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Key Points 

Ques-on: How does the conceptualizaCon of ICU healthcare worker tasks in models—whether infinite or finite— impact 

the results of changes in staffing raCos affecCng methicillin-resistant Staphylococcus aureus (MRSA) acquisiCon?  

Findings: In this compartmental mathemaCcal model approach that included 15 different models, the trends of the 

impact of staffing raCos were consistent between the Infinite and Finite tasks models. However, both the absolute and 

relaCve values were markedly different, with the infinite task models having a much more linear effect on MRSA 

acquisiCons while the number of MRSA cases in the finite model conCnued to rise exponenCally as the number of nurses 

decreased. 

Meaning: It is essenCal when considering model generalizability, to state the assumpCons made about how workload 

and contact pa`erns within a hospital work, and to ensure these are appropriately tailored for the specific seang being 

modeled. 
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Abstract  

Importance: This study addresses the pressing clinical quesCon of how variaCons in physician and nursing staffing levels 

influence methicillin-resistant Staphylococcus aureus (MRSA) rates, providing essenCal insights for opCmizing staff 

allocaCon and improving paCent outcomes in criCcal care seangs. 

Objec-ve: The main objecCve is to assess whether variaCons in staffing raCos and workload conceptualizaCon 

significantly alter the rates of MRSA acquisiCons in the ICU seang.  

Design: This simulaCon-based study uClizes stochasCc compartmental mathemaCcal modeling to explore the impact of 

staffing raCos and workload conceptualizaCon on MRSA acquisiCons in ICUs. Derived from a previously published model, 

the analysis involves running year-long stochasCc simulaCons for each scenario 1000 Cmes, varying nurse-to-paCent 

raCos and intensivist staffing levels under infinite and finite workload conceptualizaCons. Our baseline model was a 3:1 

nurse raCo with one intensivist.  

Main Outcome: MRSA acquisiCons in ICUs, measured as median acquisiCons per 1000 person-years. 

Results: Under baseline condiCons, our model had a median of 8.2 MRSA acquisiCons per 1000 person-years. Varying 

paCent-to-nurse raCos and intensivist numbers showed substanCal impacts. For infinite models, a 2:1 nurse raCo 

resulted in a 21% decrease, while a 1:1 nurse raCo led to a 65% reducCon. Finite models demonstrated even larger 

effects, with a 48% decrease when having a 2:1 raCo, and an 83% reducCon with a 1:1 nurse raCo. Reducing paCent-to-

nurse raCos in finite models increased acquisiCons exponenCally with a 348% increase for a 6:1 raCo. Intensivist 

variaCons had modest impacts.  

Conclusions and Relevance: Our study highlights the crucial role of opCmizing staffing levels in ICUs for effecCve MRSA 

infecCon control. While intensivist variaCons have modest effects, bolstering nursing raCos significantly reduces MRSA 

acquisiCons, underscoring the need for tailored staffing strategies, and recognizing the nuanced impact of workload 

conceptualizaCon. Our findings offer pracCcal insights for refining staffing protocols, emphasizing the dynamic nature of 

healthcare-associated infecCon outcomes.  
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Background 

 InfecCon prevenCon staff deliver infecCon control and effecCve care at the intersecCon of paCent care, workforce 

compliance, and hospital budgets. One of the largest challenges affected is staffing raCos, an issue that not only impacts 

the quality of paCent care but also plays a pivotal role in safeguarding paCents from HAIs1–3. Staffing issues have been 

shown to impact many things e.g. faCgue, mortality, and infecCon control1,2,4. Only one state, California, has a mandated 

ICU paCent-to-nurse raCo of 2:1 5. Other states have lej this up to hospitals and healthcare systems, leading to a naConal 

average of 3:1 that is used as a baseline for many modeling studies 2,6–8. 

Hospital modeling provides a unique vantage point for understanding the dynamics within specific hospital units- such as 

intensive care units (ICUs). These models can help criCcal care teams and infecCon control professionals understand the 

intricate interplay between their own ward’s behaviors and healthcare-associated infecCons (HAIs)9–12.  Modeling studies 

have emerged as indispensable tools, especially in scenarios or with pathogens where conducCng randomized controlled 

trials would be cost-prohibiCve, labor-intensive or the pathogens cause sporadic and self-limiCng epidemics7,9,10,13–15.  

Methicillin-resistant Staphylococcus aureus (MRSA) is found in approximately 9% of ICU admissions, is environmentally 

shed, transmi`ed through contact, and is responsible for sporadic outbreaks and is a priority for infecCon control due to 

their anCbioCc-resistance. These characterisCcs render it an excellent candidate for modeling burden-miCgaCng 

strategies in infecCon control10–12,16. 

While studies have shown that lower staffing is good for paCents, less is known about how the mix of physician and 

nursing staffing affects prevenCon efforts1,3,17.  Does adding another physician make the other physician’s workload less 

but add more paCent contact as a whole – and what are the implicaCons of that for infecCon transmission? If a unit has 

to increase their staffing raCo, does that mean an increased workload for the remaining nurses, or are they already at 

capacity and those tasks just get added in, meaning less care and contact with nurses? These scenarios happen 

frequently, and must be taken into consideraCon at both the hospital and unit level.10. 

This study focuses on understanding how one structures a model affects the results a healthcare team might be expected 

to see.  This was done by modifying a previously published model of an ICU, and adjusCng the staffing raCos of nurses 

and physicians to obtain the number of yearly MRSA acquisiCons based on staffing7. In addiCon, we adjusted the models 

to have nurses and physicians have varying amount on contact with paCents. MRSA was used because it is a well-studied 
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pathogen in healthcare infecCon that is primarily spread via human interacCon in hospital seangs 3,11,18–20. There are 

over 300,00 hospitalized cases a year, with an esCmated 11,00 deaths and hospital-onset MRSA bloodstream infecCons 

have been stable since 201320.  

Methods 

Model Structure 

Our baseline model of MRSA transmission is based on a previously published model of a 18-bed medical ICU, staffed by 

six nurses (a 3:1 paCent-to-nurse raCo) and one dedicated intensivist (see Figure 1) 4,6,7. The 18-bed size was chosen for 

coherence with previous studies and for ease of creaCng a variety of whole numbered paCent: staff raCos4,17. Our 

parameters came from previously published models of ICU-based MRSA transmission and are shown in Table 1 6,7,16,21.  

Each nurse was assigned a specific cohort of three paCents and were with them 85% of the Cme, but also interacted with 

paCents outside their cohort due to a number of reasons (e.g., staff breaks, paCent care needing more than one nurse, 

cross-coverage), expressed as the parameter gamma, (γ) (Table 1). Both within and outside each assigned cohort, the 

nurses are assumed to see their paCents randomly. Intensivists see all paCents in the ICU and further addiCon of 

intensivists does not result in cohorCng.  

Healthcare workers are represented by two possible states, either uncontaminated (Du or Nu) or contaminated (Dc or Nc), 

and paCents are either uncolonized or colonized (Pu or Pc). Doctors and nurses have separate contact rates with paCents, 

with doctors having less direct care tasks (touching paCents or the immediate surrounding environment) as well as hand 

hygiene and gowning/gloving opportuniCes than nurses. The model equaCons are available in Supplemental Table 1.  

This model makes a number of simplifying assumpCons. First, paCents are confined to their single-bed occupancy rooms 

and do not interact with anyone other than the nurses and doctors. We assume that nurses and doctors can only 

contaminate paCents and vice versa, and do not transmit MRSA to other healthcare workers via direct contact or 

environmental exposure. Our model has the ICU as a “closed ICU” so that only people working in the ICU are allowed to 

interact with the paCents. The ICU is also considered to be always at 100% capacity, so if a paCent leaves, another one is 

admi`ed automaCcally22. We assume that hand hygiene and donning/doffing, while done when SHEA guidelines 

recommend, are done with imperfect compliance23. Finally, we assume that MRSA colonizaCon is detected instantly with 
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perfect sensiCvity and specificity, but that there are no exisCng treatment or decolonizaCon procedures being 

performed, save for a low baseline rate of natural decolonizaCon (µ). 

Staffing Simula2ons 

Fijeen staffing scenarios were implemented, ranging from a 9:1 paCent: nurse raCo to a 1:1 paCent: nurse raCo, as well 

as varying the number of intensivists in the ICU from 1 to 3. 

We also consider two different paradigms to conceptualize how work within an ICU is performed, and how staffing levels 

might impact that work. The first, which we term the “Infinite Task Model”, posits that there are effecCvely infinitely 

many tasks to perform within an ICU in a given shij. As a result, the addiCon of new staff increases the number of tasks 

performed, but the per-staff contact rate between paCents and staff members remains constant but potenCally changing 

the overall contact rate between paCents and staff – effecCvely, the ICU staff as a whole may now accomplish more, but 

individual-level workloads are not appreciably decreased. The second, termed the “Finite Task Model”, posits a large but 

ulCmately fixed number of tasks to be accomplished in a given shij. Here, the addiCon of a new staff member 

proporConately decreases the number of tasks each healthcare worker has to do, altering the per-staff contact rate, but 

keeping the overall contact rate fixed. 

Each of the thirty possible scenarios (five levels of nurse staffing by three levels of intensivist staffing for both infinite and 

finite models) was simulated stochasCcally 1000 Cmes by means of Gillespie’s Direct Method to obtain a distribuCon of 

the number of MRSA acquisiCons over a year, which was used as our primary outcome. Due to the non-normalcy of the 

resulCng distribuCons, differences between staffing levels were analyzed with nonparametric Kruskal-Wallis tests. The 

models were wri`en and simulated with Python 3.6 using the StochPy package24.  StaCsCcal analysis and visualizaCon 

was done in R v4.2.2. A formal descripCon of the model using the MInD Framework25 may be found in the Supplemental 

InformaCon and code and model output are available at h`ps://github.com/epimodels/StaffRaCos. 

Results 

Baseline 

Our baseline model had a median of 8.2 acquisiCons per 1000 person-years (IQR 7.2-9.4). 
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Infinite Task Models 

Using the infinite tasks model, the average number of MRSA acquisiCons was significantly different between the baseline 

and the adjusted nursing raCos. Going to a 2:1 paCent: nurse raCo had a 21% decrease of MRSA acquisiCons (χ2 =500, p-

value <0.05), having a 1:1 paCent: nurse raCo decreased it 65% (χ2 =1409, p-value <0.05). Meanwhile, going from a 3:1 

raCo to a 6:1 nurse raCo increased acquisiCons 37% (Figure 2A). Similar pa`erns were observed with the two doctor and 

three doctor models (Figure 2B-C). 

Finite Task Models 

Using the finite tasks model, there was a significant difference between the baseline and all other modeled scenarios. 

Going to a 2:1 nurse raCo decreased acquisiCons by 48% (χ2 =1398, p-value <0.05), or 83% reducCon if there was a 1:1 

nurse raCo (χ2 =1501, p-value <0.05) (Figure 2D). Reducing nurses had a much larger impact as well, a 6:1 raCo increased 

acquisiCons by 348%, or 779% if the ICU was at a 9:1 nurse raCo . Once again this was observed with mulCple models 

with the doctors. (Figure 2E-F). 

Discussion 

The modeled scenarios demonstrate a marked impact of staffing levels on MRSA acquisiCon rates. Consistently, over all 

models, adjusCng nursing raCos resulted in fairly pronounced changes, while adding intensivists had a much smaller 

impact. Adding a second (or third) intensivist to the staff of an ICU never resulted in changes on par to decreasing the 

paCent to nurse raCo. While adding a second physician to help the first dropped approximately 1 MRSA acquisiCon per 

1000 person-years, adding a third had very slight changes from the second. This is most likely due to a physicians’ lower 

contact rate with paCents in the first place. Adding a third cuts the contact rate to a minimal amount, especially in the 

finite tasks model (Table 1). This, of course, does not speak to other impacts, both posiCve and negaCve, in-paCent care 

that an increase in intensivists might have26. 

While the trends in the impact of staffing were consistent between the Infinite and Finite tasks models, both the 

absolute and relaCve values were markedly different, with the infinite task models having a much more linear effect that 

showed some evidence of levelling off at an (admi`edly dire) 6:1 or 9:1 paCent: nurse raCo, while the number of MRSA 

cases in the finite model conCnued to rise exponenCally as the raCo increased. This difference comes down to the way 
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the models are parameterized, and how nurse-to-paCent contact interacts with the low level of largely transitory hand 

contaminaCon present in both models15. In the infinite tasks model, the overall contact rate with a paCent increases with 

each addiConal nurse, so the reducCon in risk emerges from the diluCon of any single nurse with contaminated hands 

into a larger overall pool of nurses. In contrast, in the finite task model, the addiCon of another nurse not only dilutes any 

contaminated nurses into a larger overall pool, but also reduces the number of Cmes a contaminated nurse will contact a 

paCent, owing to the smaller number of paCent care tasks they are now responsible for. 

Conclusion 

Our models show that, all else being equal, ICU staffing levels have a potenCally dramaCc increase on MRSA acquisiCon 

rates, and suggest that staffing should be considered a component of infecCon prevenCon – and that reduced levels of 

HAIs should be factored in when considering staff budgeCng. These gains are largely seen in levels of nursing staff as 

compared to physicians. In both the Finite or Infinite models, there was no discernable difference between having two or 

three physicians in the ICU, and the addiCon of a single intensivist was modest. There is an opportunity for further 

research evaluaCng the economic costs and resulCng benefits from these changes. 

How one conceptualizes the workload of healthcare workers had a much more dramaCc impact than any given staffing 

level on the modeled outcomes. While the infinite workload models had a steady increase in MRSA acquisiCons as the 

nursing raCo in the ICU increased, the finite workload models showed a more exponenCal-like growth. One can imagine 

hospitals operaCng under both workloads. For example, a community hospital with a relaCvely stable catchment 

populaCon might reasonably be modeled as having a finite workload within the ICU, whereas a busy criCcal access 

hospital (or that same community hospital during a public health emergency) might be more properly thought of as 

having an effecCvely infinite workload. For many hospitals, this may be reasonably assumed to vary from ward to ward. 

It is then important to understand and act on the workload any given hospital or ward might be operaCng under when 

seang expectaCons for the impact of hiring addiConal staff. Incorrectly assuming an ICU has a finite workload has the 

potenCal to cause a severe overesCmaCon of the impact of adding an addiConal nurse or changing raCos on infecCon 

rates. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2024. ; https://doi.org/10.1101/2024.02.14.24302485doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302485
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

This phenomenon is also important for the modeling of healthcare-associated infecCons. It highlights the importance of 

what seem like relaCvely benign and somewhat philosophical decisions as to how hospital workloads are modeled to the 

eventual outcomes of these models. It is essenCal, when considering model generalizability, to state the assumpCons 

made about how workload and contact pa`erns within a hospital work, and to ensure these are appropriately tailored 

for the specific seang being modeled. 

In conclusion, our models’ examinaCon of ICU staffing's impact on MRSA acquisiCon rates underscores the pivotal role 

that paCent to nurse raCos play in infecCon prevenCon. The evidence suggests a potenCal for significant reducCon in 

HAIs with opCmized staffing, urging stakeholders to consider staffing as an integral component of infecCon control 

strategies. Notably, conceptualizing healthcare worker workload, rather than focusing solely on staffing raCos, 

significantly influenced modeled outcomes. Hospitals should tailor staffing decisions accordingly, recognizing the 

dynamic nature of their wards’ workload and adjusCng accordingly. Importantly, they should consider the risk of over or 

underesCmaCng the impact of addiConal staff on infecCon rates arises when workload assumpCons are inaccurately 

defined. As healthcare models must inherently simplify complex scenarios, our study reinforces their value in capturing 

essenCal hospital dynamics. While our focus on nursing and physician staffing might exclude other healthcare workers, 

the deliberate simplificaCons enhance the clarity of our results, emphasizing the direct impact of staffing on infecCons 

transmi`ed by healthcare staff. Moving forward, recognizing the broader context of workload in a ward is crucial for 

refining strategies, seang expectaCons, and ensuring the generalizability of infecCon control intervenCons in dynamic 

healthcare seangs. 
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Table 1. Parameters for Modeling the Effect of Staffing Levels on Methicillin-Resistant Staphylococcus aureus AcquisiBons in an ICU 

Parameter DescripBon Value Reference 
ρN Contact rate between paBents and nurses for finite 

and baseline 
3.973 (# of nurse direct care 
tasks/hour) 

15,21 

ρN18 Contact rate between paBents and nurses in 1:1 finite 1.323 (3.973 x 6/18)  
ρN9 Contact rate between paBents and nurses 1:2 finite 2.647 (3.973 x 6/9)  
ρN3 Contact rate between paBents and nurses 1:6 finite 7.94 (3.973 x 6/3)  
ρN2 Contact rate between paBents and nurses 1:9 finite 11.91 (3.973 x 6/2)  
ρD Contact rate between paBents and physicians for 

finite and baseline 
0.181 (# of physician direct care 
tasks/hour) 

15,21 

ρD2 Finite contact rate between paBents and 2 physicians 0.091 (0.181 x ½)  
ρD3 Finite contact rate between paBents and 3 physicians 0.06 (0.181 x 1/3)  
σ Probability that a HCW’s hands are contaminated 

from a single contact with a colonized paBent 
0.054 
 

27 

ψ Probability of successful colonizaBon of an 
uncolonized paBent due to contact with a 
contaminated HCW  

0.0464 
 

16 

θ Probability of discharge 4.39 days-1 16 
νc ProporBon of admissions colonized with MRSA 0.0779 16 
ι N EffecBve nurse hand-decontaminaBons/hour  6.404 (11.92 direct care tasks/hour × 

56.55% compliance × ~95% efficacy) 
15,16,21,28 

ι N18 EffecBve nurse hand-decontaminaBons/hour for 1:1 
finite 

2.134 (6.404 x 6/18)  

ι N9 EffecBve nurse hand-decontaminaBons/hour for 1:2 
finite 

4.269 (6.404  x 6/9)  

ι N3 EffecBve nurse hand-decontaminaBons/hour for 1:6 
finite 

12.808 (6.404 x 6/3)  

ι N2 EffecBve nurse hand-decontaminaBons/hour for 1:9 
finite 

19.212 (6.404 x 6/2)  

ι D EffecBve physician hand-decontaminaBons/hour 1.748 (3.253 direct care tasks/hour × 
56.55% compliance × ~95% efficacy) 

15,16,21,28 

ι D2 Finite effecBve 2 physician hand-
decontaminaBons/hour 

0.874 (1.748 x ½)  

ι D3 Finite effecBve 3 physician hand-
decontaminaBons/hour 

0.583 (1.748 x 1/3)  

τN EffecBve nurse gown or glove changes/hour 2.728 (3.30 changes/hour × 82.66% 
compliance) 

6,16,27 

τN18 EffecBve nurse gown or glove changes/hour for 1:1 
Finite 

0.909 (2.728 x 6/18)  

τN9 EffecBve nurse gown or glove changes/hour 
For 1:2 finite 

1.819 (2.728 x 6/9)  

τN3 EffecBve nurse gown or glove changes/hour 
For 1:6 finite 

5.456 (2.728 x 6/3)  

τN2 EffecBve nurse gown or glove changes/hour 
For 1:9 finite 

8.184 (2.728 x 6/2)  

τD EffecBve physician gown or glove changes/hour 0.744 (0.90 changes/hour × 82.66% 
compliance) 

6,16,27 

τD2 Finite effecBve 2 physician gown or glove 
changes/hour 

0.372 (0.744 x ½)  

τD3 Finite effecBve 2 physician gown or glove 
changes/hour 

0.248 (0.744 x 1/3)  

μ Natural decolonizaBon rate 20.0 days-1 14 
γ ProporBon of Bme nurses spend with assigned 

paBents 
0.85 
 

Assigned7 
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Figure 1. Baseline metapopulation compartmental model of methicillin-resistant 
Staphylococcus aureus (MRSA) acquisition on varying staAing levels and the multiple staAing 
level models 
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Figure 2. Distribution of cumulative MRSA acquisitions per 1000 patient-days in 1,000 
simulated 18-bed ICUs under the diAerent staAing ratios with both Finite and Infinite Task 
Scenarios 
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Table S1 Transitions and Equations for the Metapopulation Model of MRSA Acquisition 

Process Event Transition Equation 
MRSA Acquisition & 
Transmission 
 

Nurse Contaminated (Assigned 
Patient) 

NU,i to 
NC,i 

𝜌!𝜎𝑁"#
𝑃$#

(𝑃$# + 𝑃"#)
	g			; 									𝑖 = 1…18 

Nurse Contaminated (Unassigned 
Patient)  𝜌!𝜎𝑁"#

𝑃$%
(𝑃$% + 𝑃"%)

	[(1 − g	) 	1 − 𝑖]⁄ 		; 									𝑖 = 1…18, 𝑗 = 1…18, 𝑗 ≠ 𝑖 

Physician Contaminated 
DU to DC 𝜌&𝜎𝐷"#

∑ (!"#
$%&

∑ )(!"*('"+#
$%&

;  𝑖 = 1…3, 𝑗 =1…18,	𝑥 =1…18 

Patient Colonized (Assigned 
Nurse Contact) PU,i to PC,i 𝜌!y𝑃"#

𝑁$#
(𝑁$# +𝑁"#)

	g			; 									𝑖 = 1…18 

Patient Colonized (Unassigned 
Nurse Contact)  𝜌!y𝑃"#

𝑁$%
(𝑁$% +𝑁"%)

	[(1 − g	) 	1 − 𝑖]⁄ 		; 									𝑖 = 1…18, 𝑗 = 1…18, 𝑗 ≠ 𝑖 

Patient Colonized (Physician 
Contact) PU.i to PC.i 𝜌&y𝑃"#

𝐷$%
(𝐷$% +𝐷"%)

		; 									𝑖 = 1…18, 𝑗 = 1…3 

MRSA Decolonization Natural De-colonization 
PC,i to PU,i µ𝑃$#		; 									𝑖 = 1…18 

Hand Hygiene and 
Decontamination 

Nurse Hand Decontamination 
(Assigned Patient) 

NC,i to 
NU,i 𝜄!𝑁$#		; 									𝑖 = 1…18 

Physician Hand Decontamination DCi to DUi 𝜄&𝐷$#; 													𝑖 = 1…3																				 

Nurse PPE Change (Assigned 
Patient) 

NC,i to 
NU,i 

𝜏!𝑁$#
𝑃$#

(𝑃$# + 𝑃"#)
	g			; 									𝑖 = 1…18 

Nurse PPE Change (Unassigned 
Patient)  𝜏!𝑁$#

𝑃$%
(𝑃$% + 𝑃"%)

	[(1 − g	) 	5]			; 									𝑖 = 1…18, 𝑗 = 1…18, 𝑗 ≠ 𝑖⁄  

Physician PPE Change 
DCi to DUi 

𝜏&𝐷$#
∑ 𝑃$%,
#-.

∑ =𝑃$% + 𝑃"%>,
#-.

				𝑖 = 1…3, 𝑗 = 1…18, 𝑥	

= 1…18																																																																																																													 
Patient Admissions and 
Discharge 

PU,i Discharge to PU,i Admission*  𝜃𝜈"𝑃"#		; 									𝑖 = 1…18  

PU,i Discharge to PC,i Admission*  𝜃𝜈$𝑃"#		; 									𝑖 = 1…18 

PC,i Discharge to PU,i Admission*  𝜃𝜈"𝑃$#		; 									𝑖 = 1…18 

PC,i Discharge to PC,i Admission*  𝜃𝜈$𝑃$#		; 									𝑖 = 1…18 
* Note that patient discharge to patient admissions are not true “transitions” of a single individual, but rather the instantaneous replacement of a discharged patient with a newly 
admitted patient to maintain a steady population state.  
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eMethods. Modeling Infec-ous Diseases in Healthcare Model Descrip-on Framework   

Purpose and Scope:  

Purpose: The purpose of this model is the es-ma-on of MRSA acquisi-ons based on staffing levels and 
approximate staff workloads found in the empirical literature.   

Scope: A single 18-bed intensive care unit in a U.S. academic medical center. This ICU is represented as a 
closed ICU, with no interac-on with the rest of the hospital.  

En44es, state variables, and scales:  

En--es: Pa-ents, Nurses and Doctors. Interac-on is defined en-rely based on poten-ally 
contamina-ng/transmiSng interac-ons. As a result, pa-ents interact with nurses and doctors but not 
each other, while nurses and doctors both interact with pa-ents but, again, not with each other. Nurses 
are specifically restricted to interac-ng with their assigned pa-ent group 85% of the -me and then 15% 
with pa-ents outside their assigned group.   

State Variables: Pa-ents are classified as Uncolonized and Colonized. Pa-ents are further segregated into 
six dis-nct groups, represen-ng pa-ents assigned to a par-cular nurse.  Nurses and Doctors are 
represented as either Uncontaminated or Contaminated and are iden-fied individually within the model.   

Scale: An 18-bed intensive care unit simulated for one year. 

Ini4aliza4on: In the ini-al state of the model (at -me = 0), there are six uncontaminated nurses, one 
uncontaminated doctor, and six groups of three pa-ents, all of whom are uncolonized. Further 
discussion of the effects of varying this ini-al state may be found in1. No burn-in period was used in the 
model as visual inspec-on suggested this ini-al state was rela-vely close to the stochas-c equilibrium of 
the model.   

Process Overview and Scheduling:  

A full descrip-on of the processes of the model may be found in the supplement table, and for brevity 
are not presented here. The model is simulated using Gillespie’s Direct Method2, which selects the -me 
the next event of any type occurs, and then randomly determines what type of event occurs based on 
their respec-ve rates. As such, there is no overlying scheduling structure.   

Input Data: The model uses no external input data to represent processes in the model.   

Agent interac4ons and organism transmission: 

Interac-ons: Interac-ons are event driven and concentrated on the interac-ons between healthcare 
workers (HCWs) and pa-ents. At a model’s given rate per hour 𝜌𝑁 for nurses and 𝜌𝐷 for doctors, HCWs 
engage in a “direct care task”3 which involves touching the pa-ent or their immediate surrounding 
environment.   

This interac-on prompts many other possible events in the model, including pathogen transmission 
(described below), HCW hand/body contamina-on, hand washing, and the donning/doffing of PPE by 
HCWs. 
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Pa-ents do not interact with other pa-ents directly – all pa-ent-to-pa-ent conflict is modeled as indirect 
interac-ons via shared and contaminated HCWs.  

Pathogen Transmission:  

Pathogen transmission is en-rely indirect. A pa-ent who is colonized (or has contaminated their 
environment) can contaminate a HCW they have come into contact with. If this HCW does not clear this 
contamina-on either by washing their hands or by removing contaminated PPE, there is a per-direct care 
task probability (ψ) that an uncolonized pa-ent will be successfully colonized, represen-ng a within-
healthcare facility transmission event. 

Stochas4city: 

 Due to the model’s implementa-on using Gillespie’s Direct Method2, the -mes events occur, and which 
event triggers at a given -me are fully stochas-c in the model. All other elements of the model, such as 
popula-on size and parameter values, are determinis-c.  

 Submodels: This model has no submodels.    

Model verifica4on, calibra4on and valida4on:  

Verifica-on: The model’s code was based on a previously published model4. All code used in the model 
was subject to code review, and several extreme value tests (seSng par-cular parameter values to very 
high or very low values that should subsequently result in implausible results) were conducted.   

Calibra-on and Valida-on: The baseline model was calibrated to the ψ as in a previously published study 
and gave us a baseline average incidence of 8.3 MRSA acquisi-ons per 1000 person-years 4. The baseline 
parameter for “direct care tasks” were taken from Ballerman et al3 and used as the fixed number of tasks 
a HCW can do per hour for our finite models. This was then altered to the propor-on of HCW in the ICU 
from the baseline for the infinite models. 
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