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Abstract
Objective: The objective of this study was to quantify longitudinal changes in Unified
Huntington's Disease Rating Scale (UHDRS) clinical scores and evaluate their
susceptibility to placebo response, improving our understanding of disease progression
and the ability to optimize clinical trials in Huntington's disease.

Methods: We utilized data from the Enroll-HD and GENERATION HD1 placebo arm
cohorts to model the natural history of the disease and placebo response for functional,
motor and cognitive clinical scores. Baseline patient characteristics available in both
cohorts were analyzed as potential predictors of progression rate.

Results: We identified distinct trajectories for each clinical measurement throughout the
course of the disease, with baseline characteristics serving as strong predictors of
progression rate. Interestingly, we observed a weak correlation between progression
rates among different endpoints, highlighting the need for careful selection of endpoints,
as they may not have the same relevance for different patient populations.

To quantify placebo response, we compared disease progression in the largest
Huntington’s clinical trial to date (GENERATION HD1 placebo arm) to the Enroll-HD
cohort. We found a strong initial improvement in motor and cognitive scores in
GENERATION HD1, which remained constant during the dosing period of the trial. We
show that this initial improvement in motor and cognitive scores can be quantified,
enabling the simulation of changes in endpoints in a placebo arm for distinct
subpopulations.

Interpretation: Our model successfully captures essential aspects of disease
progression and placebo response in Huntington's disease, providing valuable guidance
for the design and analysis of upcoming clinical trials.
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Introduction
Disease progression in Huntington's disease (HD) is complex and multifaceted,
characterized by psychiatric disturbance, motor dysfunction, cognitive and functional
impairment. These changes can be assessed using various clinical scores which are
part of the Unified Huntington's Disease Rating Scale (UHDRS), such as the Total
Functional Capacity (TFC), Total Motor Score (TMS), Symbol Digit Modalities Test
(SDMT), and Stroop Word Reading (SWR). Moreover, these scores can be integrated
into a composite UHDRS score (cUHDRS, Schobel et al, 2017).

Currently, there is no approved disease-modifying therapy for HD. As with other rare
diseases, numerous challenges exist in developing novel treatments, and there is a
pressing need to optimize clinical trials in HD. This can be accomplished by more
precisely identifying patients who are likely to exhibit disease progression during the trial
period and determining the most appropriate endpoint for a specific patient population.
Furthermore, sample size calculations typically rely on real-world data, and the impact
of placebo response on the ability to differentiate a treatment effect from a placebo
effect is not well understood. Therefore, a deeper understanding and quantification of
longitudinal changes in clinical scores and placebo response are important steps in
improving the design and analysis of clinical trials for HD.

Mathematical and computational methods have played an important role in advancing
our understanding of disease progression in HD. One primary focus of these
approaches has been predicting motor onset. The expansion of the
cytosine-adenine-guanine (CAG) repeat lengthens the encoded polyglutamine segment
of the huntingtin protein, and has been shown to be a strong predictor of age of motor
onset (Andrew et al, 1993, Lee et al, 2022), with various groups characterizing a
mathematical relationship between CAG repeat length and the age of motor onset that
accounts for over half of its variance (Langbehn et al., 2010, Zhang et al 2011, Warner
et al, 2022). Numerous studies have extended the prediction of motor onset beyond
CAG repeat length by incorporating longitudinal clinical and imaging data (Paulsen et
al., 2014), and also by deriving a prognostic measure for predicting disease progression
and risk of motor diagnosis in premanifest individuals (Long et al 2017, Langbehn et al,
2022). These studies have significantly improved our prognostic capability concerning
age of onset in HD, a relevant achievement since identifying patients who are likely
nearing disease onset is essential for implementing clinical interventions early in the
course of the disease, when preventing neuronal death and preserving function are
most likely to happen.

In the past years, there has been a growing emphasis on expanding the assessment of
HD beyond motor measures. Numerous studies have incorporated biological, clinical,
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and functional evaluations, including the proposal of a new staging system: the
Huntington's Disease Integrated Staging System (HD-ISS) (Tabrizi et al, 2022). Disease
progression models taking into account various aspects of the disease have been
proposed. Disease progression in HD has been suggested to happen as a series of
states with increasing severity (Sun et al., 2019; Mohan et al., 2021). Predictive features
of disease progression have been identified (Sun et al, 2020; Ghazaleh et al, 2021; Ko
et al., 2022), and different disease trajectories have been categorized (Ko et al., 2022).
Correlations between changes in features extracted from brain imaging or molecular
biomarkers and clinical progression have been established (Tabrizi et al, 2012,
Abeyasinghe et al, 2021, Rodrigues et al, 2020, Byrne et al, 2017). These efforts, along
with the availability of large natural history studies such as Enroll-HD (Landwehrmeyer
et al, 2017), have substantially improved our understanding of disease progression in
HD and the key characteristics underlying individual variability in disease progression.

In this study, we developed a mathematical framework to investigate and quantify the
natural history progression and placebo response in HD. Building on previous studies,
we use data from Enroll-HD to infer optimal disease trajectories, quantify patient
variability in progression rate, and predict progression based on patient characteristics.
To gain a deeper understanding of placebo response in HD, we compared the
progression in Enroll-HD (annual visits) with data from short-interval follow-up placebo
data (GENERATION HD1, McColgan et al, 2023). Through this comparison, we were
able to characterize and quantify placebo response, i.e., the variations in disease
progression between natural history and the placebo arm of a pivotal trial. Lastly, we
show that by quantifying both natural history progression and placebo response, we can
simulate placebo arm outcomes for patient populations with different inclusion criteria.

Methods

Study Cohorts
Natural history data used in this work were generously provided by the participants in
the Enroll-HD study and made available by CHDI Foundation, Inc. Enroll-HD is a global
clinical research platform designed to facilitate clinical research in Huntington’s disease.
We utilized data from Enroll-HD (NCT01574053) version PDS 5. We selected
individuals with an HD-ISS Stage > 1 and at least one follow-up visit, which were
conducted annually, resulting in a total of 6820 individuals selected. While participants
were followed up to 9 visits, it is important to note that the majority of individuals had
fewer than 3 follow-up visits.

To evaluate potential placebo response in HD, we used data from GENERATION HD1
(NCT03761849, McColgan et al, 2023). This double-blind Phase III study was designed
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to assess the efficacy and safety of tominersen in HD patients. The study enrolled 791
adults, with inclusion criteria including age between 25-65 years, Diagnostic Confidence
Level (DCL) = 4, Independence Scale (IS) ≥70, CAG ≥ 36, CAG-age product (CAP) >
400, Body Mass Index (BMI) between 16-32 kg/m2, and weight exceeding 40 kg.
Participants were evenly distributed into three groups: a placebo group and two active
groups that received tominersen at two different dosing regimens. Patient monitoring
occurred every 8 weeks. Based on an overall benefit–risk assessment by an
independent data monitoring committee, dosing was halted after the majority of patients
had completed 69 weeks of the trial. Patients continued to be followed until the 101st
week. For the purpose of this analysis, only participants from the placebo group (n=260)
were included.

For a comparative analysis of the baseline characteristics distribution between both
cohorts, please refer to Figure Suppl 1 and McColgan et al. 2023.

Mathematical model
In our approach, we begin by estimating the disease trajectories for each individual
clinical score (TFC, TMS, SDMT, and SWR) throughout the course of the disease. We
then determine the variability in the rate of progression and identify which covariates are
predictive of this progression rate.

Our analysis involved specifying a hierarchical Bayesian model. This model
incorporated fixed effects for the model structure and covariate coefficients, as well as
random effects to account for subject-level variability. For more detailed information,
please refer to the supplementary information.

To implement our model, we utilized the probabilistic programming language Turing.jl
(Ge et al, 2018), which enables us to perform full Bayesian inference. Specifically, we
employed Hamiltonian Monte Carlo (HMC), a Markov chain Monte Carlo (MCMC)
method, to generate samples from the posterior distribution.

Covariate Selection: Patient characteristics at baseline were evaluated as potential
predictive covariates of the progression rate. The following covariates were included:
baseline levels of clinical scores or disease stage (TFC, TMS, SDMT, SWR, IS, HDISS),
patient demographics (sex, height, weight, BMI, education level, age), co-medication
(such as use of tetrabenazine, antidepressant, or antipsychotic), and disease-specific
information (CAG, CAP).

Covariate selection was based on the posterior distribution of each covariate coefficient
βj. Covariates were considered important if the 90% posterior distribution of their
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coefficient βj did not include 0. Conversely, if the distribution included 0, the covariates
were deemed unimportant and subsequently removed from further analysis. Covariate
selection was performed independently for each clinical score.

To address the challenge of testing multiple covariates and account for the inclusion of
irrelevant predictors, we employed the horseshoe prior (Carvalho et al, 2010; Zhang et
al, 2022). This prior was chosen for its ability to mitigate overfitting when assessing a
large number of covariates.

A weighted linear combination of the selected covariates was used as a predictor of the
progression rate for each clinical score. For more detailed information, please refer to
the methods section.

Software: Figures and statistical analysis were performed in Julia (version 1.9.0).

Results

Distinct trajectories of functional, motor, and cognitive decline
To determine the disease progression trajectories for each clinical score over the course
of the disease, we analyzed natural history data from Enroll-HD. For that, we developed
a screening method that considered multiple trajectory shapes, such as exponential,
logistic, linear, and combinations thereof (for more information, please refer to the
supplementary information and Figure 1A). This method was independently applied to
each UHDRS clinical score (TFC, TMS, SDMT, SWR). Our analysis revealed that TFC
and TMS are best characterized by logistic-like trajectories, consistent with previous
analysis (Sun et al, 2020), while cognitive scores (SDMT and SWR) display an
exponential-like decline (Figures 1B, 1C). These findings indicate that different clinical
scores evolve at distinct rates over the course of the disease.
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Figure 1. Differences in functional, motor, and cognitive trajectories. A) Schematic
illustration of the disease trajectory screening procedure. By treating the lower and upper
bounds of the generalized logistic model as model parameters, we screened various potential
disease trajectories. Inset figures depict extreme examples: exponential, logistic, and linear
models. B) TFC and TMS are best characterized by logistic-like trajectories (low lower and low
upper bound values), while cognitive scores (SDMT and SWR) are best characterized by
exponential-like trajectories (low lower and high upper bound values). C) Fitted trajectories for
TFC, TMS, SDMT and SWR. Dots at the extreme represent minimum and maximum score
levels in the data. Dashed lines represent the median and 90% interval. In contrast to other
scores, TMS values increase with the progression of the disease. These trajectories provide an
average representation of the expected progression over the course of the disease (time).

Baseline characteristics as strong predictors of clinical decline
After defining disease trajectories for each clinical measurement, we further explored
whether baseline patient characteristics could predict the rate at which participants from
the Enroll-HD cohort progress along these predefined trajectories. Previous studies
have shown that baseline score levels, CAP, CAG length, co-medication are predictive
of progression rate (Sun et al, 2020, Ghazaleh et al, 2021). Based on these studies, we
selected 17 patient characteristics representing disease stage, patient demographics,
co-medication use, and disease-specific information as potential predictive covariates to
be evaluated (Figure 1A, Methods).

The presence of strong correlation among the selected covariates (Figure Suppl 2)
poses limitations when interpreting its relevance based on their coefficients. It is
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important to note that a low coefficient for a correlated covariate does not imply its
irrelevance, as its effect might be represented by other covariates. Keeping these
limitations in mind, we observed that overall the most relevant covariates include the
stage of the disease (HD-ISS and baseline clinical scores), disease-specific
characteristics (CAG, CAP), and the use of tetrabenazine and antipsychotics, while
patient demographics (sex, height, weight, BMI, education, age) have little/no impact.
These results are consistent with previous analysis (Ghazaleh et al, 2021).

In order to validate the predictive nature of these baseline characteristics on
progression rates, we performed a cross-validation analysis by randomly dividing the
Enroll-HD dataset into a 70-30% training-validation set and repeating this process 100
times. We used the training set to estimate the relevance of each covariate, and then
categorized patients in the validation set into two groups: the 50% more likely to
progress and 50% less likely to progress based on their predicted progression rates.
We observed a strong separation between these two predicted populations, indicating
that baseline characteristics serve as strong predictors of progression rate and can
effectively identify patients who are more likely to experience disease progression
(Figure 2C).
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Figure 2. Baseline characteristics can identify patients more likely to progress. A)
Heatmap illustrates the relevance of each covariate in predicting progression rate for the
respective clinical scores. Darker shades indicate a stronger impact. Estimated coefficient
values have been standardized according to the average progression rate to enable comparison
between different clinical scores. Red shades indicate an increase in the rate of progression,
while blue shades indicate a decrease. Caution should be taken when interpreting the individual
effects of each coefficient due to strong correlations among the covariates (see Figure Suppl.
2). B) Cross validation analysis showing changes in TFC, TMS, SDMT, and SWR from baseline
for individuals selected from Enroll-HD (validation set). Patients were categorized into 50% more
likely and 50% less likely to progress based on the model's predictions using baseline
covariates. Lines represent the average changes from baseline, while the shaded area denotes
a 95% confidence interval across 100 cross-validation iterations, using 70% as training and 30%
as validation data from Enroll-HD.

Weak correlation in progression rate among different clinical scores
In our initial analysis, we found that functional, motor, and cognitive scores are best
characterized by distinct disease trajectories (Figure 1), implying that patients may
exhibit varying rates of functional, motor, and cognitive decline throughout the course of
the disease. To further examine this, we estimated the correlation of predicted
progression rates among different clinical scores. Our model predicts a weak correlation
in the progression rates between these clinical scores (Figure 3A). By plotting the
relationship between short term changes in clinical scores from individuals selected
from the Enroll-HD cohort, we further confirmed that changes in functional, motor, and
cognitive scores are weakly correlated (Figure 3B). These results highlight the
differential rate of progression captured by distinct clinical endpoints and emphasize
that individuals who exhibit rapid progression according to one clinical score may not
necessarily exhibit fast progression according to another.
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Figure 3. Correlation among rates of functional, motor, and cognitive decline. A) Peason
correlation coefficients for the predicted progression rates among TFC, TMS, SDMT, and SWR
scores. B) Associations between the one-year changes in TFC, TMS, SDMT, and SWR scores
for individuals selected from the Enroll-HD database. Gray dots represent the change in each
clinical score after one year for individual patients, while the blue line illustrates the linear fit of
the relationship between changes in each score. Insets in the top right corner of each subplot
display the correlation coefficients for the respective score changes.

Placebo response in GENERATION HD1
Understanding and quantifying placebo response is crucial in the design of a clinical trial
as it enables accurate interpretation of treatment effects and precise estimation of
sample size calculations. In order to quantify the placebo response, we compared the
progression in the GENERATION HD1 placebo cohort with their expected natural
history progression (Figure 4A). We observed that for the functional score (TFC), the
progression during the trial aligns with the natural history progression, showing no sign
of a relevant placebo response. In contrast, for the motor and cognitive measurements,
we found that patients in the placebo arm of GENERATION HD1 have better outcomes
than expected by natural history progression (Figure 4A). We also noted that this
improvement has a fast onset after treatment initiation and persists throughout the
dosing period of the trial. Moreover, after this initial improvement, motor and cognitive
decline follows the expected rate of decline from natural history. This finding indicates
the presence of a placebo response that contributes to a noticeable improvement in
motor and cognitive measurements within a few weeks following the start of the trial,
and this improvement persists consistently throughout the trial duration. (Figure 4A).

Intriguingly, we identified differences in the placebo response between motor and
cognitive scores. An offset of the response was observed for the motor score (TMS)
after the end of the trial dosing period, implying the offset of a placebo effect. However,
this was not the case for the cognitive measurements, where we observed no offset of
this initial improvement after dosing was stopped, suggesting a different placebo
response, potentially a learning or practice effect that persists after dosing was
discontinued (Figure 4A). By modeling placebo response as an initial improvement after
baseline and constant during the dosing period of the trial (see supplementary
information), our model was able to capture the changes in clinical score in
GENERATION HD1 during the dosing period of the trial (up to week 69) (Figure 4B).
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Figure 4. Trial effects on functional, motor, and cognitive scores. This figure illustrates the
changes from baseline in TFC, TMS, SDMT, and SWR. Blue dots and lines indicate the average
data from the GENERATION HD1 placebo arm, while vertical blue lines represent the standard
error. The vertical red line marks the end of the dosing period for most patients (after week 69).
A) The blue line shows the prediction based on the natural history model, with the shaded area
representing the 95% confidence interval. The dashed line indicates a shift from the mean
predictions of the model, demonstrating that by adjusting the model prediction proportionally to
the initial improvement, the progression rate in GENERATION HD1 aligns with the predicted
natural history. B) The blue line and shaded area depict the combined natural history and trial
effect model's average and 95% confidence interval prediction. For the composite score
(cUHDRS) please refer to Figure S7.

Simulation of placebo arms for patient populations with different inclusion
criteria
Once natural history progression, placebo response, and baseline characteristics
predictive of progression rate are quantified, it is possible to simulate the changes in
each clinical score for different patient populations characterized by different baseline
characteristics. In Figure 5, we present the expected changes in each clinical
measurement for commonly used selection criteria in HD: CAG-Age-Product (CAP),
normalized prognostic index (PIN), age, and HD-ISS (for different subpopulations see
Figures Suppl 3-6).
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We observed variations in the progression of different subpopulations depending on the
specific clinical measurement utilized. For instance, PIN and CAP can effectively enrich
the population with patients more likely to progress, particularly when utilizing TFC or
TMS (Figure 5A,B). Moreover, when using TFC as an endpoint, the progression rate in
individuals with HD-ISS = 2 is not expected to be different from those with HD-ISS = 3,
in contrast to other clinical measurements (Figure 5C). Lastly, no relevant difference is
observed when selecting by age (Figure 5D). These results highlight the importance for
careful selection of appropriate clinical endpoints and consideration of specific
subpopulations when designing and analyzing clinical trials for HD.

Figure 5. Simulation of placebo arms for different patient populations. Changes from
baseline for TFC, TMS, SDMT, and SWR scores for patients segregated by A) HD-ISS, B) age,
C) CAP, and D) PIN. For each scenario, we randomly sampled 250 individuals from Enroll-HD
for each condition and utilized their baseline characteristics to simulate the predicted changes in
the clinical score. We performed 1000 random samplings. The solid line represents the average,
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while the shaded area depicts the 95% confidence interval prediction. For the segregation of the
plots into two groups, we chose values of CAP, PIN, and AGE that are close to the median of
the Enroll-HD population (493 for CAP, 3.07 for PIN, and 51 for AGE).

Discussion
In this study, we aimed to understand and quantify disease progression and placebo
response in the UHDRS clinical measurements used to assess functional (TFC), motor
(TMS), and cognitive (SDMT, SWR) progression in HD. We build on previous work and
the availability of large natural history cohort data (Enroll-HD) to model the natural
history progression of these clinical scores. We developed a screening method to
estimate disease trajectory for each clinical score and found that TFC and TMS were
best characterized by logistic-like trajectories, consistent with previous analysis (Sun et
al, 2020), while cognitive scores (SDMT, SWR) exhibited exponential-like trajectories.
We further investigated whether baseline characteristics available in the Enroll-HD
cohort could serve as predictors of the progression rates of each clinical score. Our
findings indicate that baseline characteristics act as robust predictors of progression
rate for each clinical score. Interestingly, when comparing the progression rates among
different scores over one year, we observed a weak correlation among them, indicating
that patients who are likely to experience progression in one clinical score may not
necessarily exhibit the same progression in another score in the short term.

Furthermore, we sought to understand the nature and magnitude of placebo response
by analyzing data from the GENERATION HD1 placebo arm. Our analysis revealed
minimal placebo response in the functional score (TFC). In contrast, we observed a
strong placebo response with a clear onset and offset in the motor score (TMS),
suggestive of a placebo effect. Interestingly, the cognitive scores (SDMT, SWR)
exhibited an even stronger placebo response without an observed offset after the
dosing period of the trial ended. This suggests that the placebo response observed in
cognitive scores may be related to a learning/practice effect, potentially influenced by
the frequency of assessments in the GENERATION HD1 trial compared to the
Enroll-HD cohort. Importantly, these effects also significantly influence the composite
cUHDRS score, given that it is derived from these individual metrics.

Taken together, these findings have significant implications for trial design in HD. The
strong predictive value of baseline characteristics for progression rate allows for the
selection of patients based on their expected rate of progression, enabling for example
trial enrichment with patients more likely to progress over the period of the trial.
However, the weak correlation in progression rates between different clinical scores
indicates that patients likely to progress based on one score may not necessarily
progress based on other scores. This is because the clinical scores change in a
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non-linear manner, i.e. with different speeds at different moments of the disease.
Therefore, depending on where patients are in the course of the disease, they are more
likely to progress according to one endpoint but not another. This highlights the
importance of carefully selecting endpoints when enriching trials with specific patient
populations. Furthermore, the observed differences in the nature and magnitude of the
placebo response highlight the need for a better understanding of their underlying
effects. It would be critical to understand whether such a placebo response is seen in
other trials and whether the magnitude of such effects are similar to those observed in
GENERATION HD1. Moreover, previous research has shown that a composite measure
of functional, motor, and cognitive scores (cUHDRS) provides an improved measure of
clinical progression and enhances clinical trial design by requiring smaller sample sizes
(Schobel et al., 2017). The use of this composite score is becoming common practice,
however, because these analyses were evaluated in the absence of trial data, future
work should evaluate if these conclusions hold in the presence of placebo response.

Importantly, our analysis revealed that a placebo response initially leads to an
improvement after baseline, but after accounting for this initial improvement, the rate of
progression between the GENERATION HD1 placebo arm and Enroll-HD cohorts
remained consistent. This highlights the value of Enroll-HD as a retrospective source of
natural history information.

Our mathematical framework represents an initial step towards quantifying changes in
clinical endpoints within a clinical trial setting. By incorporating both natural history
progression inferred from Enroll-HD and placebo response inferred from GENERATION
HD1, our model effectively captures changes in clinical endpoints for different patient
populations, and can be used to optimize the design and analysis of clinical trials in HD.
Moreover, our model can serve as the first step towards having a modeling tool for
simulating virtual placebo arms, which can optimize trials by reducing the number of
required patients and accelerating clinical research.

It is important to acknowledge the main limitation of the current model, which lies in its
reliance on a limited amount of trial data (260 patients from GENERATION-HD1), with
the most data being up to 69 weeks. Therefore, the observed placebo response in
GENERATION-HD1 may not necessarily be generalized to other trials with different
patient populations and trial designs. Moreover, while Enroll-HD includes participants
from various stages of the disease, it is worth noting that certain stages, such as early
stages, may be less represented. If future trials focus on these specific populations, it
may be necessary to adapt the model accordingly to ensure its applicability.
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In summary, our findings bring a new understanding of disease progression and
placebo response in HD and our theoretical framework has the potential to enhance the
efficiency of clinical trials and accelerate the development of effective treatments for HD
patients.
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Supporting information

Mathematical model

In our methodology, we begin by estimating the disease trajectories for each specific
clinical score throughout the progression of the disease. To achieve this, we employ a
generalized logistic model, where the lower (l) and upper (u) bounds are parameters
that are inferred from the available data for each score. Subsequently, we infer the
inter-individual variability in progression rate ( ), residual unexplained variability ( ),Ω

𝑅
σ

𝑁𝐻𝑇

and the relevance of each covariate j in predicting progression rate represented by the

covariate coefficient ( ). To accomplish this, we utilize data from Enroll-HD.β
𝑗
𝑁𝐻𝑇

Parameters related to placebo response are inferred using the GENERATION HD1
placebo cohort. Similarly to the progression rate, we infer the inter-individual variability
in the placebo response ( ), residual unexplained variability ( ), and identify theΩ

𝐴
σ

𝑃𝐿𝐵

relevance of each covariates in predicting the placebo response .(β
𝑗
𝑃𝐿𝐵)

Below we describe the details of our mathematical framework, and the estimated
parameters can be found in tables S1-4.

Natural history progression model
In order to infer the most suitable disease trajectory for each clinical score, we defined a
scaling function so that once it is applied to a score ( ) of individual , it renders a𝑓 𝑥

𝑖
𝑖

progression rate ( ) that is linearly changing in time, i.e:𝑟

𝑓 𝑥
𝑖

𝑡( )( ) = 𝑓 𝑥
𝑖

0( )( ) + 𝑟
𝑖
𝑡   1( )

To define , we used the generalized logistic model with upper ( ) and lower ( ) bound𝑓 𝑢 𝑙
as parameters to be inferred. The generalized logistic model can be defined as:

𝑑𝑥
𝑑𝑡 = 𝑟 𝑥 − 𝑙( ) 1 − 𝑥−𝑙

𝑢−𝑙⎡⎣ ⎤⎦   2( )

with the following analytical solution:
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𝑥 𝑡( ) = 𝑙 + 𝑢−𝑙

1+ −1+ 𝑢−𝑙
𝑥 0( )−𝑙( )𝑒−𝑟𝑡    3( )

which can be rewritten as:

𝑙𝑜𝑔 − 1 + 𝑢−𝑙
𝑥 𝑡( )−𝑙( ) = 𝑙𝑜𝑔 − 1 + 𝑢−𝑙

𝑥 0( )−𝑙( ) − 𝑟𝑡.    4( )

Now, by defining:

𝑓 𝑥 𝑡( ); 𝑢, 𝑙( ) =  − 𝑙𝑜𝑔 − 1 + 𝑢−𝑙
𝑥 𝑡( )−𝑙( )   5( )

the solution becomes linear in time (as defined in Eq. 1):

𝑓 𝑥 𝑡( ); 𝑢, 𝑙( ) = 𝑓 𝑥 0( ); 𝑢, 𝑙( ) + 𝑟𝑡   6( )

and changing the values and enables screening for many potential non-linear𝑢 𝑙
trajectories (see figure 1A).

Once and values are estimated, equation 5 can be used to rescale the values of the𝑢 𝑙
clinical score ( ), and the model can be described as a linear model in time (Eq. 1). For𝑥
simplicity, let’s define as the scaled clinical score values, and as𝑦 𝑡( ) = 𝑓 𝑥 𝑡( ); 𝑢, 𝑙( ) 𝑟

𝑖

the individual progression rate. With that, changes from baseline ( ) can be𝑡 = 0
described as:

∆𝑦
𝑖

= 𝑟
𝑖
𝑡 + ϵ   7( )

with representing the residual unexplained variability.ϵ ∼ 𝑁 0, σ( )

In order to estimate the individual progression rate , we assume that𝑟
𝑖

𝑟
𝑖

∼ 𝑁 𝑅
𝑖
, Ω

𝑅( ).    8( )

where represents the inter-individual variability in progression rate and is assumed toΩ
𝑅

be constant and inferred from data. The individual average progression ( ) is assumed𝑅
𝑖

to be linearly dependent on predictive baseline characteristics (covariates) such that:

𝑅
𝑖

= β
𝑍0
𝑁𝐻𝑇 +

𝑗
∑ β

𝑍𝑗
𝑁𝐻𝑇𝑍

𝑖𝑗
   9( )

where is the z-score value of covariate for individual for continuous covariates and𝑍
𝑖𝑗

𝑗 𝑖

either 0 or 1 in case of binary covariates, and represents the weight of covariateβ
𝑍𝑗
𝑁𝐻𝑇 𝑗

in predicting the progression rate.
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To estimate the weight of each covariate ( ) we applied HorseShoe priors. We foundβ
𝑍𝑗
𝑁𝐻𝑇

that R2D2 HorseShoe prior, as proposed by Zhang and colleagues (Zhang et al, 2022),
proved to be effective in this context.

Placebo response

In a clinical trial setting, the expectations of patients or clinicians regarding the potential
effects of a drug can impact the measurements of clinical scores. In order to identify
potential placebo responses, we compared the progression in the GENERATION HD1
placebo cohort with their expected natural history progression (Figure 4A). We found
that placebo response can be characterized by an improvement after baseline that
appears to remain constant throughout the dosing period of the trial (Figure 4A). We
observe this for all clinical scores. Based on these observations, we represented the
placebo response mathematically as a quick improvement after baseline (t=0). The
parameters related to progression rate are inferred using Enroll-HD, and considered as
informative priors when analyzing clinical trial data. Therefore, for the placebo arm, the
model becomes:

∆𝑦
𝑖

= α
𝑖

1 − 𝑒−𝑡/τ( ) + 𝑟
𝑖
𝑡 + ϵ   10( )

with year) (i.e. rapid improvement after baseline and constantτ =  0. 05 (<< 1
afterwards). The parameter represents the individual trial effect which is assumed toα

𝑖

be normally distributed:

α
𝑖

∼ 𝑁 𝐴
𝑖
, Ω

𝐴( )   11( )

where represents the inter-individual variability and the average is assumed to beΩ
𝐴

𝐴
𝑖

linearly dependent on baseline characteristics (covariates) :

𝐴
𝑖

= β
𝑍0
𝑃𝐿𝐵 +

𝑗
∑ β

𝑍𝑗
𝑃𝐿𝐵𝑍

𝑖𝑗
   12( )

where is the z-score value of covariate for individual for continuous covariates and𝑍
𝑖𝑗

𝑗 𝑖

either 0 or 1 in case of binary covariates, and represents the weight of covariateβ
𝑍𝑗
𝑃𝐿𝐵 𝑗

in predicting the progression rate. To estimate the weight of each covariate we applied
HorseShoe priors.
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Model Fitting and Diagnostics: The model was fit using a Markov Chain Monte Carlo
(MCMC) approach with 5 chains of 200 iterations each, discarding the first 1000
iterations as burn-in. Convergence was evaluated using the potential scale reduction
factor (R-hat) and the model fit was assessed through visual predictive checks (refer to
Figure S3-6, S8).

Parameters:

Table S1: Parameters related to trajectory screening. The parameters xmin and xmax
represent the minimum and maximum values in Enroll-HD for each clinical score. The
parameters u and l represent the parameters used in Eq 2, and are estimated as l = xmin -
lower*(xmax - xmin) and u = xmax + upper*(xmax-xmin). The upper and lower parameters
represent fractions of the total score range added to the data limits (xmin or xmax). This
approach facilitates convenient comparison between different endpoints, as illustrated in Figure
1A.

┌─────────────┬────────────────────────────────────────────────────┐
│ u/l bounds │ TFC TMS SDMT SWR │
├─────────────┼────────────────────────────────────────────────────┤
│ xmin │ 0.00 0.00 0.00 0.00 │
│ xmax │ 13.00 120.00 104.00 161.00 │
│ l │ -0.19 -15.51 -11.69 -31.42 │
│ u │ 15.42 134.95 330.21 550.68 │
│ lower │ 0.01 0.13 0.11 0.20 │
│ upper │ 0.19 0.12 2.18 2.42 │
└─────────────┴────────────────────────────────────────────────────┘

In our analysis, we used the z-transformed value of the covariates to determine the
covariate coefficients (Eq 9). For that, each covariate j for each individual i, is
transformed according to the following equation:

= - )𝑍
𝑖𝑗

 (𝐶
𝑖𝑗

𝑚
𝑗

/𝑠
𝑗

where and are the mean and standard deviation of the continuous covariates at𝑚
𝑗

𝑠
𝑗

𝐶
𝑖𝑗

Enroll-HD. For binary covariates, we assumed and .𝑚
𝑗

= 0 𝑠
𝑗

= 1

In order to avoid having to make this transformation in future analysis, we can rewrite
equation 9 as:

𝑅
𝑖

= β
𝑍0
𝑁𝐻𝑇 +

𝑗
∑ β

𝑍𝑗
𝑁𝐻𝑇𝑍

𝑖𝑗
 = β

0
𝑁𝐻𝑇 +

𝑗
∑ β

𝑗
𝑁𝐻𝑇𝐶

𝑖𝑗
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where

=β
0

β
𝑍0

 −
𝑗

∑ β
𝑍𝑗

𝑚
𝑗
/𝑠

𝑗
  

=β
𝑗

β
𝑍𝑗

 /𝑠
𝑗
  

And the values at table S2 represent the values of . With that the estimatedβ
𝑗

progression rate for each patient can be inferred based on their baseline characteristics.

Table S2: Covariate coefficients predictive of progression rate.
┌─────────────┬────────────────────────────────────────────────────┐
│ cov. coeff. │ TFC TMS SDMT SWR │
├─────────────┼────────────────────────────────────────────────────┤
│ β_0 │ 0.54518 0.01010 0.15991 0.02948 │
│ β_bTFC │ -0.06223 -0.00316 0.00126 0.00162 │
│ β_bTMS │ -0.00384 -0.00408 -0.00102 -0.00094 │
│ β_bSDMT │ 0.00563 -0.00358 -0.00277 0.00233 │
│ β_bSWR │ 0.00075 -0.00025 0.00053 -0.00236 │
│ β_bIS │ 0.00375 0.00000 0.00000 0.00000 │
│ β_bHDISS_2 │ 0.00000 -0.02142 0.02214 0.00839 │
│ β_CAG │ -0.00863 0.00459 -0.00132 0.00135 │
│ β_bCAP │ -0.00019 0.00029 -0.00020 -0.00014 │
│ β_bAGE │ -0.00085 0.00000 0.00000 0.00061 │
│ β_SEX_F │ -0.01038 0.00726 0.00082 0.00000 │
│ β_EDU_3 │ 0.00000 0.00000 0.00617 0.00422 │
│ β_WT │ 0.00000 0.00000 0.00000 0.00000 │
│ β_HT │ 0.00000 0.00000 0.00000 0.00000 │
│ β_BMI │ 0.00000 0.00000 0.00000 0.00000 │
│ β_tetraben… │ -0.07209 0.03272 -0.03152 -0.00991 │
│ β_antidepr… │ -0.01693 0.00000 0.00000 0.00000 │
│ β_antipsyc… │ -0.05602 0.00854 -0.01813 -0.00875 │
└─────────────┴────────────────────────────────────────────────────┘
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Table S3. Covariate coefficients predictive of placebo response.
┌─────────────┬────────────────────────────────────────────────────┐
│ cov. coeff. │ TFC TMS SDMT SWR │
│ String │ Float64 Float64 Float64 Float64 │
├─────────────┼────────────────────────────────────────────────────┤
│ β_0 │ 0.10045 0.04142 0.41122 0.23922 │
│ β_bTFC │ -0.06767 0.00000 0.00975 0.00000 │
│ β_bTMS │ 0.00000 -0.00255 -0.00095 0.00000 │
│ β_bSDMT │ 0.00000 0.00000 -0.00501 0.00208 │
│ β_bSWR │ 0.00000 0.00000 0.00000 -0.00271 │
│ β_bIS │ 0.00966 0.00000 0.00000 0.00126 │
│ β_bHDISS_2 │ 0.00000 0.00000 0.00000 0.00000 │
│ β_CAG │ 0.00000 0.00000 0.00000 0.00000 │
│ β_bCAP │ 0.00000 0.00000 -0.00018 0.00000 │
│ β_bAGE │ -0.00442 0.00000 0.00000 0.00000 │
│ β_SEX_F │ 0.00000 0.00000 0.00000 0.00000 │
│ β_EDU_3 │ 0.00000 0.00000 0.00000 0.00000 │
│ β_WT │ 0.00000 0.00000 0.00000 0.00000 │
│ β_HT │ 0.00000 0.00000 0.00000 -0.00118 │
│ β_BMI │ 0.00000 0.00000 -0.00875 0.00000 │
│ β_tetraben… │ 0.00000 0.00000 0.00000 0.00000 │
│ β_antidepr… │ 0.00000 0.00000 0.00000 0.01829 │
│ β_antipsyc… │ 0.00000 0.00000 0.00000 0.00000 │
└─────────────┴────────────────────────────────────────────────────┘

Table S4. Standard deviations for natural history and placebo arm model.
┌─────────────┬────────────────────────────────────────────────────┐
│ std param. │ TFC TMS SDMT SWR │
├─────────────┼────────────────────────────────────────────────────┤
│ Ω_R │ 0.20254 0.09818 0.06706 0.05330 │
│ σ_NHT │ 0.42798 0.22428 0.15593 0.13635 │
│ Ω_A │ 0.26841 0.18748 0.10695 0.10043 │
│ σ_PLB │ 0.29052 0.16403 0.10791 0.09387 │
└─────────────┴────────────────────────────────────────────────────┘
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Supplementary Figures

Figure S1. Comparison of baseline patients characteristics between Enroll-HD and
GENERATION-HD1. The term EDU_3 refers to an education level (EDU) greater than 3,
bHDISS_2 denotes a baseline HDISS equal to 2, and SEX_F denotes sex equal to female.
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Figure S2. Pearson correlation coefficients among the covariates.
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Figure S3. Visual Predictive Check for different patient subpopulations. The model's visual
predictive checks demonstrate a high degree of consistency with the data when segmented into
subpopulations. The dots symbolize the average data derived from Enroll-HD, while the lines
depict the model's average predictions. The encompassed area signifies the 90% confidence
interval (CI). Participants were categorized based on their baseline covariates, as indicated in
the title. For continuous covariates, a median split was employed, with gray signifying values
lower than the median and brown indicating values higher than the median. For discrete
covariates, gray represents false, and brown signifies true.

Figure S4. Visual Predictive Check for different patient subpopulations. Same as figure S3
for TMS score.
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Figure S5. Visual Predictive Check for different patient subpopulations. Same as figure S3
for SDMT score.

Figure S6. Visual Predictive Check for different patient subpopulations. Same as figure S3
for SWR score.
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Figure S7. Placebo response on composite score (cUHDRS). Same as Figure 4 for the
composite cUHDRS.

Figure S8. 5th and 95th percentile VPC. Visual predictive checks for average, 5th and 95th
percentile changes from baseline.
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