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Abstract1

Over the last decade, a plethora of blood-based DNA methylation biomarkers have been2

developed to track differences in ageing, lifestyle, health, and biological outcomes. Typ-3

ically, penalised regression models are used to generate these predictors, with hundreds4

or thousands of CpGs included as potential features. However, in such ultra high-5

dimensional settings, the effectiveness of these methods may be reduced.6

Here, we introduce Related Trait-based Feature Screening (RTFS), a method for per-7

forming CpG pre-selection for incident disease prediction models by utilising associations8

between CpGs and health-related continuous traits. In a comparison with commonly used9

CpG pre-selection methods, we evaluate resulting downstream Cox proportional-hazards10

prediction models for 10-year type 2 diabetes (T2D) onset risk in Generation Scotland11

(n=18,414). The top performing models utilised incident T2D EWAS (AUC=0.881,12

PRAUC=0.279) and RTFS (AUC=0.877, PRAUC=0.277). The resulting models also im-13

prove prediction over a model using standard risk factors only (AUC=0.841, PRAUC=0.194)14

and replication was observed in the German-based KORA study (n=4,261)15

RTFS is a flexible and generalisable framework that can help to refine biomarker16

development for incident disease outcomes.17

Introduction18

Numerous studies have shown that levels of DNA methylation (DNAm) at various CpG19

sites can correlate with health-related traits, such as body mass index (BMI), smoking20

status [1], and incident diseases [2, 3, 4]. DNAm is an epigenetic modification whereby21

methyl groups are dynamically attached and removed at various genomic positions (often22

on the cytosine of a C-G dinucleotide; CpG) throughout an individual’s lifetime. Blood-23

based DNAm is of particular interest within cohort studies as its relatively non-intrusive24

sample procedure makes it potentially suitable for clinical biomarker development, en-25

abling the development of risk prediction models (e.g. to predict incident disease).26

A major challenge in developing these prediction models is the selection of relevant27
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CpG sites for use as inputs. DNAm is commonly (and affordably) ascertained through the28

use of arrays including the Illumina Infinium HumanMethylation450 and EPIC arrays,29

which capture methylation information for ∼450,000 and ∼800,000 CpG sites, respec-30

tively [5, 6]. In contrast, cohort sizes tend to be limited to a few thousand individuals.31

This leads to an ultra high-dimensional setting in which the number of features or pre-32

dictors (p) is much larger than the number of observations (n).33

A typical approach to utilising high-dimensional data involves the application of pe-34

nalised regression models, both for feature selection and prediction (see e.g. [1, 7, 8]).35

However, in ultra high-dimensional settings, the effectiveness of penalised regression may36

be reduced [9, 10, 11]. A two-stage process has previously been suggested to address this,37

where a pre-selection (screening) step is first applied to the data, before fitting penalised38

regression models [12, 10]. The purpose of the pre-selection is to broadly filter out irrele-39

vant features to reduce the number of potential predictors to a size suitable for penalised40

regression (typically of polynomial order with respect to the sample size [11]).41

One commonly used method for CpG pre-selection is variance-based filtering, whereby42

the top k CpGs are retained after ranking them by decreasing variance, where k is arbi-43

trarily chosen. This method helps to remove invariant CpG sites, but its performance may44

be problematic, particularly with small effect and sample sizes [13]. Other approaches,45

based on the correlation of each feature with the outcome, have been proposed for con-46

tinuous (e.g. [12]) and time-to-event data (e.g. [14]), but some of these may introduce47

problems related to post-selection inference [15] if the same data is used for screening and48

model fitting. An alternative is to use domain knowledge (e.g. from external data) to49

inform the screening. One such method involves pre-selecting CpGs that have previously50

shown associations with the outcome in Epigenome-Wide Association Studies (EWAS).51

If the associations have been found in an independent dataset, the chance of noise from52

spurious correlations with the outcome is reduced. However, the pre-selection is lim-53

ited to marginal associations between each CpG site and the outcome and availability of54

EWAS results varies depending on the outcome. Another strategy, that can bypass the55

need for feature pre-selection, is the application of principal components analysis (PCA;56
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or other dimensionality reduction techniques) to obtain a low-dimensional set of features57

(e.g. the first 100 principal components) to be used as inputs. The latter has been shown58

to potentially improve out-of-sample prediction in CpG-based models [16].59

Here, we propose a Related Trait-based Feature Screening (RTFS) pipeline, using60

information about continuous traits that are related to the outcome of interest to perform61

feature pre-selection. For example, to predict time-to disease incidence, we selected a62

range of measurements (e.g. BMI, smoking, alcohol consumption) typically related to a63

broad set of health outcomes. Feature pre-selection can be then performed by applying64

e.g. penalised regression on the continuous traits, with lower sample size requirements65

than time-to-event data [17, 18, 19]. Power calculations for time-to-event data typically66

depend on the number of case events per feature, which is often small compared to the67

overall sample size. This is in contrast to the corresponding calculations for continuous68

traits which are based on the total number of data points per feature.69

We apply RTFS and other popular CpG pre-selection methods to the Generation70

Scotland (GS) [20] cohort (n = 18, 414), one of the world’s largest studies including71

genome-wide DNAm data paired with linkage to electronic health records (EHR). We72

compare the performance of the different pre-selection methods as well as dimensionality73

reduction using PCA in the development of epigenetic scores (EpiScores) - weighted sums74

of CpG methylation values - used to predict time to incident type 2 diabetes (T2D). We75

show that RTFS is competitive with the top existing EWAS-based filtering approach,76

leading to an increase in predictive performance above standard T2D risk factors. We77

also show the predictive performance increases of the EpiScores compared to genetic risk78

factors using a T2D polygenic risk score (PRS). Finally, we validated the performance of79

resulting EpiScores derived from RTFS and incident T2D EWAS-based filtering in the80

KORA S4 cohort [21]. All analyses and results are reported in line with the TRIPOD81

checklist [22] for reproducibility purposes and can be found in Supplementary File 1.82

Analysis scripts are provided on GitHub at https://github.com/marioni-group/rtfs.83
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Results84

RTFS85

The proposed RTFS pipeline aims to aid feature pre-selection in ultra high-dimensional86

settings when developing prediction models for incident disease risk. We focus on time-87

to-event outcomes, but a similar pipeline could be applied to other types of outcomes88

(e.g. binary or counts). RTFS borrows information from a set of traits that are related89

to the outcome — or a broad set of outcomes — of interest. The process is illustrated in90

Figure 1. First, (linear) lasso regression models are trained with each of the (continuous)91

traits as the outcome. The resulting RTFS pre-selected CpG set consists of the union of92

CpG sites retained from any of the continuous trait models. Here, nineteen continuous93

traits were included in the RTFS pipeline: age, glucose, total cholesterol, high-density94

lipoprotein (HDL) cholesterol, sodium, potassium, urea, creatinine, BMI, waist-hip ratio,95

body fat percentage, systolic blood pressure, diastolic blood pressure, heart rate, forced96

expiratory volume (FEV), forced vital capacity (FVC), alcohol consumption, smoking97

and general cognitive ability. All of these were recorded at baseline (see Methods). For98

all the continuous traits, the in-sample predictive performance for the corresponding lasso99

model in the test set is given in Supplementary Table 1.100

Cohort summary101

After exclusions, our data consisted of 14,531 individuals from the GS cohort (see Meth-102

ods and Supplementary Figure 1). This was divided into three non-overlapping sets:103

to train the trait-specific models (feature pre-selection set for RTFS only; n = 5, 739) as104

well as to train (n = 4, 158) and test (n = 4, 634) the incident T2D prediction model.105

After removal of missing values in the continuous traits, the pre-selection set consisted106

of between n = 4, 872 and n = 5, 739 individuals depending on the trait (see Sup-107

plementary Table 2). Summary information for the T2D training and test sets is108

shown in Table 1 and Supplementary Figure 2. Both sets had a highly imbalanced109

case/control distribution with 3.2% (130/4,028) and 4.6% (213/4,634) having an incident110
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T2D diagnosis in the training and test sets, respectively.111

Prediction performance assessment112

When assessing predictive performance in the test set, two types of outcomes were con-113

sidered: prediction of time to incident T2D diagnosis and a binary outcome given by114

whether incident T2D occurred prior to 10 years after baseline (Methods). Predictive115

performance using the time to incident T2D diagnosis was assessed using C-index and116

Brier scores. C-index measures discrimination (agreement in the ranking between pre-117

dicted risks and observed time-to-event values across pairs of individuals) while Brier118

scores give a measurement of both model calibration and discrimination at a given time119

point. In our experiments, Brier scores were evaluated at all integer time points from120

t = 1 to t = 10 years (inclusive). Binary outcome prediction performance was assessed121

using measures of discrimination - area under the receiver operating characteristics curve122

(AUC) and area under the precision recall curve (PRAUC). Calibration of the predic-123

tions generated by each model was also evaluated. Other measures, such as specificity124

and sensitivity, across a range of probability classification thresholds are also provided.125

Prediction of incident T2D using risk factors only126

A Cox proportional-hazards (Cox PH) model in the test set using established risk fac-127

tors (age, sex, BMI, hypertension and parent/sibling history of diabetes) as covariates128

(referred to as the risk factors-only model) had a C-index of 0.828 for time-to-event out-129

comes (Brier scores are shown in Supplementary Table 3). AUC and PRAUC were130

0.841 and 0.194, respectively, when predicting if an incident T2D diagnosis occurred prior131

to 10 years after baseline.132

Prediction of incident T2D using risk factors and DNAm133

We considered four methods for feature pre-selection (Figure 2; details in Methods):134

filtering to sites on the 450k array (henceforth referred to as the EPIC-450k intersection);135
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filtering to the top 100k and 200k most variable CpGs; filtering to epigenome-wide signif-136

icant CpGs from the EWAS literature (72 and 55 CpGs for incident and prevalent T2D,137

respectively); and filtering to the 5,468 RTFS CpGs identified from the lasso models on138

the continuous traits. We also considered applying PCA to the EPIC-450k intersection139

and to the top 200k most variable CpGs, with the PCs explaining a cumulative variance140

> 95% taken forward as features. This led to selecting 3,734 and 3,652 PCs, respectively.141

The greatest C-index values were achieved from using incident T2D EWAS-based142

filtering and RTFS (both 0.866). All C-index and Brier score values are shown in Sup-143

plementary Table 3. Incident T2D EWAS-based filtering and RTFS resulted in the144

lowest two Brier scores for all time points, suggesting that those methods consistently145

performed in the top two models in terms of calibration and case/control discrimination.146

Table 2 shows the AUC and PRAUC values obtained from incremental Cox PH147

models corresponding to the addition of an EpiScore, derived from each pre-selection148

method or PCA, to the risk factors-only model. Incident T2D EWAS-based filtering149

achieved the highest AUC (0.881) and PRAUC (0.279). Corresponding ROC curves for150

the incident T2D EWAS-based filtering, RTFS and the risk factors-only models are shown151

in Figure 3. We evaluated the robustness of this ranking by considering the number152

of times each method was ranked in the top n methods across 1,000 bootstrap runs is153

plotted in Figure 4. Incident T2D EWAS-based filtering had the highest frequency154

of first rankings across the bootstraps in both AUC and PRAUC. RTFS also performed155

consistently well with both methods ranking in the top three in the majority of bootstraps.156

Differences in model calibration between the incident T2D EWAS EpiScore model,157

RTFS EpiScore model and risk factors-only model are shown in Supplementary Fig-158

ure 4. The incident T2D EWAS EpiScore and RTFS EpiScore models show stronger159

calibration performance when compared to the risk factors-only model. All three models160

plotted show underestimation of risk below a predicted probability of around 0.5 and161

overestimation of risk otherwise.162

Supplementary Figure 3 shows how confusion matrix values vary across the prob-163

ability classification threshold range for the risk factors-only, RTFS and the incident T2D164
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EWAS-based filtering EpiScore model in the test set. Overall, the incident T2D EWAS-165

based filtering and RTFS EpiScore model improve the classification of cases with respect166

to the risk factors-only model (increase in true positives and decrease in false negatives)167

while showing a slight decrease in the correct classification of controls. The differences168

in correctly classified individuals in terms of sensitivity, specificity, positive predictive169

value (PPV) and negative predictive value (NPV) between the RTFS EpiScore and risk170

factors-only models are also given in Supplementary Table 4.171

Comparison of incident T2D EpiScore and polygenic risk score172

prediction performance173

To assess the added value of the EpiScores against genetic risk factors on predictive174

performance, two additional Cox PH models were fit to the GS test set that included175

a polygenic risk score (PRS) for incident T2D [23]. These consisted of a model using176

the standard risk factors plus the PRS, as well as a second model which also included177

the EpiScore derived from incident T2D EWAS-based filtering (the top performing pre-178

selection method). These two models showed AUC values of 0.857 and 0.892 respectively.179

PRAUC values were 0.212 and 0.302 and C-index values were 0.843 and 0.876. The PRS180

gave a smaller increase in each of these metrics above standard risk factors compared181

to the incident T2D EWAS EpiScore (AUC=0.881, PRAUC=0.279, C-index=0.866);182

however, without pre-selection of CpG sites, the EpiScore gives smaller increases (EPIC-183

450k EpiScore AUC=0.855, PRAUC=0.208, C-index=0.841. The largest increase was184

given when using both the PRS and EpiScore in the model, showing additive increases185

from both scores over using risk factors only.186

Validation of RTFS and EPIC-450k intersection EpiScores in the187

KORA S4 cohort188

Performance in KORA S4 was only evaluated for the binary T2D incidence outcome189

(diagnosis within 10 years of baseline date) as time to T2D diagnosis data was not avail-190
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able. The logistic risk factors-only model fit to the KORA S4 cohort showed an AUC191

and PRAUC of 0.797 and 0.294, respectively. The logistic models including risk fac-192

tors plus either the RTFS or EPIC-450k incident T2D EpiScore resulted in AUCs of193

0.806 and 0.798, respectively. Corresponding PRAUC values were 0.295 and 0.293 (see194

Supplementary Table 5.195

Overlap of pre-selected CpG sites196

The continuous trait lasso models in RTFS selected between 49 and 864 CpG sites per197

trait (5,468 in the union). Figure 5 shows the number of CpG sites selected for each198

trait and the selection overlap between traits. This shows that the majority of CpG sites199

were selected exclusively for a single trait. Notable overlaps were present between BMI,200

waist-to-hip ratio and body fat as well as between systolic and diastolic blood pressure.201

Supplementary Figure 5 shows the number of CpGs pre-selected across all methods202

and their overlap. Over half of the RTFS pre-selected CpGs were not in the top 200,000203

CpGs by variance. Additionally, a small proportion of the incident and prevalent EWAS204

CpGs overlapped with the RTFS CpGs (see Supplementary Figure 6)205

Discussion206

In this study, we explored the use of different feature pre-selection methods in the context207

of ultra-high dimensional DNAm data (where the number of features largely exceeds the208

number of observations). We introduce RTFS, which borrows information from a broad209

set of health-related traits to identify a suitable set of CpG sites that can be used as input210

in the development of risk prediction models for incident disease. Using type 2 diabetes as211

a case study, we compared the performance of RTFS against a range of other commonly-212

applied CpG pre-selection (and dimensionality reduction) approaches. Consistent with213

[24], the inclusion of an EpiScore generally improved discrimination performance with214

respect to the standard risk factors-only model. However, the improvement was not215

uniform across the different methods: with only marginal improvements in the absence of216
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feature pre-selection when training the EpiScore. Our analysis also shows that EpiScores217

can improve predictive performance compared to the use of genetic information via an218

existing incident T2D PRS.219

Incident T2D EWAS-based filtering resulted in the highest AUC (0.881) and PRAUC220

(0.279) for 10-year incident disease prediction, with a notable increase in the correct221

classification of cases and a small decrease in correct classification of controls.External222

validation in KORA supported this, although it showed smaller improvements compared223

to an earlier study which used a larger training set for the incident T2D EpiScores [24].224

While filtering to significant CpG sites from an incident T2D EWAS study was the225

highest performing model, it is reliant on the existence of large-scale EWAS studies226

for T2D, something that may not be generally available for other diseases of interest.227

RTFS bypasses this requirement and led to similar performance metrics (AUC = 0877;228

PRAUC = 0.277). It was also consistently ranked amongst the top performing models229

in our bootstrap experiments. Additionally, the continuous traits used for RTFS were230

primarily general health-related measures and not necessarily specific to T2D. Therefore,231

the resulting set of RTFS CpGs may be applicable to other diseases and could potentially232

be used as a general panel of morbidity-related sites for risk prediction.233

We used a pre-specified set of continuous trait to perform CpG pre-selection in RTFS.234

While we evaluated the predictive performance of each trait-specific lasso model, future235

studies could investigate the impact of including or excluding continuous traits e.g. based236

on a range of different performance thresholds. Additional studies could also investigate237

other variable selection methods for RTFS continuous traits, for example using elastic-net238

[25], as well as more general methods for risk prediction (e.g. random survival forests[26]).239

Future studies could also consider using DNAm-based predictions for each trait directly240

as predictors in downstream models, similar to previous approaches (e.g. the protein241

EpiScores in [27] or the approach used to develop the GrimAge epigenetic clock [28]).242

Access to the GS cohort enabled us to demonstrate the use of RTFS in one of the243

largest cohorts of its kind — with three independently-processed sets of DNAm data,244

which allowed for separate training, testing and RTFS pre-selection datasets. In addi-245
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tion, comprehensive information on incident T2D diagnoses was available through ex-246

tensive linkage to electronic health records. Availability of both genetic and epigenetic247

data allowed for a direct performance comparison between risk scores derived from each248

data source and showed the benefit of using DNAm data, which can better reflect health-249

associated changes within individuals’ lifetimes. While the inclusion of DNAm resulted in250

considerable predictive performance increases compared to using risk factors only in the251

GS test set, these differences were small when applied to the KORA validation cohort.252

The generalisability of our results is limited by the characteristics of the GS cohort: GS253

participants are generally healthier, wealthier and have a different age-sex distribution254

to the general population [29]. Similarities in these socio-demographic characteristics255

within GS may have resulted in positive bias in the performance of RTFS. Given that the256

models including DNAm data with and without CpG preselection both showed small per-257

formances differences when compared to a risk factors-only model in KORA, further work258

could explore the impact of factors such as the number of incident cases and availabil-259

ity of primary versus secondary care data for T2D disease ascertainment. Additionally,260

both the development and validation cohorts consisted of individuals from predominantly261

white European ancestries. Further validation is required to evaluate the generalisability262

of RTFS to other populations and genetic ancestries.263

In conclusion, our study reiterated the need for pre-selection as an important step264

in DNAm-based risk prediction models. We introduced and evaluated an effective pre-265

selection method, RTFS, utilising information from health-related traits with the poten-266

tial for application in predictive models for other incident diseases in future studies.267

Methods268

Generation Scotland (GS) DNAm data269

The data used for this study were from the Generation Scotland (GS) cohort, recruited270

from across Scotland between 2006 and 2011. This consists of 23,960 volunteers aged271

18-99 at baseline (recruitment date). Of these, 18,414 have genome-wide DNAm data272
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available, ascertained from blood samples taken at baseline. DNAm quality control is273

detailed in [24]. DNAm measurements were obtained in three large sets, processed in274

2017 (set 1, n = 5, 087), 2019 (set 2, n = 4, 450) and 2021 (set 3, n = 8, 877). Set 2 was275

used as the training set for incident T2D and set 3 was used for feature pre-selection. Set276

1 was used as the test set for incident T2D. Sets 1 and 3 contained related individuals277

(genetic relationship matrix (GRM) threshold > 0.05), both within and between sets.278

There were also related individuals between sets 2 and 3. To avoid the presence of279

families with individuals across the training and test sets, individuals in set 3 with a280

family member present in set 1 were excluded from the analyses (nexcluded = 3, 138). To281

maintain compatibility with previous studies using the Illumina 450K array, the CpGs282

were filtered to those present in both the 450K and EPIC arrays (EPIC-450k intersection).283

A range of traits were also recorded at baseline via questionnaire or clinical appoint-284

ment. These included (units listed within parenthesis): age (years), glucose (millimoles285

per litre; mmol/L), total cholesterol (mmol/L), high-density lipoprotein (HDL) choles-286

terol (mmol/L), sodium (mmol/L), potassium (mmol/L), urea (mmol/L), creatinine287

(mmol/L), BMI (kg/m2), waist-hip ratio, body fat percentage, systolic blood pressure288

(millimetres of mercury; mmHg), diastolic blood pressure (mmHg), heart rate (beats289

per minute; bpm), forced expiratory volume (FEV) (L), forced vital capacity (FVC) (L),290

alcohol consumption (units/week), smoking (pack years) and general cognitive ability.291

The latter was defined as the first unrotated principal component from a PCA of four292

cognitive tests (logical memory, digit symbol, verbal fluency and vocabulary), scaled to293

mean of 0 and standard deviation of 1 [30].294

Continuous trait preprocessing295

The 19 baseline traits listed above were used as the continuous traits for RTFS. These296

were processed separately within each data set, to remove outliers, and to regress out297

age and sex (after trait-specific transformation, if applied). Trait-specific transformation298

included adding 1 to each value of alcohol consumption and smoking, prior to a natural299

log-transform. Glucose and BMI were also log-transformed. Outliers were defined as300
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points greater than 4 standard deviations away from the mean. This is with the exception301

of BMI for which outliers were defined as a BMI < 18 or BMI > 50. A linear regression302

model with age, age2 (to include non-linear effects with age) and sex as covariates was303

then fit to each continuous trait. The resulting residuals were kept for further analyses.304

For FEV and FVC, height was also included in the linear regression. Missing values in305

each continuous trait were treated as missing-at-random and corresponding individuals306

were removed from the training set when fitting the predictive model for the respective307

trait. The number of missing values for each trait is given in Supplementary Table 2.308

Time to incident Type 2 Diabetes (T2D)309

History of disease diagnoses (prevalent and incident) was ascertained via data linkage310

to NHS Scotland health records. Secondary care (hospital) records from January 1980311

to April 2022 were available for all subjects, with disease diagnoses encoded using ICD-312

9/10. Due to restricted consent from data controllers, only partial linkage to primary care313

(general practice; GP) records was available (a subset of general practice centres were314

unable to provide data): only available for 35% (n = 3, 191, ntraining = 1, 421, ntest =315

1, 770) of individuals in the incident T2D training and test sets. Primary care records316

cover the period from January 1980 to October 2020 and use Read2 codes to record317

disease diagnoses.318

Hospital record-derived prevalent and incident T2D cases were defined as individuals319

with an E11* ICD-10 code or 250.0/250.1 ICD-9 code. GP record-derived cases were320

defined using a set of diabetes-related Read2 codes. A full list of ICD-9/10 and Read2321

codes is provided in Supplementary Table 6. Type 1 and juvenile diabetes cases were322

treated as controls (no T2D). Additional prevalent cases were identified from self-reported323

history in a baseline questionnaire. All prevalent cases were removed. For incident cases,324

time-to-event (years) was calculated as the time from baseline to disease onset (first T2D325

record) for cases, and to censoring for controls. Controls were censored at the latest date326

of available hospital records (April 2022) or time-to-death, whichever happened sooner.327

For the individuals with both primary and secondary care records, a comparison be-328
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tween time-to-event outcomes derived from hospital and GP records was used to assess329

possible delays in hospital diagnoses. As a sensitivity analysis (RTFS only), the end330

of GP follow-up (October 2020) was also considered as a censoring date for those indi-331

viduals (in the absence of a hospital diagnosis). Supplementary Table 7 shows the332

AUCs, PRAUCs and incremental Cox PH model coefficient estimates from this analy-333

sis. Differences between the two outcome derivations were minor in terms of both the334

discrimination metrics and coefficient estimates.335

T2D risk factors336

Risk factors used in the incremental EpiScore models included age, sex, BMI, hyperten-337

sion and parent/sibling history of diabetes. Hypertension and parent/sibling history of338

diabetes were defined as self-reported in the baseline questionnaires. While many T2D339

risk factors have been identified, we based these on the most utilised factors in existing340

risk scores according to [31]. These five risk factors were used as variables in the risk341

factors-only model.342

Related Trait-based Feature Screening (RTFS)343

Linear lasso [32] was applied to each continuous trait (after pre-processing) using set 3.344

Lasso is a penalised regression method which shrinks regression coefficients to be small,345

forcing some to be exactly equal to zero. As such, it performs feature selection by keeping346

only the features with non-zero coefficients. The strength of the penalty is controlled by347

a hyper-parameter λ. Five-fold cross-validation was used to select λ, to minimise the348

mean squared-error of out-of-sample predictions. Lasso models were fit using the glmnet349

R package version 4.1-1 [33]. For computational efficiency, the top 200,000 sites with the350

highest marginal variance were used as inputs. The union of lasso-selected CpGs from351

the final set of continuous trait models (hereafter referred to as the RTFS set) were used352

as input to predict time-to T2D incidence.353

As RTFS performs feature pre-selection via linear models applied to a set of continuous354

traits, it implicitly assumes that each trait can be predicted by a linear combination of355
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CpGs. The predictive ability of DNAm for each trait was quantified in a test set (GS set356

1) using the percentage of variance explained R2.357

Alternative approaches for feature pre-selection358

Initially, the EPIC-450k intersection set was used without pre-selection. Two commonly359

used approaches for feature pre-selection were then considered as an alternative to RTFS:360

Highest variance. The per-feature variance is calculated, and the top p features with361

the highest variance in set 3 are pre-selected. For the T2D analysis, we used p = 100, 000362

and p = 200, 000.363

EWAS-based filtering. Existing EWAS analysis for incident or prevalent disease364

were used to pre-select CpGs. For the T2D analysis, CpGs identified to be statistically sig-365

nificant by two recent large meta analyses for incident and prevalent T2D were included.366

The first study [34] consisted of five European cohorts (Ncases = 1, 250, Ncontrols = 1, 950)367

and identified 76 differentially methylated CpG sites (p < 1.1×10−7) for incident T2D. Af-368

ter filtering these to those present in the EPIC-450k intersection, 72 CpG sites remained.369

The second [35] consisted of four European cohorts (Ncases = 340, Ncontrols = 3, 088)370

identifying 58 differentially methylated CpG sites (p < 1.0× 10−5) for prevalent T2D (55371

post EPIC-450k intersection filtering). The full list of CpG sites identified from the two372

studies is shown in Supplementary Table 8.373

Dimensionality reduction374

As an alternative to feature pre-selection, we also explored whether dimensionality re-375

duction techniques can be used to create a low-dimensional set of features to be used as376

input when predicting T2D. Here, we focus on PCA (as in [16]). In this study, we applied377

PCA (in set 2) to the 450k-EPIC intersection and the top 200k CpGs by variance. PCs378

were ordered by the variance explained in set 2 and the top PCs required to explain 95%379

of the variance were kept for the final T2D model.380
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Incident T2D EpiScore381

Using the CpGs identified by each pre-selection method (or top PCs, where appropri-382

ate), a Cox PH elastic-net model [36] was fit to the set 2 DNAm data (training set) using383

time-to-T2D incidence as the outcome. Similar to lasso, elastic-net provides a regularised384

model fit, reducing overfitting. The strength of the regularization is controlled by hyper-385

parameters λ and α. If α > 0, the model performs feature selection by setting a subset of386

coefficients to 0. Hyperparameters were selected using 9-fold cross-validation. Lambda387

was optimised using the cv.glmnet function. Alpha was selected by testing values between388

0 and 1 (inclusive) in increments of 0.1 and selecting the value which maximised mean389

partial-likelihood across the nine folds. The linear predictor from the resulting Cox PH390

elastic-net model was defined as an incident T2D EpiScore.391

T2D Incremental Modelling392

The incident T2D EpiScores obtained after applying each feature pre-selection (or dimen-393

sionality reduction) method were subsequently applied to set 1 (test set) in an incremental394

modelling approach. Firstly, a risk factors-only model was fit using a Cox PH model and a395

set of known T2D risk factors (listed above) as predictors. For each pre-selection method,396

Cox PH models were then fit using the same variables as the risk factors-only model plus397

the corresponding EpiScore. Full details on the incremental modelling calculations are398

given in the Supplementary Note.399

Incident T2D Polygenic Risk Score400

To compare the differences in predictive performance of the EpiScores to genetic risk401

factors, two additional Cox PH models were fit in the test. The first included the standard402

risk factors plus a T2D PRS [23]. The second included these same variables plus the top403

performing incident T2D EpiScore (incident T2D EWAS-based filtering).404
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Predictive performance evaluation405

Predictive performance for each of the Cox PH models above was evaluated on the test406

set. Two types of prediction outcomes were used: time-to-T2D diagnosis and a binary407

outcome defined by whether a T2D diagnosis was recorded within 10 years from baseline.408

For the time-to-T2D outcome, C-index and Brier scores were calculated using the409

SurvMetrics R package (version 0.5.0) [37]. C-index gives a measure of discrimination410

for a model, defined as proportion of concordant pairs of individuals predicted by the411

model. This value is between 0 and 1 (inclusive) with higher scores representing better412

discrimination. A pair of individuals is concordant if the individual with the smaller413

time-to-event is given a greater risk by the model. The Brier score measures both dis-414

crimination and calibration, calculated as the mean square difference between the true415

classes (i.e. whether a T2D diagnosis has occurred) and the predicted probabilities at a416

given time point. Brier scores range between 0 and 1 (inclusive) and lower scores rep-417

resent better discrimination and calibration. Brier scores were evaluated at each integer418

time point from t = 1 to t = 10.419

For the binary 10-year T2D onset outcome, predictions were calculated as one minus420

the estimated 10-year survival probability. This calculation was based on the Breslow421

estimator [38] for the cumulative baseline hazard. This calculation is detailed in the422

Supplementary Note. Censored individuals were defined as controls when assessing423

predictive performance. Discrimination metrics including area under the receiver operat-424

ing characteristics curve (AUC) and the area under the precision-recall curve (PRAUC)425

were compared.426

Confusion matrix metrics were also assessed by calculating the number of true/false427

positives/negatives using the ten-year onset probabilities and a range of discrimination428

thresholds between 0 and 1, in increments of 0.1. Calibration was assessed by plotting429

loess calibration curves using the valProbggplot function in the CalibrationCurves R430

package (version 2.0.0) [39]. These show the observed event proportions plotted against431

the predicted event probabilities.432

To assess the robustness of the relative rankings for the pre-selection methods, the433
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incremental modelling was repeated in 1,000 bootstrap samples of the test set for each434

EpiScore model. For each bootstrap sample, the EpiScore and risk factors-only models435

(Table 2) were ranked based on their AUC and PRAUC estimates. The number of times436

that each method was included in the top n ranks was calculated (n = 1, . . . , 10).437

Overlap of pre-selected CpG sites438

The sets of CpGs selected across the continuous trait lasso models were analysed using439

an UpSet plot (UpSetR R package, version 1.4.0 [40]) showing, the number of CpG440

sites selected across all of the traits in each combination of continuous traits. The same441

visualisation method was used for analysing the overlap between CpGs selected using442

each pre-selection method.443

Validation of RTFS and EPIC-450k intersection EpiScores in the444

KORA S4 cohort445

The incident T2D EpiScores derived from the RTFS and EPIC-450k intersection CpGs446

were validated in a subset of the German-based KORA S4 cohort, which consisted of447

1,451 individuals aged 25-74 years and recruited in southern Germany. The subset was448

defined by individuals with DNAm and incident T2D data available, after removing449

prevalent cases at baseline. Missing CpG values in the DNAm data were mean-imputed450

and individuals with missing health measures were removed from the dataset.451

The prediction outcome was defined as the occurrence of a T2D diagnosis within 10452

years after individuals’ baseline date. A time-to-event outcome was not used for validation453

as time-to-T2D diagnosis data was not available in KORA S4.454

Validation was performed using incremental logistic models. Firstly, a risk factors-455

only model was fit to the KORA S4 subset using age, sex, BMI, hypertension and parent456

history of diabetes as variables. Then, two additional logistic models were fit using457

the risk factors plus each of the RTFS and EPIC-450k intersection EpiScores. Prediction458

performance was evaluated by calculating AUC and PRAUC for each of the three models.459
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The incident T2D EWAS EpiScore was not validated in KORA S4 as the correspond-460

ing EWAS meta-analysis included KORA participants.461

Additional details of participant follow-up, ascertainment of incident T2D diagnoses462

and preprocessing numbers are provided in the Supplementary Note.463

Code and data sharing464

Analysis scripts for this study are available at https://github.com/marioni-group/rtfs.465

According to the terms of consent for Generation Scotland participants, access to data466

must be reviewed by the Generation Scotland Access Committee. Applications should467

be made to access@generationscotland.org. The informed consent given by the KORA468

S4 study participants does not cover data posting in public databases. However, data469

are available upon request from the KORA Project Application Self-Service Tool. Data470

requests can be submitted online (https://epi.helmholtz-muenchen.de/) and are subject471

to approval by the KORA board.472

Ethics473

All components of Generation Scotland received ethical approval from the NHS Tayside474

Committee on Medical Research Ethics (REC Reference Number: 05/S1401/89). Gener-475

ation Scotland has also been granted Research Tissue Bank status by the East of Scotland476

Research Ethics Service (REC Reference Number: 20-ES-0021), providing generic ethical477

approval for a wide range of uses within medical research. Written, informed consent was478

provided by Generation Scotland participants.479

The KORA studies were approved by the Ethics Committee of the Bavarian Medical480

Association (Bayerische Landesärztekammer; S4: #99186) and were conducted according481

to the principles expressed in the Declaration of Helsinki. All study participants gave482

their written informed consent.483
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Training Test
Cases Controls Cases Controls

n 130 4,028 213 4,421
Time-to-event (Years
to Onset or Censor-
ing)

6.2 (3.1) 12.3 (2.1) 6.1 (3.4) 12.7 (1.8)

Age (Baseline) 58.3 (10.9) 51.1 (13.2) 55.6 (9.8) 48.1 (14.1)
Age (Onset or Censor-
ing)

64.5 (11.0) 63.4 (13.1) 61.8 (10.1) 60.8 (13.8)

Sex (Male) 67 (51.5%) 1,724 (42.8%) 108 (50.7%) 1,645 (37.2%)
BMI (kg/m2) 31.8 (6.3) 26.5 (4.7) 32.2 (6.0) 26.6 (5.1)
Self-reported Parent
or Sibling Diabetes

55 (42.3%) 700 (17.4%) 95 (44.6%) 861 (19.5%)

Self-reported Hyper-
tension

51 (39.2%) 555 (13.8%) 86 (40.4%) 597 (13.5%)

GP records available 62 (46.3%) 1,359 (32.8%) 110 (54.5%) 1,660 (36.1%)

Table 1: Summary details for the incident T2D training and test sets.

Incremental Model Variables (in
addition to risk factors)

AUC PRAUC C-index Alpha Lambda

Risk Factors (RF) only 0.841 0.194 0.828 NA NA
RF + PCA EPIC-450k EpiScore 0.849 0.206 0.837 0.2 0.325
RF + PCA Top 200k by Variance EpiS-
core

0.853 0.205 0.841 0 9.716

RF + EPIC-450k EpiScore 0.855 0.208 0.841 0.8 0.014
RF + PRS 0.857 0.212 0.843 NA NA
RF + Top 100k by Variance EpiScore 0.864 0.215 0.852 0.7 0.012
RF + Prevalent T2D EWAS EpiScore 0.869 0.255 0.858 0.6 0.004
RF + Top 200k by Variance EpiScore 0.872 0.233 0.860 0.5 0.017
RF + Prevalent and Incident T2D
EWAS EpiScore

0.873 0.262 0.858 1 0.002

RF + RTFS EpiScore 0.877 0.277 0.866 0.5 0.012
RF + Incident T2D EWAS EpiScore 0.881 0.279 0.866 0.5 0.006
RF + PRS + Incident T2D EWAS
EpiScore

0.892 0.302 0.876 0.5 0.006

Table 2: Incremental modelling performance metrics for each pre-selection / PCA result
calculated in the GS test set.
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Figure 1: The RTFS pipeline applied to Generation Scotland.

Figure 2: An overview of the pre-selection comparison pipeline.
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Figure 3: ROC curves for incremental incident T2D models. Results are shown for the
model including risk factors only in addition to the models using RTFS and incident T2D
EWAS-based filtering.
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Figure 4: Rank order cumulative frequencies for AUC (top) and PRAUC (bottom)
values for pre-selection methods across 1,000 bootstrap samples of the test set. The plots
show, for each method, the number of bootstraps in which the method ranked in the
top n in terms of their respective AUC/PRAUC. Models shown include: Related Trait-
based Feature Selection (RTFS), Incident T2D EWAS, Top 200k by Variance, EPIC-450k
Intersection, and Risk Factors Only.
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Figure 5: UpSet plot showing number of CpGs selected for each continuous trait and
overlaps between traits. The frequency of the top 30 trait combinations are shown. Each
column represents the number of CpGs pre-selected for the corresponding specific com-
bination of traits. This was generated with the ”distinct” option, meaning the presence
or absence of a point in a column explicitly corresponds to the presence or absence of the
corresponding trait in the set
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Supplementary Figure 1: Dataset numbers at each study pipeline processing step
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Supplementary Figure 2: Kaplan-Meier curves (top) and density plots for BMI and
age at event/censoring (middle and bottom, respectively) for the incident T2D training
and test sets
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Supplementary Figure 3: Confusion matrix metrics across the probability threshold
range 0-1 for the RTFS, incident T2D EWAS-based filtering and risk factors-only models.
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Supplementary Figure 4: Calibration curves for the incident T2D EWAS EpiScore
model (top), RTFS EpiScore model (middle) and risk factors-only model (bottom). The
latter shows weaker calibration performance; the fitted calibration curve (black) is overall
further from the perfect calibration line (red). All models show underestimation of risk
below a predicted probability of around 0.5 and overestimation of risk otherwise.
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Supplementary Figure 5: UpSet plot showing number of CpGs selected using each
pre-selection method and overlaps between methods. Each column represents the number
of CpGs pre-selected by the corresponding specific combination of methods. This was
generated with the ”distinct” option, meaning the presence or absence of a point in a
column explicitly corresponds to the presence or absence of the corresponding method in
the set.
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Supplementary Figure 6: UpSet plot showing number of CpGs selected using the
RTFS and EWAS-based pre-selection methods and overlaps between methods. Each
column represents the number of CpGs pre-selected by the corresponding specific combi-
nation of methods. This was generated with the ”distinct” option, meaning the presence
or absence of a point in a column explicitly corresponds to the presence or absence of the
corresponding method in the set.
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