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Abstract:   

During the SARS-CoV-2 pandemic, genome-based wastewater surveillance sequencing has been 

a powerful tool for public health to monitor circulating and emerging viral variants. As a 

medium, wastewater is very complex because of its mixed matrix nature, which makes the 

deconvolution of wastewater samples more difficult. Here we introduce a gold standard dataset 

constructed from synthetic viral control mixtures of known composition, spiked into a 

wastewater RNA matrix and sequenced on the Oxford Nanopore Technologies platform. We 

compare the performance of eight of the most commonly used deconvolution tools in identifying 

SARS-CoV-2 variants present in these mixtures. The software evaluated was primarily chosen 

for its relevance to the CDC wastewater surveillance reporting protocol, which until recently 

employed a pipeline that incorporates results from four deconvolution methods: Freyja, kallisto, 

Kraken2/Bracken, and LCS. We also tested Lollipop, a deconvolution method used by the Swiss 

SARS-CoV2 Sequencing Consortium, and three recently-published methods: lineagespot, Alcov, 

and VaQuERo. We found that the commonly used software Freyja outperformed the other CDC 

pipeline tools in correct identification of lineages present in the control mixtures, and that the 

newer method VaQuERo was similarly accurate, with minor differences in the ability of the two 

methods to avoid false negatives and suppress false positives. These results provide insight into 

the effect of the tiling primer scheme and wastewater RNA extract matrix on viral sequencing 

and data deconvolution outcomes. 

 

Highlights:  

● Generation of a gold standard dataset 
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● Comparative evaluation of relative abundance estimation software 
● Evaluation of deconvolution methods used in CFSAN’s CWAP pipeline 

 
Abbreviations 
SARS: Severe Acute Respiratory Syndrome 
COVID-19: Coronavirus Disease 2019 
WBE: wastewater-based epidemiology 
WB: water background 
NWRB: SARS-CoV-2 negative wastewater RNA extract background 
PWRB: SARS-CoV-2 positive wastewater RNA extract background 
NWSS: National Wastewater Surveillance System 
CFSAN: Center for Food Safety and Applied Nutrition 
C-WAP: CFSAN Wastewater Analysis Pipeline 
ONT: Oxford Nanopore Technologies 
NFW: nuclease-free water 
RNA: ribonucleic acid 
SNV: single nucleotide variant 
NCBI: National Center for Biotechnology Information 
PCR: polymerase chain reaction 
ddPCR: droplet digital PCR 
Pangolin: Phylogenetic Assignment of Named Global Outbreak Lineages 
VOC: variant of concern 
DCIPHER: Data Collation and Integration for Public Health Event Responses 
S3C: Swiss SARS-CoV-2 Sequencing Consortium 
SIB: Swiss Institute of Bioinformatics 
 
 
1. Introduction  
 

SARS-CoV-2 emerged in China in December of 2019 and led to the COVID-19 pandemic [1]. 

From a public health perspective, as SARS-CoV-2 has continued to mutate, tracking circulating 

and emerging variants of SARS-CoV-2 has been an essential part of the pandemic response [2]. 

Sequencing-based wastewater surveillance has become a sentinel for monitoring and identifying 

these new variants and tracking the shifts in variants across populations [3]. During outbreaks, 

COVID-19 test samples have been plentiful and provided an adequate basis for identifying the 

emergence and introduction of new variants. However, as governments have changed or ended 

their commitments to COVID-19 surveillance, PCR testing has been replaced by at-home testing 
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and the few clinical samples available only offer a sampling of individuals who either choose to 

be tested or are hospitalized.  

Wastewater-based epidemiology is not a new concept; it has been used since the early 

20th century for monitoring other outbreak-causing pathogens [4][5]. When early reports in 2020 

showed that SARS-CoV-2 was detectable in wastewater and was a leading indicator in advance 

of spikes in confirmed cases [6], this sparked widespread interest in wastewater-based 

epidemiology (WBE) as a tool for monitoring COVID-19 outbreaks. Wastewater surveillance 

was implemented on a large scale worldwide, in locations ranging in size from large 

metropolitan sewersheds [7][8] to individual college campus dormitories [9][10]. The relatively 

low implementation cost of genome-based wastewater surveillance makes it ideal for areas that 

lack resources for clinical sample-based sequencing surveillance [11] and a useful addition to 

any areas where clinical sequencing is limited. In response to the COVID-19 pandemic, the CDC 

launched the National Wastewater Surveillance System (NWSS) in September 2020 [12] and the 

U.S. Food & Drug Administration [13] set up a sequencing project with the collaboration of 

national and university labs to track and monitor the incidence of SARS-CoV-2. The Center for 

Food Safety and Applied Nutrition of the FDA (2013) made their in-house pipeline, C-WAP, 

available to collaborating labs that submit wastewater sequencing to the NWSS [14]. As clinical 

testing has decreased since 2022, this approach gives epidemiologists and public health officials 

a means to track the proportion of variants circulating in the community, and can potentially 

identify new and novel variants as they emerge [15]. Recently, the C-WAP pipeline has been 

archived and is not under active development or maintenance; its successor Aquascope can be 

used instead and relies primarily on Kraken2 and Freyja, both of which are evaluated in this 

manuscript [14]. 

The most widely used approach for sequencing SARS-CoV-2 viral RNA was developed 

by the ARTIC Network [16]. This method uses tiled amplicon-based sequencing [3] to cover the 

whole genome using 300-500 bp amplicons which are then pooled and sequenced. The full 

process of wastewater sequencing includes sample concentration, RNA extraction, and target 

amplification out of the total extracted RNA from each sample [17]. Along with the ARTIC 

Network’s primers, several other amplicon primer sets exist to sequence SARS-CoV-2 and 

generate full coverage consensus sequences [18][19][20]. A second approach employs target 

enrichment, amplifying only the spike protein regions where many of the identifying mutations 
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occur [21]; the proceeding concentration and extraction steps are the same regardless of the 

amplification approach.  

Assembly of amplified viral genomic RNA is achieved by realigning amplicon sequences 

to a reference genome. The bioinformatic analysis of SARS-CoV-2 sequencing from wastewater 

is significantly more complicated than it is for clinical samples. With a clinical sample, it is 

reasonable to assume that an individual is going to be infected with only one variant. The 

bioinformatics approach to a clinical sample is to align all the amplicons to the reference and 

then identify the variant calls using standard approaches like minimap and BCFtools [22][23].  

Wastewater samples are composite collections from the population served by a single 

building, sewershed, or wastewater treatment facility. Therefore the expectation is that the 

sample itself is a representation of the variants circulating in that community, and the nature and 

complexity of the mixture may vary with the population size in the area collected. When 

wastewater samples are analyzed, rather than simply aligning the sequences collected to a 

reference, they must be deconvoluted and assigned to specific variants. There are several 

bioinformatic pipelines available for the analysis of wastewater sequencing data. As with other 

metagenomic samples, wastewater sequencing comes with a variety of challenges. The chemical 

environment of wastewater leads to viral RNA degradation and fragmentation [24]. Low viral 

concentration requiring an initial sample concentration step is the norm in wastewater samples, 

and the concentration method during processing can also impact the coverage and quality of 

sequence data [3]. Wastewater also contains both low-frequency and high-frequency variants 

simultaneously, which can make the detection and relative abundance estimation of the lineages 

more difficult [11], especially since low-abundance components may still be of interest as new 

variants enter a monitored area. The current bioinformatics tools can often identify the dominant 

lineage but fail to detect low-frequency or new variants correctly. For these reasons, 

deconvolution of SARS-CoV-2 variants from mixed viral samples still presents a challenge [3].  

One of the most commonly used tools for wastewater variant sequencing is Freyja [3]. It 

uses a depth weighted least absolute deviation regression algorithm and reports the relative 

lineage abundances in mixed viral samples mapping to a common viral reference from a 

sequencing dataset [25]. Using .bam files, it first calculates the frequency of each mutation and 

its respective sequencing depth. Then, to solve the regression problem, it uses a barcode matrix 

of lineage-defining mutations obtained from USHER and the mutation frequency and depth 
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information to weight SNV frequency across each mutation site. These weights allow for 

prioritization of site-specific information as a function of sequencing depth which is ultimately 

used to generate a relative abundance of each of the known lineages. 

Originally employed for abundance quantification of metagenomic transcripts, kallisto 

[26][27], has been repurposed to work with SARS-CoV-2 reads. Kallisto constructs an index 

from the RNA transcriptome with a de Bruijn graph that represents transcript k-mers. Reads are 

then pseudoaligned with the k-mers, and transcript abundance quantification is performed by 

likelihood function. For wastewater deconvolution, instead of using RNA-Seq transcripts, 

kallisto constructs the index of k-mer from multiple SARS-CoV-2 consensus sequences. The 

reads are pseudoaligned and estimated relative abundance are calculated.  

LCS (Lineage deComposition for Sars-cov-2 pooled samples) is is a mixture model that 

determines SARS-CoV-2 variant composition in pooled samples by using a previously defined 

selection of mutations that characterize SARS-CoV-2 variants from publicly available sources 

and a matrix of variant signatures [28]. The matrix corresponds to the probability of finding an 

alternate sequence at any polymorphism from any variant. Along with the matrix, it uses the 

sequencing data containing counts of reads mapped to respective polymorphic loci. Minimap 

generated alignment files are then used for the estimation of the relative frequencies of the 

variants with maximum likelihood.  

Kraken 2 [29] is a metagenomic sequence classification tool that uses alignments for 

taxonomic assignment. Similar to kallisto, Kraken 2 breaks down the sequences into k-mer and 

uses each of them to calculate a compact hash code to use as a query for finding the Lowest 

Common Ancestor (LCA) with a space seed searching scheme. This information is stored in a 

list and then used to form the classification tree where nodes are weighted based on the number 

of the k-mers linked with the taxon and root-to-leaf (RTL) path is weighted by addition of all the 

weights. The query sequence is then classified as the leaf to the maximum RTL path. For 

wastewater deconvolution, Kraken 2 uses the fastq sequences as the query and k-mer match to 

LCA for lineage identification and finally Bracken uses this lineage classification information to 

perform the relative abundance of sequence.  

Freyja is frequently used as a component of other wastewater analysis pipelines, such as 

the C-WAP/Aquascope pipeline, which is a required step in the submission of wastewater 

sequencing results to NCBI and DCIPHER, the CDC reporting platform for wastewater 
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monitoring. Kallisto, LCS and Kraken 2 are components of the C-WAP pipeline as well and 

obvious choices for inclusion in this analysis.  

In addition to benchmarking the tools that are part of the C-WAP/Aquascope pipeline, we 

also evaluated four other commonly used lineage abundance estimation methods, as evidenced 

by the frequency of citations; LolliPop, Alcov, Lineagespot and VaQuERo. LolliPop [30] is a 

part of V-Pipe [31] and a part of processing viral sequencing data from NGS for the Swiss 

SARS-CoV-2 Sequencing Consortium (S3C) as a part of the SIB SARS-CoV-2 surveillance 

program. Lollipop solves the deconvolution problem by using a least square fitting approach and 

uses kernel-based smoothing to generate higher confidence relative abundance. It is designed to 

be integrated with Cojac [32] but can also be used independently. Alcov (Abundance Learning of 

SARS-CoV-2 Variants) treats lineage abundance estimation as an optimization problem using 

mutation frequencies [33]. Alcov focuses on nonsynonymous mutations only, and for each 

lineage-defining amino acid variant, the variant amino acid is back-translated into a nucleotide 

SNV at the appropriate genomic index. Lineage abundance estimation based on multiple variants 

is cast as an optimization problem using an ordinary least squares (OLS) approach, considering 

only mutations for which sufficient read depth is available. Lineagespot is another widely used 

deconvolution tool that detects variants and assigns lineages by the identification of mutational 

load by quantifying lineage abundance metrics, computing average allele frequency of all amino 

acid mutations and generates the mutational load as proportions [34]. Finally, we also considered 

VaQuERo, a relatively new method recently developed at CeMM (Center for Molecular 

Medicine), Vienna [11]. VaQuERo uses a SIMPLEX regression to deduce overall variant 

frequencies from the mutation patterns of individually selected variants. Both LolliPop and 

VaQuERo can use smoothing approaches to increase confidence in variant abundance estimates 

when presented with time series data, but the other tools are designed for the analysis of single 

samples. 

As with any software tool that is designed to estimate an unknown, benchmarking and 

performance evaluation are essential for determining the most accurate software to identify 

mixtures of SARS-CoV-2 lineages in wastewater. Kayikcioglu et al, 2023 evaluated performance 

of 5 different deconvolution tools using simulated sequencing datasets [50]. Given that 

wastewater is a complex matrix, simulated data sets can be affected by assumptions about variant 

and error frequency that may not represent the behavior of nucleic acids in the wastewater 
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matrix. These evaluations used the genomic simulator DeepSimulator, but the authors 

acknowledge that the simulation workflow did not take into account factors such as time, 

temperature, and the composition of the wastewater mixture. To account for the effect of these 

factors under standard wastewater processing conditions, we have sequenced synthetic RNA 

control mixtures. Controls were spiked into both water and complex wastewater extract 

backgrounds in known concentrations, and then sequenced on the Oxford Nanopore platform, to 

generate a gold standard dataset for benchmarking and evaluation of bioinformatic 

deconvolution tools. We illustrate what scenarios might determine which tool provides the most 

accurate results based on an expected input and identify strengths and weaknesses of available 

deconvolution tools, with the goal of informing future method development in wastewater 

analysis. The dataset is available through NCBI’s Sequence Read Archive (SRA) under the 

BioProject accession PRJNA1031245, and the protocol for preparation of control mixtures is 

available at dx.doi.org/10.17504/protocols.io.261ged2jjv47/v1, and analysis scripts and 

computational protocols are available at https://github.com/enviro-lab/benchmark-deconvolute.  

 

2. Materials and Methods 

Two types of controlled sample mixtures were assayed: controlled sample mixtures prepared in a 

buffer in isolation and controlled sample mixtures spiked into RNA extracts from wastewater 

samples. RNA extracts from both SARS-CoV-2 negative and SARS-Cov-2 positive samples 

were used as the matrix for spike-ins. 
 

2.1 WW sample collection  

Wastewater samples used as background for the constructed control mixtures, were collected as a 

part of the SARS-CoV-2 Campus monitoring program at the University of North Carolina 

Charlotte conducted by the Environmental Monitoring Lab [9]. The samples that were used in 

this project were collected in April 2023. 

 

2.2 Concentration and RNA isolation 

RNA concentration and extraction were performed using the KingFisher Flex with Nanotrap 

Microbiome A Particles, Nanotrap Enhancement Reagent, and the MagMAX Microbiome Ultra 

Nucleic Acid Isolation Kit. To make sure the samples are contamination free, nuclease-free 
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water (NFW) was used as a negative control (known to be negative) in extraction and extracted 

alongside with the samples. Phosphate buffered Saline (PBS) was concentrated and extracted 

along with the samples as a processing control to make sure no contamination was introduced in 

the processing step. The automated Nanotrap® Microbiome A protocol provided by Ceres 

Nanosciences (2023) was used without modification. 

 

2.3 SARS CoV2 detection by ddPCR assay 

Extracted RNA was tested using droplet digital PCR (ddPCR) to quantitate SARS-CoV-2 viral 

RNA. Samples were tested using the CDC N2 primer and probe set with the BioRad one-step RT 

ddPCR Advanced kit [35]. A positive control and NFW negative control were included in the 

assay. If out of 10000 droplets at least 3 are positive, the sample was then considered as positive. 

All the results were analyzed with the QuantaSoft™ Software, Regulatory Edition #1864011 

[36]. The reported average concentration of SARS-CoV-2 in the positive wastewater background 

samples was 2.23 copies/ul.  

 

2.4 Assay-ready synthetic mixed control preparation 

Assay-ready synthetic RNA controls representing various SARS-CoV-2 major variants were 

sourced from Twist BioSciences (San Francisco, CA). These controls were used in known 

concentrations and in a variety of combinations of variants and mixture complexities. 15 

different synthetic controls were used - Control 15 (Alpha-103909), Control 17 (Gamma-

104044), Control 23 (Delta-104533), Control 48 (Omicron - BA.1 lineage-105204), Control 51 

(B.1.1.529+BA.2-England-105346), Control 2 (Wuhan hu-1 from china-102024), Control 6 

(Wuhan hu-1 from California-102918), Control 50 (B.1.1.529+BA.2-Australia-105345), Control 

64 (BA.5-England-106196), Control 62 (B.2.12.1-Denmark-105865), Control 66 (BA.4-Texas-

106198), Control 67 (BA.4-California-106199), Control 63 (B.2.12.1-USA-105857), Control 65 

(BA.5-USA-106197) and Control 19 (Iota-104529). From these 15 controls, 38 different 

mixtures were prepared, as outlined in Supplemental Table 1. 

 

2.5 Spike-in mixed control preparation 

All mixed controls were also spiked into RNA extracts from SARS-CoV-2 positive and SARS-

CoV-2 negative wastewater samples, to provide a more realistic nucleic acid matrix for 
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subsequent amplification and sequencing steps. Wastewater samples collected in April 2023 

(04/13/23-04/27/23) were quantified as described above. The ratio of synthetic controls in the 

mixed control in water background was maintained to allow for comparison between control 

mixtures and corresponding mixtures in wastewater backgrounds. 

 
2.6 Sequencing control mixtures 

Whole genome sequencing based on tiled amplicon amplification was performed with two 

different primer sets - ARTIC v4.1 primer, which generates 400bp long amplicons and VarSkip 

short v2a, which generates 550 bp long amplicons. For both of the reactions, the NEBNext® 

ARTIC SARS-CoV-2 Companion Kit (New England Biolabs) was used. ARTIC v4.1 primers 

from IDT were used in place of the ARTIC v3 primers that are contained in the NEBNext kit in a 

1:100 dilution. For ARTIC, the protocol was followed as outlined in the NEBNext ARTIC 

instruction manual (E7660) and for Varskip the protocol was followed as outlined by 

Ramachandran et al. [18]. For barcoding, the Native Barcode Expansion Kit (Exp-NBD196) 

from ONT was used. Samples were sequenced on the Oxford Nanopore PromethION using R9 

flow cells.  
 

2.7 Sequence trimming and filtering 
Samples were analyzed via an in-house covid-analysis pipeline [37] which trims and filters reads 

using artic, guppyplex, Kraken 2, and Porechop before running through the artic minion 

command of the ARTIC pipeline (a bioinformatic pipeline that is articulated to analyze nanopore 

sequencing data generated from tiling amplicon schemes) [38]. Samples were also analyzed with 

the C-WAP pipeline [39] which was used during the COVID-19 pandemic for analysis of 

sequencing data from wastewater samples by the CDC national wastewater network. For the 

ARTIC pipeline, the sequence length cutoff range was 305-505 bp on sequences generated using 

the ARTIC 4.1 primers and for Varskip, it was 475-675 bp. The .bam, .fastq, or .vcf files 

generated by the covid-analysis pipeline were then used as input for all subsequent analyses, 

depending on the requirement of each deconvolution tool.  
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      Figure 1. Overview of SARS-CoV-2 control mixture preparation, sequencing and computational analysis 

 

2.8 Deconvolution of mixtures 

Freyja [40], kallisto [26],  LCS [28] and Kraken2/Bracken [29] were selected due to their use in 

the CFSAN’S C-WAP pipeline and LolliPop [30] was selected for its use in V-pipe. In addition 

to these, LineageSpot [34], Alcov [33], and VaQuERo [11] were selected to look at different and 

newer approaches to deconvolution. The project github repository linked in Supplemental 

Materials 1 provides analysis scripts used in the project along with a complete description of 

parameter and option choices used with each tool.  

 

3. Results and Discussion  
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Deconvolution of SARS-CoV-2 lineage abundance from wastewater extract sequencing data can 

be accomplished using a variety of algorithms. The deconvolution methods assessed in this paper 

can be grouped depending upon a variety of methodological choices, including whether 

classification is based on recruitment of reads to a reference genome or on a match of detected 

SNVs to a pattern of defining mutations; the source of the reference genome or reference 

lineage-defining mutation information used for classification; the algorithmic approach used; and 

whether results are reported as relative abundance of an entire lineage, or as proportion of 

individual lineage-defining SNVs detected. There are also operational differences in each 

computational workflow, especially as to whether the input required is the raw .fastq file, a pre-

aligned .bam or .sam file, or a .vcf file extracted from a read alignment (Table 1). Definition of 

variants by each method is with respect to the original Wuhan strain of SARS-CoV-2, except for 

kallisto, which uses recruitment of reads to a collection of reference strain genomes.   
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Table 1: Comparison of Deconvolution Tools 
 

3.1 The wastewater sample background changes the properties of sequence data 

Wastewater sample processing can result in biases in downstream quantitation or sequencing 

processes due to sample quality and sample chemistry. The choice of extraction methods may 

result in fragmentation of the input RNA [41], leading to shorter sequence reads of lower quality, 

and the chemical makeup of extracted samples may include small molecules that inhibit the 

amplification steps in detection [42][9][43] and sequencing.  To understand the impact of the 

Tool Algorithm 
Reference set 
source(s) 

Reference 
Reconstruction Input Output 

Alcov Optimization 
outbreak.info + 
covvariants.org Mutation based .bam Relative abundance 

Freyja 

Depth weighted 
least absolute 
regression cov-lineage Mutation based 

.bam, 
ref-fasta Relative abundance 

kallisto 

Pseudoalignme
nt of hashed k-
mer 

GISAID or 
UShER (UCSC) Reference based 

fastq, 
ref-fasta Relative abundance 

LCS 

Statistical 
regression 
Problem GISAID or WHO Mutation based fastq Relative abundance 

LineageSpot 

Calculation of 
allele frequency 
of unique and 
AA mutations outbreak.info Mutation based .vcf 

Mutation 
proportions 

LolliPop 
Least square 
problem 

cov-spectrum.org 
or covariants.org 
or PHE 
Genomic's 
Standardised 
Variant 
Definitions Mutation based .bam Relative abundance 

VaQuERo 
SIMPLEX 
regression 

GISAID and 
ECDC Mutation based 

.bam or 

.vcf Relative abundance 

Kraken 2 
K-mer match to 
LCA taxa GISAID Reference based .fastq Relative abundance 
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wastewater extract matrix itself on sequencing outcomes, we compared sequencing results 

generated for control mixtures spiked into water background (WB), SARS-CoV-2 negative 

wastewater RNA extract background (NWRB) and SARS-CoV-2 positive wastewater RNA 

extract background (PWRB). We compared the percent genomic coverage and total read count 

generated from each sample. Figure 2a shows percent coverage across the genome for each 

sample. Mean coverage for WB (mean=96.925, std. dev.=0.763) differed significantly from 

NWRB (mean=95.580, std. dev.=1.136), and PWRB (mean=95.510, std. dev.=2.010), as 

determined by one-way ANOVA (F=12.252, p<1e-4). Tukey’s HSD test showed significant 

differences between WB and each wastewater background (p<0.01 for each), but the mean 

coverage values for samples in wastewater backgrounds did not vary significantly from each 

other (p>0.01). Read counts showed significant differences between each of WB 

(mean=73538.6, std. dev.=1214.6), NWRB (mean=70281.7, std. dev.=1974.8), and PWRB 

(mean=72270.6, std. dev.=1574.5) with Artic v4.1 primers, as determined by one-way ANOVA 

(F=39.119, p<1e-12) and Tukey’s HSD test (p<0.01 between each background). Normalized 

read counts for each background and both primer sets can be seen in Figure 2b. This suggests 

that the complex matrix of wastewater RNA extract impacts sequencing coverage whether or not 

additional SARS-CoV-2 RNA is present in the sample. Although a tiling amplicon genome 

sequencing approach is typically expected to provide uniform and complete coverage of the 

target genome [44] , the complexity of the wastewater matrix clearly reduces this coverage. This 

is also reflected in the comparison of normalized read counts. The significant difference between 

each group's read counts points to the fact that introduction of different backgrounds led to 

failure of uniform mapping and inconsistent coverage. Despite having the same reaction 

conditions, PWRB and NWRB showed significant differences in read counts. This suggests that 

the sample heterogeneity and compounds carried through into the wastewater RNA extract 

during processing can impact the successful mapping of reads.  
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Figure 2a 

 

 
Figure 2b 

Figure 2. Overview of sequencing data quality with different parameters - 2a) Sequencing data quality based on percent coverage , 2b) 

Sequencing data quality based on read counts 

 

3.2 The influence of tiling amplification scheme on sequence coverage is significant 

For wastewater amplification there are numerous primer choices available, and the amplification 

scheme may affect the outcome of sequencing in different ways [45]. To evaluate the effect of 

the primer scheme, we replicated our experiments using two different tiling primer sets: Artic 

v4.1 and VarSkip short v2a.  The analysis is shown in Figure 2a. Mean coverage and read counts 
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obtained from spike-ins in WB showed significant differences from those obtained from spike-

ins in NWRB and PWRB with Artic v4.1, as outlined in section 3.1. For Varskip, all three 

groups varied significantly from each other based on one-way ANOVA (F=26.194, p<1e-9) and 

Tukey’s HSD test (p<0.01 between all groups), with mean percent coverage the lowest for 

NWRB (mean=94.084, std. dev.=1.074), increasing with PWRB (mean=95.168, std. 

dev.=1.590), and increasing again with WB (mean=96.264, std. dev.=1.219). This is similar to 

the pattern of coverage values obtained using the Artic v4.1 primers, and continues to suggest 

that the wastewater matrix impacts the quality of sequence data produced regardless of the 

primer scheme chosen. Read counts did not show statistically significant differences between 

backgrounds (one-way ANOVA: F=3.433, p>0.01, WBmean=52889.9, WBstd. dev=1151.4, 

NWRBmean=51603.6, NWRBstd. dev.=3543.9, PWRBmean=52761.1, PWRBstd. dev.=1667.5). However, 

comparing coverage attained by Artic v4.1 (mean=96.01, std. dev.=1.538) and Varskip v2a 

(mean=95.17, std. dev.=1.578), the two primer schemes showed significantly different coverage, 

t(78)=4.036, p<0.001 with Artic having the higher mean and lower standard deviation. This 

suggests that use of the Varskip primer scheme reduced amplification efficiency in a small but 

significant way. Even though some specific primer pairs may vary in amplification efficiency 

depending on the circulating lineage in the sample, the Artic v4.1 primer scheme showed more 

amplification efficiency with these samples regardless of the sample matrix. Deconvolution 

method comparisons are therefore based on the Artic v4.1 data, with corresponding results for 

the Varskip amplification included in as Supplemental Figures 1, 2 and 3.  

 

3.3. There are significant differences in variant identification between deconvolution tools  

To assess the performance of the chosen deconvolution methods, we first compared the ability of 

each of the methods to detect the strains included in the original sample and in the expected 

proportions. Median pairwise L2 abundance norms, calculated using the approach described in 

Ye et al [46] provides a summary of the accuracy of abundance estimation across methods, 

offering a comparison between expected vs estimated abundance, and also among the tools 

themselves. Apart from Kraken2, all the methods examined predicted presence and relative 

abundance of the expected lineages with high accuracy (Figure 3).  The predictions between the 

tools were not statistically significant, again with the exception of kraken and sometimes kallisto, 

as determined by one-way ANOVA (F=10.655, p<1e-11) and Tukey’s post hoc HSD Test. In 
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Supplementary Table 1, we show the expected and predicted composition for each sample 

mixture. All of the deconvolution methods tested in this study could identify the major lineages 

that were present in the control mixtures, except for Kraken2 (Supplemental Figure 4).   

While most of the methods identify the variant in the mixed control dataset at the lineage 

level, there are misidentifications in the sub-lineage level of the variants. Most of these tools use 

a mutation-based reference set to define lineages and sublineages. As SARS-CoV-2 is a 

pathogen with a high mutation rate, the presence or absence of a single significant lineage-

defining mutation can cause misidentification of sub-lineages. For example, BA.4 and BA.5 

share more than 50 similar mutations [47] and BA.1 and BA.2 share 29 similar mutations [48]. 

At this degree of similarity, a single missing lineage-defining SNP has the potential to result in a 

misidentification. This is compounded by the fact that lineages are being defined and classified 

based upon amplicons and may not be able to be easily assigned to one variant.  

Misidentification was also seen in older variants such as Iota, because some of the tools 

did not incorporate mutations for variants that were not considered as variants of concern or 

interest, such as Iota.  Most of the deconvolution tools also did not explicitly identify the original 

Wuhan-hu-1 strain when it was a component of the mixture, other than Freyja. As most of these 

tools define lineages based on mutations relative to the Wuhan-hu-1 strain, and there is no 

mutation present in Wuhan-hu-1 relative to itself, none of them label this lineage correctly when 

it is present in a wastewater mixture, perhaps because its occurrence is a circumstance that is 

now unlikely other than in archival samples or constructed standard mixtures like those created 

for this study. VaQuERo, if it is unable to detect any lineage or sublineage based on mutations, 

will identify that sample as Wuhan-hu-1 by default.  
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Figure 3: Median pairwise L2 abundance norms between deconvolution tools  

 
 

3.4. The wastewater background had only subtle effects on abundance estimation 

In section 3.1, we showed that the composition of the sample matrix affects the coverage of 

sequencing. We also tested whether the sample matrix of the controls that are spiked into affects 

the estimation of relative abundance of lineage. We found that the estimation of the relative 

abundance of lineages changes very little regardless of whether it is spiked into negative or 

positive wastewater. The variances between samples from different backgrounds were 

insignificant (p>0.05 for all) via ANOVA performed to test the effect of sample matrix on the 

estimated relative abundance for all abundance-estimating tools. The small change in the 

estimated abundance can be attributed to the extra complexity of a metagenomic sample and the 
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effect of addition of lineages of SARS-CoV-2 from the positive wastewater background to the 

synthetic control mixtures, but this does not negatively impact the performance of the tools 

(Figure 4). This could also be showing that the deconvolution tools are not extremely sensitive to 

the coverage and sample matrix for relative abundance estimation.   

For the small differences that were observed, ANOVAs were performed for each lineage 

to see how those differences varied depending on the water or wastewater background of a 

sample. These results are shown in Table 4. The lineages that preceded Omicron tended to show 

statistically signficant differences between samples from wastewater backgrounds and water 

backgrounds, suggesting that sample background affects the lineage assignment of older variants 

more significantly than the newer ones. The addition of wastewater, which has a complex 

composition of inhibitors and carry through compounds, can inhibit the PCR and sequencing 

reactions and affect the sensitivity of variant detection. Additionally, the absence of defining 

mutations in the reference lists of deconvolution tools, for older/non-variant-of-interest lineages 

(as we have seen in Section 3.3) can cause misidentification and misestimation.  

 
Figure 4: Comparison of relative abundance of datasets in different backgrounds 
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Table 4: ANOVA between backgrounds and Tukey’s HSD results when grouped by lineage 

 

3.5. Error types varied significantly between deconvolution methods 

To understand how the lineage abundance estimated by each method differed from the expected 

abundance, the estimated relative abundance in each control dataset with different backgrounds 

were analyzed with respect to the percent abundance of lineages. (Figures 5a, 5b, 5c). As seen in 

Figure 5a, certain tools underestimated lineage abundance more often with certain lineages. 

LolliPop, Vaquero and LCS all underestimated the abundance of the older variants, mostly Delta 

and Iota; though LolliPop underestimated most of the lineages. Among the pre-Omicron variants 

only, Alpha was overestimated in some of the mixtures by Freyja and Alcov. Gamma was the 

only variant that had similar relative abundance estimated by all the tools. Conversely, the 

abundance of Omicron and its sub lineages are often overestimated by most of the deconvolution 

tools. Kallisto’s performance varies greatly depending on the reference database chosen; this is 

discussed further in section 3.7.  

When considering the effect of the wastewater background (Figure 5b and 5c), some 

patterns emerge; Alpha, Delta, and Iota are often slightly underestimated in negative and positive 

wastewater backgrounds. This underestimation might be due to inhibitors that can be carried 

through the RNA extracts from the processing step and affect sequencing and subsequent lineage 

detection sensitivity. The sub lineages of Omicron are overestimated in the positive wastewater 

background relative to the other two backgrounds. This is expected as positive samples were 
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collected from April 2023 when most circulating lineages are Omicron, leading to an increase in 

Omicron concentrations in the samples. 

 
5a 

 

 
5b 
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5c 

Figure 5: Overview of change in expected abundance of lineages along with the change in the environment of control mixtures 

 

3.6: Freyja yielded the most accurate lineage compositions and fewest false negatives 

One of the main objectives of this study was to identify which deconvolution tool most 

accurately deconvolutes samples of known composition, in terms of overall accuracy and false 

positive or false negative identifications. Output of all methods tested was compared to the 

expected relative abundance of strains in the prepared samples. Results of each method were also 

compared to one another. We found that Freyja outperformed other tools in both accuracy and 

fraction of false negatives.  

The median pairwise L2 abundance norms calculated in Figure 3, generated from the 

distances between expected control vector and deconvolution tool datasets, shows that Freyja has 

the lowest distance (0.02) from the expected vector, indicating that Freyja has the highest 

accuracy in identifying the relative abundance of lineages. Supplementary Figure 1 shows 

Freyja’s detection of lineage composition in comparison to other deconvolution tools when the 

Varskip primer set is used. Similarly, the lowest distance is also Freyja to expected with 0.03. 

When considering false positives, Freyja consistently identified the lineages with minimal false 

positives and zero false negatives (Figure 6a, 6b). With highest accuracy, no false negatives and 

few false positives, Freyja most accurately replicates the lineage identification and abundance of 

expected control mixtures. The expanded lineage lineage detection composition for the other 

tools tested can be found in Supplemental Figures 5.  
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When  comparing the effectiveness of each tools’ lineage detection, it was found that 

VaQuERo closely followed Freyja in performance. The rest of the tools detected multiple false 

positives, lineages which were not present in the control mixture dataset and sometimes also 

failed to detect the spiked-in lineages correctly. As false positive identification presents a major 

challenge in wastewater lineage deconvolution, the relatively low false positive calls in Freyja 

and VaQuERo carry significant weight in tool choice. When we consider how each algorithm 

works, Freyja uses each of the mutations from the alignment files and their respective 

sequencing depth to perform the depth weighted least absolute deviation regression and 

VaQuERo also uses all unique and non unique marker mutations to solve the deconvolution 

problem using SIMPLEX regression approach. This inclusivity of all the mutations while 

estimating the lineage composition might be the key to their better performance in false positive 

identification. 
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Figure 6a: Detection of expected lineage by the deconvolution tools (WB mixtures) 
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Figure 6b: Detected lineage composition by Freyja (WB mixtures) 
 

3.7: Kallisto performance was strongly dependent on the reference database 

Kallisto is originally a RNA transcript quantification tool. As the variant abundance 

estimation is found to be computationally similar to RNA transcript abundance estimation [27], it 

has been repurposed to be used as a wastewater deconvolution tool for relative abundance 

estimation of the SARS-CoV-2 variants. Kallisto takes a set of reference sequences that contains 

multiple genomic sequences per lineage, with the recommendation to include multiple sequences 

per lineages to reduce biases relating to within-lineage variation [27]. As a consequence, the 

composition of the reference set can significantly affect the performance of a reference based 

deconvolution tool [49]. We developed two databases to test how the performance of kallisto 

varies with respect to the database used.   

The in-house database preparation is described in the configuration parameters 

(Supplemental Materials 1) and includes 406 sequences with up to four sequences per lineage for 

299 different lineages. On the other hand, the C-WAP databases for both kallisto and Kraken 2 

used 30 sequences with up to six sequences for each of the following 13 included lineages: 

Wuhan-Hu, Alpha, Beta, Gamma, Eta, Epsilon, Delta, Iota, Kappa, BA.1, BA.1.1, BA.2, and 
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BA.3 [50]. Those databases were produced one time, receiving no further updates over time. The 

in-house database used lineages that were more specific than those in the C-WAP database, 

including many sublineages of the lineages listed for C-WAP’s database. Figure 3 shows that the 

accuracy of kallisto varies between these reference databases. Kallisto run with the C-WAP 

database has the median distance of 0.28 with respect to the expected abundances, and kallisto 

with the in-house database has a distance of 0.35. This means that the accuracy of kallisto is 

improved when using the C-WAP database. Similarly,  more false positive lineages were 

identified with the in-house database (Figure 6a). We hypothesize that because the in-house 

database has significantly more reference sequences per lineage, the algorithm may have had 

difficulty with unambiguous read assignment and aggregation into lineages. Therefore, the goal 

of correctly interpreting within-strain variation may be at odds with the goal of unambiguous 

read mapping, and the reference database should be chosen with care.  

 

3.8: Interpretation of increasingly complex variant profiles is a future challenge  

The reference sequences necessary for deconvoluting wastewater mixtures rely on the 

availability of  clinical sequencing of SARS-CoV-2 positive patient samples. As PCR-based lab 

testing has declined in favor of at-home rapid testing, access to clinical specimens has decreased 

significantly. This affects the availability of reference sequences for current circulating variants. 

Theoretically, the drift of current sequences away from the abundant reference data available for 

the 2020-2022 time period at some point starts to impact the performance of deconvolution tools 

in identifying lineages. If this is indeed happening, we should see an increase in the abundance of 

unidentified or unclassified lineages in wastewater across time.  

With the continuously growing number of variant sublineages, an abundance threshold is 

often applied to filter out very low abundance lineages and simplify visualizations. As part of our 

research program, we have been sequencing wastewater samples across North Carolina using the 

ARTIC primer set and Freyja as part of C-WAP for deconvolution. If we examine data from 

September 2022 to July 2023 (Figure 7), we can see that the trendline shows abundance of 

“unclassified by Freyja” and “below abundance threshold” lineages increasing over time. The 

number of circulating lineages in wastewater samples that fall below typical abundance 

thresholds is continuously increasing (Figure 7), and without a threshold the visualization and 

analysis of wastewater will lose its clarity and interpretability of current trends. It is also creating 
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a challenge for the deconvolution algorithms to identify the variants with accuracy. We can see 

in 3.6 that the most accurate output generating tool Freyja is overcalling the generic Omicron 

mostly in the complex mixtures with multiple controls in varying proportions starting from 625 - 

2500 copies/ul. We hypothesize that with this continuously growing variant abundances needs to 

be taken into account to improve the algorithm performances . These trends also suggest that 

other algorithms and methods to deconvolute wastewater samples are going to need to be 

developed that do not strictly rely on existing reference genomes and variant calls. Studies that 

can predict surge of infection can be informational in this scenario to help with public health 

measures to clinical sequencing as well as wastewater. This increasing growth of unidentified 

lineages supports the concern that unidentified sequences are going to continue to increase as we 

have fewer reference genomes for comparison, calling into concern the ability of these  

deconvolution tools to accurately identify circulating lineages.  

 

 
 Figure 7: LOWESS trendline on NCDHHS wastewater sequencing data  

 

4. Conclusions and Future Work 

 This study addresses the ability of commonly used deconvolution methods to distinguish 

the presence and abundance of SARS-CoV-2 variant spike ins when controlled mixtures are 

sequenced. We find that Freyja, which has been widely adopted throughout the COVID-19 

pandemic, produces variant abundance calls with the closest relationship to the expected ratios 

when tested on controlled variant spike-in mixtures. The error profile produced by Freyja is 

dominated by false positive lineage identifications rather than false negatives, including the 
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identification of indeterminate omicron lineages that do not correspond to any particular control, 

which are seen mainly in complex mixtures containing multiple spiked in variants. We also 

examine the influence of the wastewater background on deconvolution outcomes. We find that 

the impact of the wastewater matrix on variant deconvolution is insignificant, despite significant 

differences in sequence coverage resulting from the wastewater matrix. The influence of 

different tiling amplicon primer schemes on deconvolution outcomes is also negligible. The 

impact of the concentration and extraction process on viral RNA detection and quantitation has 

been extensively studied, and the impact of that process on wastewater variant sequencing could 

be investigated by repeating this study beginning from encapsulated viral controls spiked into 

raw wastewater, but that is a separate question, less about bioinformatics method performance 

than about sample processing and chemistry. It would likely be interesting to repeat this study on 

the commonly-used Illumina sequencing platform as well. However, given that we observe 

minimal differences in variant identification due to either tiling amplification scheme or 

exposure of RNA to the wastewater extract background, and the ongoing improvements to 

basecalling error rates on the Oxford Nanopore platform, the influence of the sequencing 

platform on variant deconvolution is likely to be relatively subtle as well. 
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