
kidneys, playing an essential role in retromer functions such as synaptic 
transmission, survival, and movement[80]. Retromer mainly consists of the 
VPS26-VPS29-VPS35 trimer and Sorting Nexins (SNXs), and its defects are 
closely related to various human diseases, including neurodegenerative 
diseases[80]. Studies have reported that VPS29 knockdown leads to reduced 
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levels of VPS35 and VPS26[81,82], which regulates the localization of retromer 
within neurons and is essential for the aging nervous system[80]. The retromer 
complex has been found to regulate the transport of a variety of substances, 
including amyloid precursor protein (APP), β-secretase, and phagocytic 
receptors on microglia. The retromer complex regulates the production of 
amyloid-β (Aβ) by regulating the transport of relevant carrier proteins, thus 
playing a role in AD[83]. When the retromer complex malfunctions, the pathway 
for the reverse transport of APP and β-secretase to the trans-Golgi network is 
disrupted, resulting in an increase in the production of Aβ, which accelerates 
the pathological process of AD[84]. Meanwhile, the reduction of phagocytic 
receptors on the surface of microglia weakens the clearance and protective 
functions of microglia. Recent studies have shown that stabilizing the retromer 
complex through chaperone proteins can limit the amyloid processing of APP 
to reduce the production of Aβ[83]. These findings suggest that the retromer 
complex can serve as a new therapeutic target to intervene in the pathological 
progression of AD. 

Guanine nucleotide-binding protein G(k) subunit alpha (GNAI3) was negatively 
associated with the three main outcome traits of AD and the risk of LOAD. G 
proteins are a class of signal transduction proteins that can bind with 
guanosine diphosphate (GDP) and have guanosine triphosphate (GTP) 
hydrolysis activity; they have more than 40 types, consisting of alpha, beta, 
and gamma subunits with a total molecular weight of about 100 kDa, with the 
alpha subunit having the greatest variation and determining the specificity of 
the G proteins[85]. G proteins are intracellular membrane proteins that shuttle 
between receptors and effector proteins, acting as signal transducers and 
playing an absolute dominant role in transmembrane cell signaling in the body. 
All cellular activities are related to signals, and signals are the initiating factors 
of all cell activities, while physiological responses are only the final results of 
signals acting on cells. After receiving external stimuli, cells respond by 
implementing signal transduction through a set of specific mechanisms to 
ultimately regulate the expression of specific genes, and the whole process is 
referred to as a cellular signaling pathway. In the pathogenesis of AD, the 
abnormal content and distribution of multiple signaling molecules, as well as 
the abnormality of signa transmission pathways, play an important role in AD 
pathological changes[86], suggesting that gaining insights into signal 
transduction mechanisms may provide a potential new pathway to explore the 
pathogenesis of AD. 

Proteasome activator complex subunit 1 (PSME1) was negatively associated 
with all the three main outcome traits of AD and the risk of LOAD. PSME1 is 
the encoding gene of the 11s proteasome activator subunit (also known as 
PA28α) and is located on human chromosome 14q11.2. PA28α is an activator 
of proteasome, which mainly increases the protein degradation activity of 20S 
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proteasome and participates in MHC-I (major histocompatibility complex I) 
restricted antigen presentation[87]. Studies have shown that PA28α 
overexpression in the brain of female mice can effectively prevent protein 
aggregation in the hippocampus, thereby reducing depression-like behavior 
and enhancing learning and memory ability[88]. Related studies have shown 
that proteasome function and PA28α expression are inhibited in the brain of 
diabetic rats[88]. The PA28 expression in the diabetic brain has a certain 
regulatory effect on protein metabolism caused by oxidative damage[88]. As 
suggested above, PSME1 may be a new potential therapeutic target for AD 
and deserves further investigation. 

 

Conclusions 

To the best of our knowledge, this is one of the most comprehensive studies to 
provide important insight into genetic etiology underlying AD based on 
hypothesis-free Mendelian randomization analysis. In the meantime, we 
developed the first MR platform for AD, of great clinical and scientific 
significance that provided a thorough and comprehensive evaluation with 
regard to risk or protective factors for AD. It also provided physicians and 
scientists with a very convenient, free as well as user-friendly tool for further 
scientific investigation. It is important to notice that we recognized CD33, 
TBCA, VPS29, GNAI3, and PSME1 as novel potential therapeutic targets for 
AD that deserve further investigation in more detail. However, in this study, 
since the GWAS datasets for both the exposure and the outcome traits (AD) 
selected were obtained from the public database (MRC IEU OpenGWAS), 
where the GWAS datasets for AD are only of European population, and since 
we use the TwoSampleMR, which requires that the populations for the 
exposure traits and the outcome traits be the same to satisfy the requirement 
for a control variable, this study currently has certain limitations in terms of 
population. We initiated a Mendelian randomization study on AD at clinical 
hospitals in China and are currently in the sample collection stage to address 
the limitations. In the future, we will integrate data from more populations and 
continuously update new advances in AD research to explore its potential 
differences in different populations. 
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FIGURES LEGENDS 
 

 

Figure 1. Study design 

 

 

Figure 2. Basic information of 16 outcome traits in MRC IEU OpenGWAS 

 
 
 
 
 
 
 
 

GWAS ID Trait Consortium Population Sex Year Number of SNPs Sample size ncase ncontrol Category Sub category Author PMID Ontology Unit sd Note

ieu-b-2 Alzheimer's disease

Alzheimer Disease Genetics Consortium (ADGC), European Alzheimer's
Disease Initiative (EADI),  Cohorts for Heart and Aging Research in Genomic
Epidemiology Consortium (CHARGE), Genetic and Environmental Risk in
AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer's
Disease Consortium (GERAD/PERADES),

European Males and Females 2019 10528610 63926 21982 41944 Binary Psychiatric / neurological Kunkle BW 30820047 NA NA NA NA

ieu-b-5067 Alzheimer's disease NA European Males and Females 2022 12321875 488285 954 487331 NA NA Benjamin Woolf NA
EFO:00065
14;MOND

O_0004975
NA NA

GWAS created using BOLT-LMM, Pheno was
algorithmically defined using the UKB. See
https://www.mdpi.com/2072-6643/14/9/1697 for more
details.  Imputation panel: see
https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi

ieu-a-297 Alzheimer's disease IGAP European Males and Females 2013 7055882 54162 17008 37154 Disease Psychiatric / neurological Lambert 24162737 NA log odds NA Effect allele frequencies are missing; forward(+) strand

finn-b-G6_ALZHEIMER Alzheimer disease NA European Males and Females 2021 16380466 NA 3899 214893 Binary NA NA NA NA NA NA G6_ALZHEIMER

finn-b-G6_ALZHEIMER_EXMORE Alzheimer disease (more controls excluded) NA European Males and Females 2021 16379528 NA 3899 111471 Binary NA NA NA NA NA NA G6_ALZHEIMER_EXMORE

finn-b-G6_AD_WIDE Alzheimer<c3><95>s disease, wide definition NA European Males and Females 2021 16380462 NA 5918 212874 Binary NA NA NA NA NA NA G6_AD_WIDE

finn-b-G6_AD_WIDE_EXMORE "Alzheimer<c3><95>s disease, wide definition" (more controls excluded) NA European Males and Females 2021 16379561 NA 5918 111471 Binary NA NA NA NA NA NA G6_AD_WIDE_EXMORE

finn-b-G6_ALZHEIMER_INCLAVO Alzheimer disease,  including avohilmo NA European Males and Females 2021 16380466 NA 4166 214626 Binary NA NA NA NA NA NA G6_ALZHEIMER_INCLAVO

finn-b-AD_AM Alzheimer<c3><95>s disease (Atypical or mixed) NA European Males and Females 2021 16380464 NA 800 214893 Binary NA NA NA NA NA NA AD_AM

finn-b-AD_AM_EXMORE Alzheimer<c3><95>s disease (Atypical or mixed) (more controls excluded) NA European Males and Females 2021 16379412 NA 800 111471 Binary NA NA NA NA NA NA AD_AM_EXMORE

finn-b-AD_EO Alzheimer<c3><95>s disease (Early onset) NA European Males and Females 2021 16380464 NA 587 214885 Binary NA NA NA NA NA NA AD_EO

finn-b-AD_EO_EXMORE Alzheimer<c3><95>s disease (Early onset) (more controls excluded) NA European Males and Females 2021 16379428 NA 587 111471 Binary NA NA NA NA NA NA AD_EO_EXMORE

finn-b-AD_LO Alzheimer<c3><95>s disease (Late onset) NA European Males and Females 2021 16380466 NA 2670 214871 Binary NA NA NA NA NA NA AD_LO

finn-b-AD_LO_EXMORE Alzheimer<c3><95>s disease (Late onset) (more controls excluded) NA European Males and Females 2021 16379476 NA 2670 111471 Binary NA NA NA NA NA NA AD_LO_EXMORE

finn-b-AD_U Alzheimer<c3><95>s disease (undefined) NA European Males and Females 2021 16380464 NA 159 214893 Binary NA NA NA NA NA NA AD_U

finn-b-AD_U_EXMORE Alzheimer<c3><95>s disease (undefined) (more controls excluded) NA European Males and Females 2021 16379392 NA 159 111471 Binary NA NA NA NA NA NA AD_U_EXMORE
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Figure 3. Categories of the exposure traits identified by IVW model  
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Figure 4. 80 exposure traits with causal effects on the main outcome traits of 
AD based on major analysis method random-effects IVW model. 

Figure 4A. Thirty-two blood lipids and lipoproteins items that were positively 
associated with the main outcome traits of AD. Figure 4B. Four blood lipids 
and lipoproteins items that were negatively associated with the main outcome 
traits of AD. Figure 4C. Twelve immunological test items that were positively 
associated with the main outcome traits of AD. Figure 4D. Three plasma 
protein tests items that were negatively associated with the main outcome 
traits of AD. Figure 4E. Ten family history items with causal effects on the main 
outcome traits of AD. Figure 4F. Nine diseases items with causal effects on the 
main outcome traits of AD. Figure 4G. Seven molecular trait items with causal 
effects on the main outcome traits of AD. Figure 4H. Three lifestyle trait items 
with causal effects on the main outcome traits of AD. 

Note: The pink dots in the figure represent positive association, the blue dots in 
the figure represent negative association, with the color depth of the dots being 
positively proportional to the OR value (the darker the color, the larger the OR 
value), and the size of the dots being inversely proportional to the p-value (the 
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smaller the p-value, the larger the dots). The gray dots represent no significant 
causal association (p>0.05). 

 
Figure 5. Statistical models for causal effect results of seven molecular trait 
items with causal effects on the main outcome traits of AD.   
Note:  
(i) For column Inverse variance weighted, MR egger, Weighted median, Simple 
mode, Weighted mode, Maximum likelihood, and Penalized weighted median: 
the pink dots in the figure represent positive association, the blue dots 
represent negative association, with the color depth of the dots being positively 
proportional to the OR value (the darker the color, the larger the OR value), 
and the size of the dots being inversely proportional to the p-value (the smaller 
the p-value, the larger the dots). The gray dots represent no significant causal 
association (p>0.05). The star mark(✪) represents that is significant at the 

Bonferroni threshold (p＜1.727e-07). 

(ii) For column Heterogeneity test: the pink dots in the figure represent the 
effect of heterogeneity was considered negligible (heterogeneity_pval> 0.05). 

The gray dots represent significant association (p＜0.05).  

(iii) For column Egger intercept test: the pink dots in the figure represent there 
was no significant difference between Egger Intercept and 0, indicating no 
horizontal pleiotropy (Horizontal_pval> 0.05). The gray dots represent 

significant association (p＜0.05). The dark gray dots represent not applicable 

due to the quantity of SNP was less than 3.  
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Highlights 

(1) To the best of our knowledge, this is one of the most comprehensive 
studies to provide important insight into genetic etiology underlying AD based 
on hypothesis-free Mendelian randomization analysis. We generated 400,274 
data entries in total, among which the major analysis method of IVW model 
consists of 73,129 records with 4840 exposure traits, which fall into 10 
categories: Disease (n=17,168), Medical laboratory science (n=15,416), 
Imaging (n=4,896), Anthropometric (n=4,478), Treatment (n=4,546), Molecular 
trait (n=17,757), Gut microbiota (n=48), Past history (n=668), Family history 
(n=1,114), and Lifestyle trait (n=7,038). 

(2) It is also important to note that we developed the first MR platform for AD, 
of great clinical and scientific significance that provided a thorough and 
comprehensive evaluation with regard to risk or protective factors for AD. It 
also provided physicians and scientists with a very convenient, free as well as 
user-friendly tool for further scientific investigation. The overall method used to 
construct this platform can be applied to the research of other diseases' 
etiology. 

(3) It is also worth noting that we identified CD33, TBCA, VPS29, GNAI3, and 
PSME1 as novel potential therapeutic targets, which might be promising drug 
targets for AD and warrant further clinical investigation, especially TBCA and 
VPS29. 
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