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13 Abstract
14 Background: Detecting adverse drug events (ADE) of drugs that are already available on the 

15 market is an essential part of the pharmacovigilance work conducted by both medical regulatory 

16 bodies and the pharmaceutical industry. Concerns regarding drug safety and economic interests 

17 serve as motivating factors for the efforts to identify ADEs. Hereby, social media platforms play 

18 an important role as a valuable source of reports on ADEs, particularly through collecting posts 

19 discussing adverse events associated with specific drugs.

20 Methodology: We aim with our study to assess the effectiveness of knowledge fusion 

21 approaches in combination with transformer-based NLP models to extract ADE mentions from 

22 diverse datasets, for instance, texts from Twitter, websites like askapatient.com, and drug 

23 labels. The extraction task is formulated as a named entity recognition (NER) problem. The 

24 proposed methodology involves applying fusion learning methods to enhance the performance 

25 of transformer-based language models with additional contextual knowledge from ontologies or 

26 knowledge graphs. Additionally, the study introduces a multi-modal architecture that combines 

27 transformer-based language models with graph attention networks (GAT) to identify ADE spans 

28 in textual data. 
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29 Results: A multi-modality model consisting of the ERNIE model with knowledge on drugs 

30 reached an F1-score of 71.84% on CADEC corpus. Additionally, a combination of a graph 

31 attention network with BERT resulted in an F1-score of 65.16% on SMM4H corpus. Impressively, 

32 the same model achieved an F1-score of 72.50% on the PSYTAR corpus, 79.54% on the ADE 

33 corpus, and 94.15% on the TAC corpus. Except for the CADEC corpus, the knowledge fusion 

34 models consistently outperformed the baseline model, BERT. 

35 Conclusion: Our study demonstrates the significance of context knowledge in improving the 

36 performance of knowledge fusion models for detecting ADEs from various types of textual data.

37

38 Keywords: Adverse Drug Reaction Detection, Transformers, Graph Neural Network, 

39 Knowledge Fusion.

40 Author Summary: Adverse Drug Events (ADEs) are one of the main aspects of drug safety 

41 and play an important role during all phases of drug development, including post-marketing 

42 pharmacovigilance. Negative experiences with medications are frequently reported in textual 

43 form by individuals themselves through official reporting systems or social media posts, as well 

44 as by doctors in their medical notes. Automated extraction of ADEs allows us to identify these 

45 in large amounts of text as they are produced every day on various platforms. The text sources 

46 vary highly in structure and the type of language included which imposes certain challenges on 

47 extraction systems. This work investigates to which extent knowledge fusion models may 

48 overcome these challenges by fusing structured knowledge coming from ontologies with 

49 language models such as BERT. This is of great interest since the scientific community provides 

50 highly curated resources in the form of ontologies that can be utilized for tasks such as extracting 

51 ADEs from texts. 

52 Introduction
53 An adverse drug event (ADE) can be defined as “an injury resulting from a medical intervention 

54 related to a drug” [1]. ADEs as a major aspect of drug safety are objective of interest in the 
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55 pharmacovigilance efforts done by pharmacological companies as well as medical regulatory 

56 bodies. Negative experiences with certain medications are frequently reported in textual form 

57 by individuals themselves through official reporting systems or social media posts, as well as by 

58 doctors in their medical notes. The mentioned ADEs are often hidden in unstructured text, and 

59 the process of identifying and extraction of ADE entities from such text requires a significant 

60 amount of a medical professional’s time. Performing large-scale automatic extraction from a 

61 variety of text sources could help domain experts in quickly identifying new ADEs. However, this 

62 extraction process requires robust and highly accurate text mining methods.

63 In recent years, the natural language processing (NLP) field has made significant advancements 

64 with transformer-based language models such as BERT [2] or GPT [3]. These models have set 

65 new benchmarks in several NLP tasks. Furthermore, these models have been successfully 

66 applied to detect ADEs from textual documents [1, 4–6]. There are mainly two different types of 

67 texts mentioning ADEs such as reports or scientific publications written by medical professionals 

68 and reports provided by the patient or their relatives themselves. Social media texts differ from 

69 medical reports as they often contain informal language, slang, abbreviations, and 

70 colloquialisms. Additionally, these texts predominantly consist of opinions of people and contain 

71 fewer factual statements. Due to the continuously growing quantity and significance of social 

72 media texts,we place particular attention on analyzing patient-reported texts. In this work, we 

73 considered the CADEC corpus [5] that contains annotated texts from https://askapatient.com, 

74 which is a forum dedicated to collecting drug experiences and a corpus, here referred to as 

75 SMM4H [6], that comprises annotated Twitter postings. Moreover, we evaluate our models on 

76 three more corpora, namely PSYTAR [7], TAC [8], and ADE [9]. The CADEC, SMM4H, and 

77 PSYTAR were derived from sources where patients authored the texts themselves, whereas 

78 the ADE and TAC were composed by medical experts written in formal and scientific language. 

79 Further details on the corpora are given in Section Datasets.

80 It is important to highlight previous scientific initiatives that have aimed  to extract ADEs from 

81 texts. Sboev et al. [10] elaborated on the performance of various transformer models evaluated 
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82 on CADEC, where they reported an F1-score of 69.68% for strict matches (exact matching 

83 between true and predicted instances) using the XLM-Roberta-large model that ranked best 

84 among all considered models. Additionally, Portelli et al. [11] provided a performance overview 

85 of different transformer models on CADEC and SMM4H, in which they reported F1-scores of 

86 67.95% and 62.15%, respectively. Portelli et al. [11] reported that a SpanBERT-based approach 

87 yielded the best results. Furthermore, Ge et al. [4] offered a federated learning methodology for 

88 the ADE detection problem and evaluated it on both datasets. This approach was able to 

89 achieve for relaxed matches (partial overlap of true and predicted instances) an F1 of 84.55% 

90 on CADEC and 67.8% on SMM4H corpus. For strict matches, 65.16% and 32.69% were 

91 reported for the same corpora by the authors. Ramesh et al. [12] presented their solution to the 

92 2021 SMM4H shared task 1 that adopts the roBERTa base model to extract ADE mentions, 

93 which reached a relaxed F1-score of 50% on the final test set. Furthermore, Raval et al. [13] 

94 presented an interesting strategy by tackling text classification concerning ADEs as well as the 

95 actual ADE span extraction with a multi-task learning approach that used the T5 as a pre-trained 

96 encoder-decoder transformer model. They could reach the strict F1-score of 69.8% on CADEC 

97 and 71.3% on SMM4H corpus as well as the relaxed F1-scores of 79.1% and 75.1%, 

98 respectively. Another notable work that deserves mention is of Haq et al. [14] as they evaluated 

99 their NLP pipeline on the ADE corpus [9] as well as on CADEC and SMM4H. The end-to-end 

100 system proposed by Haq et al. was able to report strict macro-averaged F1-scores of 91.7%, 

101 78.7%, and 76.7% on the ADE, CADEC, and SMM4H corpora respectively. Furthermore, 

102 Miftahutdinov & Tutubalina [15] evaluated BERT on the PSYTAR corpus and were able to reach 

103 an accuracy of 83.07% during the task of normalizing the ADE entities to a controlled 

104 vocabulary. Analogously the authors reported accuracy scores of 88.84% on CADEC as well as 

105 89.64% on SMM4H during the entity normalization task. Finally, in the 2017 Text Analysis 

106 Conference (TAC) a team from the University of Texas Health Science Center at Houston was 

107 able to achieve a micro-averaged F1-score of 82.48% over all entities of the TAC corpus 

108 including ADE mentions. The participants from Houston were able to reach that score by utilizing 

109 a bi-directional LSTM model.
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110 Moreover, Stanovsky et al. [16] adopted a fusion learning approach by combining contextual 

111 knowledge from DBpedia with a Bi-LSTM. By doing so the authors reported an F1-score of 

112 93.4% on the CADEC corpus. Fusion model approaches are often able to increase performance 

113 in comparison with standalone transformer models. Zhang et al. [17] reported a performance 

114 increase from 73.5% F1-score using a BERT model to 75.5% adopting ERNIE as a fusion 

115 learning model evaluating however on the Open Entity dataset [18]. Liu et al. [19] published an 

116 alternative approach that demonstrates the advantages of transformer-based language 

117 encoding with contextual knowledge, Their K-BERT model achieved a notable increase of 0.04 

118 in the F1-score on a question-answering task.

119 In this study, we conducted a series of experiments to assess the effectiveness of knowledge 

120 fusion methods in combination with transformer-based NLP models for extracting ADEs from 

121 unstructured texts. We performed these experiments on a total of five diverse text corpora. To 

122 incorporate contextualized knowledge, we constructed a knowledge graph (KG) that included 

123 drug brand names and integrated a symptom ontology. This combination proved to be well-

124 suited for analyzing ADE-related texts. Additionally, we utilized  graph neural network (GNN) 

125 techniques, specifically a graph attention network, to learn representations of drug and symptom 

126 entities within the KG. These representations were subsequently integrated into transformer 

127 models through a fusion learning approach.  We compared our proposed model architecture 

128 against ERNIE, a well-established knowledge fusion language model, as well as two non-

129 knowledge fusion models, namely BERT and BioBERT.

130 Materials and Methodology
131 First, we introduce different datasets and knowledge resources used in our work and 

132 subsequently we present the knowledge fusion models that have been developed for the 

133 purpose of detecting ADEs from textual corpora.
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134 Datasets

135 CADEC
136 The CSIRO Adverse Drug Event Corpus (CADEC) [5] is an annotated text corpus published in 

137 2015 that consists of forum posts from askapatient.com and comes with 5 different types of 

138 annotations: ADE, Drug, Disease, Symptom, and Finding (any other clinical finding).

139

140 The whole CADEC corpus includes reports on 12 drugs such as  Diclofenac or  Lipitor. 

141 Diclofenac (https://go.drugbank.com/drugs/DB00586) is a non-steroidal anti-inflammatory drug 

142 that is used to treat pain and inflammation from different sources while Lipitor 

143 (https://go.drugbank.com/drugs/DB01076) lowers lipid levels and reduces the risk of 

144 cardiovascular diseases. The CADEC corpus is composed of 1,253 posts with 7,398 sentences 

145 in total, where 1,107 posts contain at least one ADE mention (see Table 1). This adds up to 

146 7,409 ADE spans with an average post length of six sentences. Finally, all posts were written 

147 between January 2001 and September 2013 by patients between 17 and 84. 

148 SMM4H
149 The second dataset used in this work is the SMM4H corpus [6], which is one of the datasets 

150 provided to the participants of the Social Media Mining for Health Applications (#SMM4H) 

151 Shared Task 2021 (https://healthlanguageprocessing.org/smm4h-shared-task-2021/). In this 

152 work, we focus on the corpus for Subtask 1b, which is about extracting ADE mentions from 

153 Twitter posts. We ignore Subtasks 1a which dealt with classifying Tweets containing an ADE 

154 and 1c which tackled the normalization of ADEs to MedDRA. 

155

156 There are differences between the SMM4H Subtask 1b corpus and the CADEC, while the 

157 biggest difference might be that CADEC has annotations of 5 different types whereas the corpus 

158 of Subtask 1b of SMM4H has only adverse drug reaction mentions tagged. The corpus is 

159 composed of 1,300 tweets with 1,800 annotated ADE spans (see Table 1). On average each 

160 tweet has 21 words and two sentences. 
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161

162
163
164 Fig. 1: CADEC and SMM4H example phrases that are enriched with contextual knowledge 
165 about drugs and symptoms. The sentence from CADEC “Very drowsy and tired and no pain 
166 relief at all.” can be equipped with symptom classes such as Drowsiness and Tiredness, which 
167 are subclasses of Neurological and physiological symptom class, as well as Pain, which is a 
168 subclass of Nervous system symptom.

169 PsyTAR
170 The third corpus considered in this work is the corpus presented by Zolnoori et al. [7]. The 

171 “Psychiatric Treatment Adverse Reactions” (PsyTAR) corpus contains 891 drug reviews from 

172 askapatient.com which is the same source as the previously mentioned CADEC corpus. The 

173 corpus contains reviews for four drugs (Zoloft, Lexapro, Cymbalta, and Effexor XR) and holds a 

174 total of 6009 sentences with 4813  ADE mentions (see Table 1). On average each post contains 

175 7 (6.7) sentences. Further note that the PsyTAR text corpus contains, besides ADE mentions, 

176 6 other annotation types, which are Withdrawal Symptoms (WDs), Signs/Symptoms/Illness 

177 (SSIs), Drug Indications (DIs), Drug Effectiveness (EF), and Drug Infectiveness (INF) and other, 

178 not applicable, mentions.

179 TAC
180 The TAC corpus [8] was assembled from drug labels and was used in the 2017 text annotation 

181 conference (TAC). The corpus consists of a set of drug labels in which ADE mentions among 
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182 other entities are annotated. In that conference participants were provided with the corpus and 

183 challenged to extract adverse drug reactions from these drug labels. This task was referred to 

184 as Task 1 within TAC. Each drug label contains on average 79 sentences and hence was split 

185 into sentences to fit it into the transformer models used in this work. Each sentence contains on 

186 average 33 (32.69) words. Besides ADE entities the corpus comes with annotations for Severity, 

187 Factor (additional aspects of the ADE entity), Drug Class, Negation, and Animal. 

188 ADE
189 The 5th and final corpus used was published by Gurulingappa et al. [9] and was constructed 

190 from 3000 MEDLINE case reports. After an exhaustive annotation and harmonization process 

191 that involved three annotators, the corpus holds 2972 reports. The final corpus comprises a total 

192 of 5063 drugs and 5776 ADE annotations distributed over 4272 sentences (see Table 1). On 

193 average each sentence contains 20 (20.09) words. Besides drug and ADE entities the corpus 

194 further contains annotations for Dosage. Other than some of the corpora previously introduced, 

195 the authors of the ADE corpus did not restrict the retrieved documents to a certain set of drugs 

196 but rather retrieved 30.000 documents and randomly selected the 3000 case reports that were 

197 further used for the annotation process.

Dataset Document class # Documents # Sentences # Drugs # ADEs

CADEC [5] Drug reviews 1,253 7,398 1,800 7,409

SMM4H Subtask 1b [6] Tweets 1,300 2,107 - 1,496

PsyTAR [7] Drug reviews 891 6,009 792 4,813

TAC Task 1 [8] Drug labels 101 3,154 249 13,795

ADE [9] Medline case 
reports

2,972 4,272 5,063 5,776

198 Table 1. Overview of the ADE datasets used in this study. Note that the SMM4H corpus does 
199 not contain any drug annotations.

200 Knowledge Bases
201 In our work, we explored the enhancement of transformer models by incorporating contextual 

202 knowledge through fusion models to improve the detection of adverse drug events. We utilized 
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203 two knowledge resources: one for encoding knowledge about symptoms and the other for 

204 modeling the domain of drug space. 

205 Symptom Ontology
206 The symptom ontology (SYMP) is a publicly available ontology developed in the context of the 

207 Gemina system [20]. The creators designed the ontology while understanding a symptom as a 

208 “perceived change in function, sensation or appearance reported by a patient indicative of a 

209 disease” [20]. The ontology consists of 860 classes as well as a total of 1,586 cross-references 

210 to other databases like UMLS ( https://www.nlm.nih.gov/research/umls/index.html) or ICD ( 

211 https://www.who.int/standards/classifications/classification-of-diseases). Furthermore, the 

212 ontology comprises 5,445 axioms and class annotations such as definitions, synonyms, and 

213 labels of symptoms. We use the symptoms ontology to provide context knowledge about 

214 symptoms. An example of how a model can enrich sentences with symptom classes is shown 

215 in Fig. 1.

216 Drug Resources
217 Contextual knowledge about drugs and how they function in the human body can be valuable 

218 for tackling the task of ADE detection. We decided to assemble such knowledge in a structured 

219 way and store it in the form of an ontology. The resulting ontology inherits information from the 

220 ATC ontology and is further enriched with selected information about drugs. Fig. 1 illustrates an 

221 example of how a model can enhance sentences by incorporating drug resource information. 

222 Fig. 1 depicts the utilization of contextual knowledge exemplarily for CADEC and SMM4H but 

223 works equally for the other three corpora. 

224
225 We used three different resources to collect various information on approved drugs. Firstly, the 

226 DrugBank database (version 5.1.9) [21] was used to extract drug descriptions, synonyms, and 

227 product names, as well as information about drug targets. Fortunately, DrugBank provides 

228 cross-references to the anatomical therapeutic chemical classification system (ATC), which 

229 divides active ingredients into classes based on anatomical properties like the organ they act 
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230 on, chemical properties, as well as therapeutic properties [22]. DrugMechDB [23] is another drug 

231 resource, which contains information about the mechanism of action of a drug in the body. This 

232 mechanism is represented as a graph where each node can be of several types (such as 

233 disease, drug, protein, or cell). A sub-graph was taken from this graph to obtain information 

234 about the proteins that are involved in the drug mechanism, which we added to our ontology. 

235 Furthermore, since this ontology is used to extract drug entities from text based on the drug 

236 product names it is important to add as many brand names to the ontology as known. To 

237 accomplish that, the website drugs.com was a highly useful resource for adding brand names 

238 for each drug in ATC. 

239

240 Finally, all of the collected knowledge on drugs was added to the ATC ontology at its respective 

241 position and stored as an OWL (web ontology language) file. The resulting ontology, in this work 

242 referred to as DRUGO, provides knowledge about drug names, definitions, synonyms, drug 

243 targets, and information about proteins involved in the drug’s action mechanism. The final 

244 DRUGO ontology comprises a total of 6,441 classes.

245 Detection of Adverse Drug Events

246 Our experimental strategy to create models that can detect ADEs in texts builds upon knowledge 

247 fusion models that integrate transformer-based models with knowledge graph embeddings. As 

248 transformer-based models, we focus on using BERT [24] and BioBERT [25]. These models are 

249 also used to create baseline results. Furthermore, we experiment with multiple fusion 

250 approaches such as ERNIE and the graph concat model, which are introduced in the next 

251 sections.

252 Knowledge Fusion
253 To incorporate the information from the aforementioned knowledge bases (DRUGO and SYMP) 

254 into the language models, a numerical representation is necessary that effectively captures the 

255 encoded knowledge. We experimented with two approaches, the first one uses the well-
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256 established TransE method [26] to embed the underlying graphs of the two ontologies into a 

257 vector space. Whereas, in the second approach, a GNN was incorporated for this task. More 

258 specifically a graph attention network (GAT) was trained with a node classification task, which 

259 provided the final node-level embeddings for the integration in the language model. 

260
261 A total of three GATs were trained on the DRUGO and SYMP ontologies, as well as on an 

262 ontology generated by combining SYMP and DRUGO. In this approach, ontologies are treated 

263 as graphs, without taking into account any logical axioms, similar to other ontology embedding 

264 approaches. All GATs have been trained identically by initially considering the ontologies as 

265 graphs and assembling a set of nodes (V) from the classes of the ontology and a set of edges 

266 (E) from the relations between the classes. Specifically, we derived E by treating every 

267 ‘subClass’ property as an edge. As a result, we obtained a circle-free, fully connected, directed 

268 graph with 6,441 nodes and 6,440 edges for DRUGO, 860 nodes and 859 edges for SYMP, 

269 and, 7301 nodes and 7300 edges for the combined KG of DRUGO and SYMP. 

270

271 In the following step, initial representations for all nodes were generated. This was performed 

272 by using the annotation properties of each ontology class/node and embedding these using a 

273 pre-trained language model. For all graphs, this was done by using either BERT or BioBERT, 

274 depending on the exact experimental setup. This lead to the representation of each node as a 

275 768-dimensional real vector. Graphs derived from DRUGO and SYMP provided a top-level 

276 classification with 14 classes, enabling the assignment of each node to one of these classes 

277 based on its position in the graph. The third graph obtained from combining the two ontologies 

278 yielded 28 classes. 

279

280 Finally, a GNN was trained to predict the assigned class of each node in the graph. Note that in 

281 our work, we specifically favored GAT over other GNN architectures because of its capability for 

282 self-attention. The self-attention mechanism in GAT allows nodes to attend to the features of 

283 their neighboring nodes. With the usage of GAT, we would like to address the issue that certain 
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284 classes of the ontology may lack valuable information due to a lack of class annotations. As a 

285 result, nodes can assign lower weights to neighbors without valuable information due to the 

286 attention mechanism [27]. The aforementioned methodology of generating knowledge graph 

287 embeddings corresponds to what Yang et al. [28] refer to as cascaded model architecture. In 

288 this architecture, initial node features are generated using language models and then further 

289 processed by GNNs [28].

290 Integrating Transformer-based Models with GNNs
291 We propose a knowledge fusion model to combine node embeddings learned via a graph neural 

292 network with a transformer-based model. We begin by taking an input sentence and using a 

293 rule-based tagger to identify symptoms and/or drug entities depending on the given knowledge 

294 graph. The KG can be either SYMP, DRUGO, or a combination of both. The tagged input 

295 sequence has the same length as the original input sequence but holds additional information 

296 for those input tokens that were tagged by the rule-based annotator. Furtheron, the tagged input 

297 sequence is passed through a GNN and returns a vector that holds zeroes for tokens that do 

298 not belong to any tagged entity and the corresponding node embedding for tokens that were 

299 tagged by the previous tagger. Subsequently, the resulting vector  is aligned with the 

300 representation of the transformer (by adding zeros wherever a padding token was added or 

301 where words were split into word pieces). This aligned vector  is then concatenated with  to 

302 create a final knowledge-enriched representation  of the input sequence. This final 

303 representation is further passed into a linear layer, which serves as the classification head (Fig. 

304 2). 

305

306 Additionally, we set the GNN weights as fixed by default, resulting in the usage of GNN as a 

307 lookup table within the underlying embedding space. We refer to this architecture as a graph 

308 concat model. Nevertheless, we have implemented an additional model variant called the graph 

309 concat adaptive weights model, in which we treat the GNN weights as trainable parameters that 
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310 are adjusted during the training of the entire model. Fig. 2 illustrates the architecture of the graph 

311 concat model without (orange box) and with (purple box) adaptive GNN weights. 

312

313 Furthermore, instead of using the entire graph as in the setting presented above, we explored 

314 an additional GNN configuration where only a subgraph of the knowledge graph is used and 

315 passed through the GNN. This subgraph is constructed from the k-hop neighborhood of the 

316 tagged entity. Finally, instead of concatenating the node representation to the transformer 

317 representation, a graph pooling layer (concatenation of global max and average pooling) is 

318 added and its output is concatenated to the transformer representations. The just presented 

319 architecture will be noted as graph concat (graph concat AW for adaptive GNN weights and 

320 graph concat AWS for graph concat with adaptive weights and subgraph modification) from now 

321 on. 

322
323 Fig. 2. The architecture of the graph concat model with fixed and trainable GNN weights.
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324 Compared Method: ERNIE
325 Enhanced Language Representation with Informative Entities (ERNIE) is a fusion model 

326 introduced by Zhang et al. [17]. However, ERNIE handles the knowledge injection differently 

327 than other models. Instead of calculating the representation of context knowledge within ERNIE 

328 itself, it is computed  separately. In ERNIE, TransE is utilized to generate and retrieve 

329 embeddings for the knowledge. To have a fair comparison, we also adopted this approach in 

330 our work. For a more detailed explanation of the working principle of ERNIE, we refer to the 

331 original study published by Zhang et al. [17].

332 The implementation used in this work is obtained from the GitHub repository 

333 https://github.com/thunlp/ERNIE , which provides a pre-trained ERNIE model.

334 Experimental Setup and Training Strategy
335 To perform an unbiased final evaluation on a completely independent test set, we randomly 

336 chose and reserved 20% from each dataset. The remaining 80%  of each dataset was divided 

337 into a train and validation set, with a ratio of 4-to-1. This means that 64% of the entire dataset 

338 served as a training set used to train the model, while the remaining 16% was used as the 

339 validation set hyperparameter tuning. After hyperparameter tuning, we trained the final model 

340 by combining both training and validation sets, which were used to evaluate the performance of 

341 the aforementioned independent test set. Furthermore, to have maximum comparability along 

342 all the different model architectures, those splits were consistently applied throughout all 

343 experiments.

344

345 Each experiment conducted in our study was constructed from the four categories listed in Table 

346 2. The categories encompass the model architecture, the pre-trained transformer-based 

347 language model, the ADE text corpus, and the contextual knowledge resource. The selected 

348 model architectures further categorize the results into ERNIE, graph concat model with fixed 

349 GNN weights, graph concat model with adaptive GNN weights, and graph concat model with 

350 adaptive GNN weights and k-hop subgraph. Additionally, baseline experiments are considered 
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351 as a separate category that only uses the pre-trained language models BERT and BioBERT. It 

352 is important to note that we utilized BERT as a general language model to assess the 

353 performance achievable by a transformer-based encoder that was not pre-trained on domain-

354 specific documents. On the other hand,  BioBERT is a domain-specific model that was pre-

355 trained on biomedical documents [25]. All models were evaluated on all five ADE text corpora. 

356 Finally, each model was equipped with either contextual knowledge about drugs, symptoms, or 

357 both. In addition to the 10 baseline experiments, the various options for experiment 

358 configurations resulted in a total of 115 experiments. 

359
Experiment categories Values
Knowledge fusion model architecture ERNIE (not used in combination with pre-

trained transformer), 
Graph concat model with fixed GNN 
weights,
Graph concat model with adaptive GNN 
weights, and
Graph concat model with adaptive GNN 
weights and k-hop subgraph

Pre-trained language model BERT and BioBERT
ADE corpora SMM4H, CADEC, PSYTAR, TAC, and ADE
Knowledge resource SYMP, DRUGO, and DRUGO + SYMP

360 Table 2: Overview of experiment categories. Their combination results in a total of 115 
361 experiments in addition to 10 baseline experiments.
362
363 To ensure unbiased and comparable results, the same overall strategy for training, validation, 

364 hyperparameter tuning, and testing was employed in each experiment. The optimal 

365 hyperparameters were deduced by performing Bayesian hyperparameter optimization [29]. To 

366 determine the optimal hyperparameters for each model, multiple models with different 

367 hyperparameter configurations were trained on the training set. These models were then 

368 evaluated on the validation set, to maximize the F1-Score. The cross-entropy loss function was 

369 employed for all models in the context of NER. The AdamW [30] optimization algorithm was 

370 chosen to adjust the model’s weights during training. Finally, the optimal hyperparameters were 
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371 used to train models on the combination of training and validation sets. These new models were 

372 then tested on held-out, independent test sets of each corpora.

373 Evaluation Scheme
374 We used the precision, recall, and F1 measures to assess the performance of models. Each 

375 dataset was labeled in the IOB scheme with which each token of a sequence is labeled either 

376 as outside (O) of a named entity, as the beginning (B), or as an inside (I) token of a named 

377 entity. Hence, the classification head of each of the models had three output neurons and the 

378 NER problem was formulated as a classification task with three classes. However, we are 

379 interested in ADE spans that can consist of multiple tokens, therefore, for the final evaluation 

380 the IOB labeling was discarded, and the sequences were aggregated into real ADE mentions. 

381 The final scores were then calculated by taking into account the exact overlap of the full spans 

382 of ADE mentions. 

383 Implementation
384 The experiments conducted in this study were implemented using PyTorch and PyTorch 

385 Lightning. An essential component are transformer-based models for which we used the 

386 Huggingface transformers library. To perform hyperparameter tuning Optuna was chosen as the 

387 library. Finally, for processing and handling the considered datasets we used Pandas and 

388 Spacy. The baseline models as well as the graph concat model experiments are using BERT 

389 and BioBERT, which come in different sizes and configurations. We used uncased BERT,  

390 commonly known as  ‘bert-base-uncased’, which contains a total of 110M parameters. The 

391 BioBERT model is specified as ‘dmis-lab/biobert-v1.1’, which has the equivalent amount of 

392 parameters as ‘bert-base-uncased’. The model training and testing was performed using 

393 Nvidia’s V100 and A100 GPUs.
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394 Results
395 We evaluated the aforementioned five different model architectures1 on each of the ADE datasets. 

396 Table 3 provides an overview of the final evaluation results providing the F1-score obtained by 

397 applying the models within a certain configuration on the independent test sets. Here the 

398 configuration refers to the choice of context knowledge resource and underlying transformer-based 

399 model, where applicable.  Please take note that the graph concat k-hop subgraph experiments 

400 were omitted from Table 1 since this architecture did not achieve the top ranking on any of the 

401 corpora. For a comprehensive overview of results including this architecture as well as precision 

402 and recall measures for all models, we refer to Supplementary Table 1.

403
404
405
406
407

Model Knowledge 
resource

F1 (in %) on ADE Corpora

CADEC SMM4H PSYTAR ADE TAC

BERT - 71.84 62.30 70.02 75.37 92.06

BioBERT - 70.81 61.95 68.80 79.42 93.87

ERNIE + TransE DRUG 71.84 63.23 70.63 75.44 92.57

ERNIE + TransE DRUGO_SYMP 69.32 61.76 70.95 76.04 92.55

ERNIE + TransE SYMP 68.70 61.32 71.40 76.58 92.06

Graph concat + BERT DRUG 70.45 62.65 71.38 79.79 93.80

Graph concat + BERT DRUGO_SYMP 70.70 65.16 72.32 78.84 93.49

Graph concat + BERT SYMP 71.05 62.83 72.03 78.13 93.87

Graph concat + BioBERT DRUG 70.28 61.51 68.24 76.73 94.15

Graph concat + BioBERT DRUGO_SYMP 69.57 62.75 70.05 78.90 93.88

Graph concat + BioBERT SYMP 69.40 62.48 69.32 78.59 93.31

Graph concat AW + 
BERT

DRUG 70.55 63.96 72.50 79.03 93.02

Graph concat AW + 
BERT

DRUGO_SYMP 71.82 63.99 71.38 79.54 93.87

Graph concat AW + 
BERT

SYMP 70.59 64.22 72.02 78.4 93.22

Graph concat AW + 
BioBERT

DRUG 71.23 61.05 70.08 78.11 93.75

Graph concat AW + 
BioBERT

DRUGO_SYMP 68.87 62.12 69.62 78.62 93.78

Graph concat AW + 
BioBERT

SYMP 70.16 57.78 69.00 76.01 93.45

1 Baseline, ERNIE, Graph concat, Graph concat AW, Graph concat AWSUB
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408 Table 3: Final evaluation results on test set from all experiments. F1 stands for F1-score. All 
409 scores are strict scores and given in %. The best score on each corpus is given in bold. 
410 AW=adaptive weights
411
412 When examining the results on the CADEC corpus (Table 3), one may observe that the best 

413 baseline experiment utilizing BERT already demonstrates a strong performance in terms of the 

414 F1-score (71.84%). None of the other models evaluated on CADEC were able to improve upon 

415 this score. However, ERNIE equipped with contextual knowledge about drugs achieved the 

416 same score of 71.84%.  Additionally, the graph concat AW model incorporated with drugs and 

417 symptom knowledge came quite close with a score of 71.82%.

418

419 The performance of the models on the SMM4H corpus, in general, was  lower than on all other 

420 corpora. The difference of performance can already be observed in the results of the baseline 

421 experiments that show a noticeable gap  of almost 8-20% points. Furthermore, ERNIE, equipped 

422 with prior knowledge about drugs, was able to perform better on SMM4H with an F1-score of 

423 63.23% than the best baseline experiment using BERT, which reached an F1-score of 62.3%. 

424 Moreover, the graph concat AW model with contextual knowledge about symptoms adopting 

425 BioBERT as the underlying transformer was also able to report better F1-scores (64.22%) than 

426 the baseline experiments and better than the best-performing ERNIE model (Table 3). Finally, 

427 the graph concat model with fixed GNN weights using BERT as its underlying pre-trained 

428 transformer while equipped with joint prior knowledge about symptoms and drugs reports the 

429 overall best score on SMM4H with an F1-score of 65.16%. 

430
431 On PSYTAR, the ERNIE model equipped with prior knowledge about symptoms, reaching an 

432 F1-score  of 71.40%, was able to slightly improve the performance of the BERT baseline 

433 experiment that was able to achieve an F1-score of 70.02%. The graph concat model using 

434 BioBERT and drugs and symptoms knowledge was able to improve this score to 72.32% F1-

435 score. The graph concat AW model with BERT and the drug knowledge graph further improves 

436 this score to 72.50% F1-score. 

437
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438 On the ADE corpus, the ERNIE model was not able to reach the score reported by the best 

439 baseline model BioBERT (79.42% F1-score). However, the graph concat AW model using BERT 

440 and adopting prior knowledge about drugs and symptoms was able to slightly increase this score 

441 to 79.54% F1-score. The graph concat model with fixed  GNN weights while also using BERT 

442 as its transformer and equipped with prior knowledge about drugs further improved this score 

443 to 79.79% F1-score. 

444

445 Finally, on the TAC corpus, all models considered in the results were able to score F1-scores 

446 above 90%. The best baseline model, BioBERT, was able to reach an F1-score of 93.87%. The 

447 ERNIE and the graph concat AW model  were not able to outperform the best baseline model. 

448 However, the graph concat model with fixed GNN weights using BioBERT as its transformer 

449 and equipped with contextual knowledge about drugs was able to increase upon the baseline 

450 performance achieving the highest F1-score of 94.15% on TAC corpus.  

451

452 We performed an additional analysis to determine the different attributes of each of the 5 corpora 

453 that could shed some light on explaining the modeling performance. Table 4 depicts the results 

454 of this corpus analysis comprising three measures. Firstly, the wordpiece diversity, which was 

455 assembled by counting how many unique wordpieces could be found in each sentence of a 

456 corpus normalized by the total amount of wordpieces in a sentence. The second measure 

457 calculates the sentence length on wordpiece level and the number of hits in the DRUGO_SYMP 

458 knowledge graph. A hit is defined as an entity in the sentence corresponding to a node in the 

459 knowledge graph. All values presented in Table 4 are averaged over all sentences in the 

460 corresponding corpus. The CADEC corpus is a clear outlier in terms of the mean number of KG 

461 hits, the mean sentence length, and wordpiece diversity. CADEC is the only corpus where we 

462 did not observe any advantage of using a knowledge fusion model in terms of F1-score. 

463

Corpus Vocabulary/M
odel

Mean 
wordpiece 
diversity

Mean sentence 
length (in 

wordpieces)

Mean 
number of 

KG hits

Difference of best 
model to baseline 
(in F1 % points)

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 15, 2024. ; https://doi.org/10.1101/2024.02.14.24302829doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302829
http://creativecommons.org/licenses/by/4.0/


CADEC BERT 0.74 113.87 4.81 -0.02 

CADEC BioBERT 0.75 121.42 4.81 -0.02 

ADE BERT 0.94 33.21 1.45 0.12 

ADE BioBERT 0.94 35.56 1.45 0.12 

PSYTAR BERT 0.93 22.74 1.13 2.48 

PSYTAR BioBERT 0.93 23.75 1.13 2.48 

TAC BERT 0.81 47.36 1.85 0.28 

TAC BioBERT 0.82 52.93 1.85 0.28 

SMM4H BERT 0.91 30.46 1.30 2.86 

SMM4H BioBERT 0.91 31.81 1.30 2.86 

464 Table 4: Corpora characterization in terms of average wordpiece diversity, average sentence 
465 length, and average number of knowledge graph hits.

466 Discussion
467 Extracting meaningful insights about ADEs from unstructured text offers the chance to enhance 

468 our knowledge of ADEs and in the long run contributes to drug safety. Specifically, the extraction 

469 of ADEs from patient-reported texts allows for gathering great amounts of negative drug 

470 experiences since vast amounts of data are published every day on social media. In our work, 

471 we evaluate various knowledge fusion modeling approaches on the ADE extraction task using 

472 five relevant text corpora, namely CADEC, SMM4H, PSYTAR, TAC, and ADE. Additionally, we 

473 utilized a rich knowledge base in terms of drugs and symptoms, which provided valuable 

474 contextual knowledge to these models. Knowledge graph embeddings derived from GNNs have 

475 ensured a knowledge representation well suited for the fusion with linguistic representations 

476 obtained using transformer-based large language models. The final results on independent test 

477 sets showed that using models with contextual knowledge can help to gain performance on ADE 

478 corpora.

479

480 We observed a significant variation in performance scores and model behavior across different 

481 datasets. There was no clear advantage of adopting a knowledge fusion methodology over the 
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482 baseline model BERT on the CADEC dataset. Using graph concat adaptive weights model 

483 resulted in an F1-score quite similar to the BERT and ERNIE model. However, on the SMM4H 

484 corpus, we observed a performance increase from top-scoring baseline (BERT) to ERNIE to the 

485 graph concat model. BERT reached an F1-score of 62.30%, and equipping it with contextual 

486 knowledge about drugs and symptoms raised this score to 65.16%. When examining the results 

487 for PSYTAR, the top-performing baseline model (BERT) achieved an F1-score of 70.02% for 

488 extracting ADE entities. ERNIE was able to improve this score by approximately 1.5%. By 

489 enabling BERT to utilize contextual knowledge about drugs through the graph concat 

490 architecture, the score further increased to 72.5%. When considering the ADE corpus, there 

491 was a notable difference in scores between baseline models (75.37% for BERT and 79.42% for 

492 BioBERT). None of the ERNIE models were able to match the baseline score achieved by 

493 BioBERT. However, the graph concat model with fixed GNN weights that utilizes BERT and 

494 contextual knowledge about drugs was able to slightly increase the baseline performance to a 

495 79.79% F1-score. Similarly, in the case of the TAC dataset, BioBERT was able to reach a high 

496 F1-score of 93.87% that was not surpassed  by any ERNIE model. The graph concat model was 

497 able to slightly increase the baseline performance on TAC  to an F1-score of 94.15%.

498
499 There was no clear indication of whether the graph concat models work better with BERT or 

500 BioBERT as the underlying transformer model. However, we  observed that on CADEC, utilizing 

501 BioBERT in knowledge fusion could  improve the baseline BioBERT performance (BioBERT: 

502 70.81% F1 and 71.23% F1 graph concat with adaptive GNN weights and contextual knowledge 

503 about drugs), whereas this could not be observed  for BERT (71.84% F1 is best score on 

504 CADEC).  When considering the usefulness of knowledge resources, it is noteworthy to mention 

505 that all models that outperformed the baseline experiments relied either on DRUGO or 

506 DRUGO_SYMP contextual knowledge. Based on this observation, it suggests that contextual 

507 knowledge about drugs may hold greater importance  for the knowledge fusion models 

508 compared to knowledge about symptoms. The trend was apparent in both the graph concat 

509 model and ERNIE. 
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510

511 As mentioned, our observations indicate that the effectiveness of knowledge fusion models 

512 varies across different corpora.  We did not observe any performance improvement using 

513 knowledge fusion models on the CADEC corpus. This aligns with the findings in Table 4, which 

514 highlights CADEC being an outlier in the textual analysis in terms of wordpiece diversity, 

515 sentence length, and KG hits. Further investigation is necessary to determine the causal 

516 relationship between these metrics and the potential improvement of pure linguistic models with 

517 knowledge fusion. However, based on our interpretation of the results, it can be reasoned that 

518 knowledge fusion models are most beneficial for relatively short text, such as postings found in 

519 SMM4H and PSYTAR (<24 wordpieces on average in PSYTAR and <32 in SMM4H). Notably, 

520 the CADEC corpus stands out in terms of the number of hits in the knowledge graph. This 

521 suggests that an excessive amount of contextual knowledge may not contribute positively to the 

522 model's accuracy. Liu et al. [19] introduced the concept of knowledge noise (KN), which refers 

523 to the phenomenon that an excess of context can disrupt the original meaning of the sentence. 

524 However, further investigation is needed to find whether during knowledge fusion KN played a 

525 role in the lack of  performance improvement on CADEC. Additionally, since PSYTAR and 

526 SMM4H are derived from Twitter, it is reasonable to assume that these corpora deviate from 

527 formal, scientific English. In this context, knowledge fusion can potentially compensate for the 

528 informality in language and for the lack of linguistic context by providing valuable information on 

529 specific ADEs. 

530
531 The current workflow infuses context knowledge into models for the words that are identified as 

532 drugs or symptoms by a rule-based NER tagger. For this purpose, we preferred a rule-based 

533 system to avoid false positives in terms of context knowledge. However, a more advanced 

534 machine learning-based tagger with a better performance may produce even higher results, 

535 which we will explore in our future work. One possible machine learning-based model for such 

536 an approach would be Med7 [31], which reports good results in terms of F1-score on the task of 

537 extracting drug entities from text. Although the used knowledge resources have shown 
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538 performance gains while using the knowledge fusion approach, they are far from being complete 

539 and perfect. Encoding even more knowledge about drugs and symptoms could improve the 

540 current models of ADE detection. 

541

542 Although this study performed a comprehensive analysis, it is important to note existing 

543 limitations. Further knowledge fusion approaches such as K-BERT, K-Adapters, or SKILL [32–

544 34] are worth exploring in future experiments for evaluating knowledge fusion models on the 

545 ADE extraction task. Some of the training datasets used in this work comprise only a relatively 

546 small number of postings, around 1,000 for both the SMM4H and CADEC corpora. It is well-

547 known that deep learning-based NLP models generally tend to perform better when trained on 

548 larger datasets. Therefore, to further enhance the performance of the knowledge fusion models 

549 employed in this study, having access to large and diverse corpora of patient-reported texts that 

550 include annotated ADE entities, particularly in the style of CADEC, would be beneficial. 

551 Consequently, future efforts should be directed toward creating, collecting, and annotating a 

552 comprehensive ADE corpus of diverse texts, which could contribute to the advancement of this 

553 research. 

554 Conclusion
555 The presented work elaborates on the approach to enriching transformer models such as BERT 

556 and its relative, BioBERT, with contextual knowledge about the texts fed into them. Two types 

557 of prior knowledge on drugs and symptoms were considered in this work. The drug knowledge 

558 resource provides rich, structured knowledge about drugs and their working principles and was 

559 especially created for this work. We conducted a great number of experiments and reported the 

560 combinations of transformer models, knowledge fusion architectures, and context knowledge 

561 that yielded the highest F1-scores. The presented results allow the conclusion that contextual 

562 knowledge encoded suitably and provided to a transformer model is a valid approach to improve 

563 performance in an NER task scenario. Also observable is that this prior knowledge is especially 

564 of great use when the data at hand is rather unstructured and composed of short texts as is the 
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565 case in the SMM4H and PSYTAR corpus. Finally, one can conclude that knowledge resources 

566 that provide well-structured domain knowledge, encoded as knowledge graphs respectively 

567 ontologies  can provide valuable context for transformer models.  Graph neural networks have 

568 shown to be a well-suited method to derive a numerical representation of the ontologies used in 

569 this work capable of being concatenated with the linguistic representation created by a 

570 transformer model. The architecture of the graph concat model with and without adaptive GNN 

571 weights implemented in this work has shown to be advantageous compared to pure 

572 transformers (BERT and BioBERT) as well as to another, well-established, knowledge fusion 

573 model, ERNIE. Hence, that architecture deserves additional development to further improve its 

574 performance on tasks such as ADE extraction in structured and unstructured texts. Huge 

575 potential lies in the idea of fusing large language models with appropriate domain knowledge 

576 and definitively deserves further research that includes whether the presented approach 

577 generalizes on tasks further than detecting adverse drug events in texts. 

578 Availability
579 The code is available in the repository: https://github.com/SCAI-BIO/adr-detection-with-

580 knowledge-fusion.
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585 Figure Captions
586 Fig. 1. CADEC and SMM4H example phrases that are enriched with contextual knowledge 
587 about drugs and symptoms. The sentence from CADEC “Very drowsy and tired and no pain 
588 relief at all.” can be equipped with symptom classes such as Drowsiness and Tiredness, which 
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589 are subclasses of Neurological and physiological symptom class, as well as Pain, which is a 
590 subclass of Nervous system symptom.
591
592 Fig. 2. The architecture of the graph concat model with fixed and trainable GNN weights.
593
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