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Abstract 

Autism Spectrum Disorder (ASD) is a range of neurodevelopmental conditions characterized by impaired 

social interaction, learning, and restricted or repetitive behaviors. The underlying causes of ASD are still 

debated, but researchers have found many physiological traits to help understand the etiology of ASD. 

Some of the features that characterize people with ASD are immune markers (e.g. increased 

lymphocytes, cytokine levels), decreased neuropeptides like oxytocin and arginine vasopressin, folate 

deficiency, change in brain anatomy and physiology, and increased extra axial cerebrospinal fluid (CSF). 

CSF has a critical role in maintaining the homeostasis of the neuronal environment and has, therefore, 

been analyzed in multiple conditions that impact the central nervous system. The study of CSF is critical 

in understanding neurological disorders as its composition changes with the disorders, and these 

changes may indicate various disorder-related physiological mechanisms. For this systematic review, we 

searched the PubMed database for studies published between 1977 and 2023. We found 54 studies from 

276 eligible for this review after manual screening. We took stock of the evidence supporting the 

hypothesis that ASD alters the properties and composition of CSF. We systematically report on the 

different attributes of CSF in the ASD population that could 1) be potential biomarkers, 2) assist in 

understanding the origins and progression of ASD, and 3) shed light on the aspects of the relationship 

between ASD and the immune system. 
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Introduction 

Autism Spectrum Disorder (ASD) is a complex neurodevelopment disorder that results in an array of 

challenges associated with social interactions, communication skills, learning, and repetitive behaviors. 

Individuals with ASD may present varying degrees of impairment, etiology, and phenotypical profile. 

Hence, this condition is referred to as a “spectrum” disorder. According to the Centers for Disease Control 

and Prevention, the prevalence of ASD among children aged 8 years in the USA was 1 in 36 (2.8%; 

approximately 4% of boys and 1% of girls) in 2020 (CDC, 2022). Factors contributing to the etiology of 

ASD are diverse and not all fully ascertained but many studies have been carried out to determine the 

anatomical and physiological characteristics specific to the ASD population. Analyzing the properties of 

the cerebrospinal fluid in that population is one of the avenues that have been investigated to gain a 

deeper understanding of ASD. 

 

The cerebrospinal fluid, or CSF, is a clear, colorless fluid present in the region surrounding the brain and 

spinal cord of vertebrates (Adigun, Al-Dhahir, 2022). It serves multiple purposes, including keeping the 

brain floating, cushioning it from jolts and preventing associated trauma, helping distribute various 

substances between brain cells, and carrying away the waste produced from neural activity. The CSF is 

found in the brain ventricles and the cranial and spinal subarachnoid space. It is produced mostly by the 

neuroepithelial lining (called ependyma) of the brain ventricular system (Jiménez et al., 2014) and the 

central canal of the spinal cord. These special ependymal cells exist in the choroid plexus (CP), an organ 

that facilitates the entry of immune cells into the central nervous system (CNS) and monitors the 

synthesis, formation, and flow of CSF (Lun et al., 2015). The brain interstitial fluid and capillaries also 

secrete a small amount of CSF (Sakka et al., 2011). 

 

The CSF is regenerated about 4-5 times per day. It is similar in composition to blood plasma except that it 

contains negligible proteins and has higher concentrations of Na+, Cl-, and Mg+, and lower concentrations 

of K+ and Ca2+ (Sakka et al., 2011). Monoamines like dopamine, serotonin, melatonin, and neuropeptides 

like atrial natriuretic peptide (ANP) play an important role in CSF regulation (Faraci et al., 1990). Along 
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with monoamines and neuropeptides, arginine vasopressin (AVP) receptors are present on the surface of 

the choroidal epithelium. CSF secretion is found to be decreased by ANP and AVP (Faraci et al., 1990). 

 

CSF is easy to obtain and can be drawn from the spinal canal at very low risk. Because of its proximity to 

CNS, the white blood counts, protein levels, serum-glucose ratio, and other properties of the CSF can 

help differentiate CNS infections caused by distinct pathogens (Gomes, 2022), making it an important 

medical diagnostic tool. The circulation of CSF can also be determined non-invasively using Magnetic 

Resonance Imaging (MRI). The study and interpretation of CSF is critical to understand neurological 

disorders as its composition, quantity, and flow, changes with the disorders. (Hrishi & Sethuraman, 2019). 

 

With this review, we aim to synthesize the knowledge gathered from previous studies to clarify if and how 

ASD is associated with changes in the properties of the CSF. More specifically, we aim to thoroughly 

assess the evidence supporting the hypothesis that the composition and properties of the CSF are altered 

in ASD, compared to neurotypical individuals. 

 

Method 

The search strategy followed the PRISMA guidelines (Fig 1). PubMed database was queried with the 

research string ("cerebrospinal fluid" or csf) and ("Autism" or "ASD") not diet not schizo* not antisiphon 

not hydrocep* to filter the studies related to schizophrenia, hydrocephalus, and antisiphon devices. The 

PubMed was last queried in January 2024 and included papers (total 272) that were published between 

1977 and December 2023. The criteria for choosing the papers were: 

1. CSF was analyzed in the context of ASD.  

2. The paper was not a neuroimaging study, except when the focus was to characterize extra-axial 

CSF. 

3. The paper was not a review or meta-analysis. 

The papers were manually reviewed and screened by the first author (VS). Problematic cases were 

discussed or independently reviewed by the senior author (COR). Out of 272, only 50 fulfilled the 

selection criteria and are considered for this review. We also included 4 other research papers that were 
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not returned in the search results but were found by following the references of reviewed papers and are 

closely aligned with the aim of this review. The following data were collected from the studies: 

 Author and year (column 1) 

 Age of both study group (ASD participants) / control group (non-ASD or neurotypical) (column 2) 

 Size of the study group (count of ASD participants whose CSF is analyzed) (column 3) 

 Sex distribution (number of males and females) in the study group (column 3) 

 Size of the control group (count of non-ASD or neurotypicals whose CSF is analyzed) (column 4) 

 Sex distribution (number of males and females) in control group (column 4) 

 Observation (CSF characteristic in the study group as compared to the control group) (column 5) 

We manually collected the data from each study from the “abstract” and “results” sections and 

organized it in tabular form. We have used dashes (-) to denote missing values in the age/size 

column. To avoid bias, we also included studies with null results. 
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Fig 1: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart 

describing the paper selection process. 

 

Results 

A total of 54 papers were studied to find the characteristics of CSF in ASD. We organized the papers into 

seven categories based on their observed CSF properties. The categories are: 

1. Immune markers  

2. Extra-axial CSF 

3. Folate deficiency 

4. Protein / amino acid  

5. Monoamine neurotransmitters (serotonin, dopamine) 
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6. Nanopeptides (oxytocin, arginine vasopressin) 

7. Others (beta-endorphin, gangliosides) 

Two studies (Ramaekers et al., 2020) and (Young et al., 1977) were mentioned in two different tables 

(“monoamine neurotransmitters”, “folate deficiency”) and (‘immune markers”, “folate deficiency”), 

respectively. Fig 2 shows the distribution of research papers in each category.  

The body of literature reviewed is biased concerning age and sex. Most of the studies included either only 

males or a large number of males in their research. Also, most human studies were conducted with infants 

or children, with very few studies in adults.  

 

 

Fig 2: Distribution of research papers in each category. 

 

 

Presence of neuroinflammation markers in CSF 

Many comorbidities of ASD indicate an altered immune system, including allergies (Xu et al., 2018), 

gastrointestinal issues (Saurman et al., 2020), and autoimmune diseases (Hughes et al., 2018). These 

comorbid conditions add to the ASD burden, often resulting in poorer quality of life. The molecular 

properties of CSF change during inflammation and disease of the CNS (Świderek-Matysiak et al., 2023). 

In a neuro-inflammatory study (Lepennetier et al., 2019), the CSF and serum of 75 subjects was tested 

for 36 cytokines (CCL1–3, CCL7, CCL8, CCL11, CCL13, CCL19, CCL20, CCL22–27, CXCL1, CXCL2, 

CXCL5, CXCL6, CXCL8, CXCL9, CXCL11–13, CXCL16, CX3CL1, IL-2, IL4, IL-6, IL-10, IL-16, GM-CSF, 

IFN-γ, MIF, TNFα, and MIB1β). The authors observed that 26 out of 36 cytokine levels were increased 

compared to the control group. Also, CSF cytokine concentrations were positively correlated with CSF 
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immune cell counts (CD4 and CD8 T cells, B cells, plasmablasts, monocytes, and NK-natural killer cells) 

(Lepennetier et al., 2019). Inflammatory molecules have been shown to impact neurodevelopment, and 

early-life inflammation has been linked with neurodevelopmental disorders like ASD cerebral palsy, 

epilepsy, and schizophrenia (Jiang et al., 2018). In ASD, a significant increase in proinflammatory 

cytokines and growth factors was found, especially the chemokine MCP-1 (12-fold increase) (Vargas et 

al., 2005). MCP-1 is a chemokine that is associated with innate immune reactions and is vital for 

monocyte and T-cell activation in regions of tissue injury (Vargas et al., 2005). In a postmortem study of 

ASD, the lymphocytes were increased in white and gray matter tissues of most brain regions for ~65% of 

participants with ASD as compared to controls (DiStasio et al., 2019), irrespective of age and sex. 

 

Growth factors play a regulatory role in immune and vascular systems (Pardo et al., 2017). In a 

longitudinal study, a significant difference was found in CSF growth factors EGF and sCD40L (Pardo et 

al., 2017) in children (2 to 8 years of age) with ASD compared to controls. EGF is important for the 

growth, proliferation, and differentiation of numerous cell types and is involved in several pathways of 

neuronal function, whereas sCD40L modulates the function of B cells (Pardo et al., 2017). The CSF 

profiles of cytokines, chemokines, and growth factors did not change significantly in the follow-up 

performed 1.17 to 3.53 years later (Pardo et al., 2017). The same study found decreased levels of 

quinolinic acid, which indicates the inefficiency of kynurenine pathway to form quinolinic acid from 

tryptophan (Zimmerman et al., 2005). Decreased neopterin in CSF with increased biopterin suggested 

that the neuroinflammation in the subjects of this study was not due to the metabolic pathways 

(Zimmerman et al., 2005). 

 

Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine produced by macrophages/monocytes 

during severe inflammation (Idriss & Naismith, 2000) and its elevation is associated with several 

autoimmune diseases like rheumatoid arthritis, crohn’s disease, and psoriasis (Parameswaran & Patial, 

2010). The presence of inflammation and immune system over-activation in ASD is supported by reports 

of elevated levels of TNF-α in the CSF of an all-male cohort (Chez et al., 2007). Another study found 

elevated levels of TNF-α in the serum but not the CSF of a group of participants with ASD (Zimmerman et 
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al., 2005). However, this study reported no significant correlation between the level of TNF-α in serum 

and CSF, and the use of small sample sizes may be responsible for non-conclusive tests. Presence of 

neuroinflammation is further supported by a recent study that found elevated levels of TNF-α and 

interleukins (Than et al., 2023) in ASD. 

 

Despite immune dysregulation in ASD, initial studies found CSF immunoglobulin (antibodies) levels in the 

normal range in the ASD cohort when compared with previous studies (Young et al., 1977). Table 1 

summarizes the studies related to immune markers in CSF. 

    Table 1: Immune markers in CSF 
 

     
 

 
Age (study 
group / 
control 
group) 

Study group 
(ASD 
participants) 

Control group 
(Non-ASD 
participants) 

Observations (in the study group) 

Than et al. 
2023 
 

3 - 11 years / 
1 - 18 years 

26 (-) 8 (-) 
Significantly increased TNF-α, IL-4, IL-21 levels in 
CSF  

DiStasio   et 
al. 2019 

5 - 68 years / 
1 - 64 years 

25 
postmortem 
(19 males, 6 
females) 

30 postmortem (19 
males, 11 females) 

Increased lymphocytes in ~65% of males and 
females, across all ages, in most brain regions, 
white/gray matter, and leptomeninges; more CD3+ T 
lymphocytes than CD20+ B lymphocytes and CD8+ 
than CD4+ T lymphocytes 

Pardo       et 
al. 2017 

2 - 8 years 
67 (55 males, 
12 females) 

54 (41 males, 13 
females) 

Significant differences in the growth factors in the 
CSF of the ASD group with respect to controls; 
profiles of cytokines, chemokines, and growth 
factors did not change significantly in ASD in the 
follow-up years 

Chez et al. 
2007 

2.5 - 9.7 
years 

10 males 
  Compared with 
previous studies 

CSF TNF-α was significantly increased in 
comparison to serum-TNF-α 

Zimmerman 
et al. 2005 

2.7 - 10 
years /      2- 
14 years 

12 (10 males, 
2 females)  

15 (6 males, 9 
females)  

Elevated levels of TNF-α in the serum but not the 
CSF of the autism group; quinolinic acid and 
neopterin were decreased, and biopterin was 
elevated in autism group 

Vargas et al. 
2005 

3 - 10 years / 
12 - 45 years 

 
6 (4 males, 2 
females)  

 
9 (3 males, 6 
females) 

Significantly increased MCP-1(12-fold increase); no 
differences in expression of TARC or TGF-β1; 
increased cytokines (IL-6, IFN–γ, IL-8, MIP1β, NAP-
2, IFN-γ inducing protein-10) and angiogenin; 
increased growth factors (MIF, VEGF, LIF, 
osteoprotegerin, HGF, PARC, FGF-4, FGF-9, 
IGFBP3, and IGFBP4) 

Young et al. 
1977 

3.8 – 9.1 
years / -  

15 (11 males, 
4 females) 

Compared with 
previous studies 

CSF immunoglobulin levels were within normal 
limits   

 
Abbreviations- TNF: Tumor necrosis factor, MIF: Mesoderm inducing factor, VEGF: Vascular endothelial growth factor,  

                       TGF-β1: Tumor growth factor–β1, NAP-2: Neutrophil activating peptide-2, TARC: Thymus and activation  
                        regulated chemokine, FGF:  Fibroblast growth factor, IGFBP:  Insulin-like growth factor binding protein 
                       LIF: Leukemia inhibitory factor, HGF: Hepatic growth factor, BDNF: Brain-derived neurotrophic factor,  
                       MCP-1: a chemokine, MIP1β: Macrophage inflammatory protein-1β, IFN–γ: Interferon—gamma, IL: Interleukin 
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Extra axial CSF in infants later diagnosed with ASD 

The presence of increased CSF volume in the subarachnoid space surrounding the cortical surface is a 

brain abnormality referred to as extra axial cerebrospinal fluid (EA CSF). Having a large volume of CSF 

forces the ventricles to widen, causing pressure on brain tissues. This can eventually lead to brain 

damage. Many studies have confirmed that children later diagnosed with ASD had EA CSF from 6 to 24 

months compared to neurotypicals (Hallahan et al., 2009; McAlonan et al., 2005; Shen, 2018; Shen et al., 

2018; Shen & Piven, 2017). Excess CSF has been associated with an enlargement of the head 

circumference in ASD (Denier et al., 2022; Shen et al., 2013, 2018). EA-CSF has also been linked with 

enlargement of the perivascular spaces (fluid-filled channels that surround blood vessels in the brain) 

from 6 to 24 months in ASD, leading to sleep problems later in ages between 7 - 12 years (Garic et al., 

2023). The amount of EA CSF at 6 months has also been claimed to be predictive of later ASD symptom 

severity (Shen et al., 2013). CSF volume was reported to stabilize before 4 years of age (Peterson et al., 

2021). No significant difference in CSF volume was found for adults in one study (Creasey et al., 1986), 

although a different study reported subarachnoid CSF/meningeal CSF volume to be significantly different 

in ASD compared to controls in a male-only cohort of mean age 15 years (Tate et al., 2007). Finally, a 

study involving proband-sibling pairs (i.e., infants at elevated likelihood for ASD given the presence of an 

older sibling with a diagnosis of ASD) found the brain size of the younger siblings to be correlated with the 

scores on the Social Communication Questionaries of the older proband sibling in the groups where the 

younger sibling was diagnosed with ASD at 24 months but found no such association for EA CSF at 6, 

12, or 24 months (Girault et al., 2022).  

 

The results for the relationship between EA CSF and ASD are summarized in Table 2. 
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Table 2: Extra-axial CSF 

 

 

Low folate level in CSF 

Folate is a vitamin (B9) essential for brain health. It supports the creation of DNA and RNA, the formation 

of neurotransmitters, and the development of the nervous system during pregnancy (Balashova et al., 

2018; Gordon, 2009). The predominant form of folate in cerebrospinal fluid is 5-Methyl-tetra-hydrofolate  

 
Age (study 
group / 
control 
group) 

Study group (ASD 
participants) 

Control group (Non-
ASD participants) 

Observations (in the study group) 

Garic et al. 
2023 

6.5, 12.7, 24.7 
months / 6.7, 
12.6, 24.7 
months 

47 (ELA; ASD+; 40 
males, 7 females) 
180 (ELA; ASD-; 102 
males, 78 females) 

84 (TLA; ASD-; 55 
males, 29 females) 

Across all groups, enlarged PVS at 24 
months was associated with greater EA 
CSF volume from ages 6 to 24 months and 
more frequent night wakings at school-age 

Girault et al. 
2022 

6 months  42 ELA; ASD+  149 ELA; ASD-   no significant association between proband 
autistic traits (SCQ score) and sibling EA 
CSF at 6, 12, or 24 months (for both the 
ASD+ and ASD- groups) 

12 months 39 ELA; ASD+  182 ELA; ASD-   

24 months 42 ELA; ASD+  159 ELA; ASD-  

Denier et al. 
2022 

>=20 years 120 (all males) 136 (all males) 
Increased head circumference due to EA-
CSF 

Peterson et 
al. 2021 

3 - 42 years 97 (all males) 
 
92 (all males) 

No difference in EA CSF volume between 
ASD and neurotypical 

Shen et al. 
2018 

2 - 4 years 
159  
(132 males, 27 
females)  

77  
(49 males, 28 females) 

ASD group had an average of 15.1% more 
EA CSF than controls; enlarged head 
circumference in the ASD group 

Shen et al. 
2017 

6 - 24 months 221 ELA (47 ASD+) 122 TLA 
Elevated levels of EA CSF in ELA group 
than TLA;18% more EA CSF at 6 months in 
ELA ASD+ than in the ELA group 

Shen et al. 
2013 

6 - 9 months  
33 ELA (22 males, 11 
females) (10 ASD+) 

22 TLA (15 males, 7 
females) 

 
Significantly elevated EA CSF in ELA 
infants at 6-9 months and continued until 
1.5 - 2 years; the amount of EA CSF at 6 
months was predictive of the severity of 
ASD symptoms; enlarged brain at an early 
age 
 

1 - 1.2 years 27 ELA 16 TLA 

1.5 - 2 years 26 ELA 16 TLA 

Hallahan et 
al. 2009 

Mean age:  
18 years /  
32 years 

114 (96 males, 18 
females) 

60 (53 males, 7 
females) 

Significantly larger volume of peripheral 
CSF in ASD than controls 

Tate et al.  
2007 

Mean age  
14.7 years / 
13.6 years   

34 males 26 males 
Significantly different relationship between 
subarachnoid CSF/meningeal volume than 
controls 

McAlonan 
et al. 2005 

12 ± 1.8 years 
/ 11 ± 1.2 
years   

17 (16 males, 1 
female) 

17 (16 males, 1 
female) 

Increased total CSF volume  

Creasey et 
al. 1986 

18 - 39 years / 
21 - 37 years 

12 males 16 males No significant difference in volume of CSF  

 
Abbreviations- ASD+: later diagnosed with ASD, ASD-: later diagnosed without ASD, ELA: Elevated likelihood for ASD,           

                      EA CSF: Extra axial cerebrospinal fluid, TLA: Typical likelihood for ASD, PVS: Perivascular spaces 
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(5-MTHF). Cerebral folate deficiency (CFD) is caused by the malfunction in the folate receptor alpha 

(FRA), a protein that binds to folate (Gordon, 2009). FRA is created in the choroid plexus localized within 

the border of the cerebral ventricles and moves into the CSF (also released by the choroid plexus) to be 

transported to the brain. CFD can be caused by the presence of FRA autoantibodies that interfere with 

the function of that receptor.  

 

The earliest study (Lowe et al., 1981) conducted on autistic and non-autistic neuropsychiatric patients 

found the CSF folate levels to be within the normal range in both groups. The subset of patients in the 

autistic group who were given oral folic acid supplements did not show clinical improvements (Lowe et al., 

1981). Similarly, a more recent longitudinal study (two time points separated by 1-3 years) exploring the 

association between CFD and autism found no significant correlation between CSF 5-MTHF levels and 

autistic features (Shoffner et al., 2016). However, a few studies found low CSF 5-MTHF in ASD (Frye et 

al., 2013; Moretti et al., 2005; Ramaekers et al., 2007) and proposed oral d,l-leucovorin (folinic acid) 

(Moretti et al. 2005; Ramaekers et al. 2007; Frye et al. 2013) to alleviate ASD associated symptoms. In 

some cases (Frye et al., 2013, 2020; Moretti et al., 2005; Ramaekers et al., 2007) oral folic acid improved 

verbal communication, motor skills, and CSF 5-MTHF levels in the ASD group. Frye et al (2013) reported 

the presence of FRA in 75.3% (70/93) of the ASD group. A recent study found the CSF to have low folate 

in only 21% (8/38) of ASD participants when compared to controls (Ramaekers et al., 2020).  

Table 3 summarizes the CSF folate deficiency papers in ASD. 
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  Table 3: Folate levels in CSF 

 
Age (study 
group / 
control group) 

Study group 
(ASD 
participants) 

Control group 
(Non-ASD 
participants) 

Observations (in the study group) 

Ramaekers et 
al., 2020  

3.6 – 18 years 
/ 4.4 - 16 years 

38 (31 males, 7 
females) 

24 (12 males, 12 
females) 

Low MTHF in 21% participants 

Shoffner et al.,  
2016 

2 - 6 years,  
 

Visit 1: 67  
 

140 
CSF 5-MTHF levels vary significantly over time in 
an unpredictable way; no significant relationship to 
clinical features of autism 

3.5 - 9.5 years 
/  
2 - 10 years 

Visit 2: 31 (1-3 
years later) 

Frye et al.,  
2013 

2.9 - 17.4 
years 

93 (84 males, 9 
females) 

44 treated with 
leucovorin 
26 untreated 

High prevalence (75.3%) of FRA; low CSF 5-
MTHF; 44 children were given leucovorin calcium 
tablets; improvement in 44 treated vs. 26 untreated 
children on ratings of verbal communication, 
receptive and expressive language, attention  

Ramaekers et 
al., 2007 

2.8 - 12.3 
years / 3.3 - 
11.4 years 

25 (18 males, 7 
females) 

25 (14 males, 11 
females) 

CSF 5-MTHF was low in 23/25 (92%) in ASD; oral 
folic acid supplements led to normal CSF 5-MTHF 

Moretti et al.,  
2005 

6 years 
Case report: 1 
female 

- 
Low CSF 5-MTHF; treatment with folinic acid 
resulted in improved CSF 5-MTHF concentration 
and better motor skills 

Lowe et al.,  
1981 

4 - 22 years / 
 2 - 32 years 

16 19 
CSF folate levels were within the normal range in 
both ASD and control group 

Young et al. 
1977 

3.8 – 9.1 years 
/ - 

15 (11 males, 4 
females) 

Compared with 
previous studies 

CSF folate levels were within normal limits  

 
Abbreviations- FRA: Folate receptor autoantibodies, MTHF:  Methyl-tetra-hydrofolate 
 

 

 

Changes in the CSF protein levels 

Amino acids are molecules that combine to form proteins. These proteins serve many cellular functions. A 

large proportion of proteins in the normal CSF is derived from blood, e.g., albumin which constitutes   

35 - 80% of total protein in CSF. About 20% of the proteins in CSF are produced in the brain by neurons, 

glial cells, and leptomeningeal cells (Reiber, 2003). Changes in the brain-derived CSF protein 

concentration may indicate CNS disorder, impaired blood-brain barrier, or disruption in CSF flow (Reiber, 

1994, 2003; Schilde et al., 2018; Wichmann et al., 2021). The CSF analysis in ASD found altered levels 

of albumin and several proteins. In adults with ASD, the overall protein concentration and albumin 

quotient (ratio of CSF and serum albumin (Andrews et al., 1994)) were found to be increased (Runge et 

al., 2020). An elevated concentration of ethanolamine (Perry, 1978) suggested CNS abnormality in ASD.  

 

STAT3 is a protein activated by ischemic or traumatic injury in the brain (Dziennis & Alkayed, 2008). In a 

rat model of autism, the STAT3 protein was found to be significantly elevated in CSF (Khera et al., 2022). 
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Long-term treatment with Guggulsterone (GST), a plant-derived extract used as an antidepressant, 

improved locomotor activity, memory, depressive behavior, and STAT3 levels in this animal model (Khera 

et al., 2022). 

 

Astrocytes are glial cells that ensure the defense and support of CNS during development, across 

adulthood, and in aging. Glial fibrillary acidic protein (GFAP) and S-100 are two of the many proteins 

expressed in astrocytes, that provide strength to glial cells and maintain blood-brain barrier (Kuroda, 

1983). In response to brain injury or other neuro-damaging conditions, astrocytes trigger processes 

(reactive astrogliosis) that change the level of GFAP (Verkhratsky & Nedergaard, 2018; Yang & Wang, 

2015). The CSF GFAP levels were found to be higher in the ASD group than in controls of the same age 

range (Ahlsén et al., 1993; Rosengren et al., 1992). In contrast, similar S-100 protein concentrations were 

observed in both groups (Rosengren et al. 1992; Ahlsén et al. 1993).  

 

To find the association between the CSF proteins and autistic traits in twins diagnosed with ASD and 

other neurodevelopmental disorders, a study measured 203 proteins in cerebrospinal fluid (n=86, 

ASD=19, neurotypical=41). The autistic traits correlated significantly with four CSF proteins (Smedler et 

al., 2021): 

1. C-C motif chemokine ligand 23 (CCL23) – a chemokine active on immune cells like T lymphocytes 

and monocytes (Karan, 2021). 

2. Agouti-related protein (AGRP) – synthesized in hypothalamic neurons that are involved in energy 

metabolism and appetite. 

3. Chitinase-3-like protein 1 (CHI3L1) – protein marker of inflammation. 

4. Lipopolysaccharide-induced TNF-α factor (LITAF). 

CCL23, AGRP, CHI3L1 correlated negatively, and LITAF correlated positively with autistic traits. Within 

twin pairs, no CSF protein concentrations were significantly associated with autistic traits.  

Proteins such as insulin-like growth factors, IGF-1, and IGF-2, are involved in the growth and 

development of the nervous system. In ASD, low CSF IGF-1 concentration was detected (Riikonen et al., 

2006; Vanhala et al., 2001), but no difference was found in CSF IGF-2 levels (Riikonen et al., 2006). 
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Nerve growth factor (NGF), a protein similar to insulin (Andres & Bradshaw, 1980), is vital for the 

development and maintenance of sympathetic, sensory, and forebrain cholinergic neurons (Aloe et al., 

2015). A study evaluating the CSF NGF concentrations found no significant differences in ASD compared 

to controls (Riikonen & Vanhala, 1999). 

 

In the CSF of 3 children with ASD, including two siblings, succinyladenosine and succinyl-aminoimidazole 

carboxamide riboside purines were found (Jaeken & Van den Berghe, 1984), indicating a deficiency in the 

adenylosuccinate enzyme in the brain of at least a subgroup of individuals with genetically defined ASD 

(Jurecka et al., 2015). This enzyme is involved in the synthesis of purines and adenosine 

monophosphate. 

 

Table 4 summarizes the results the relationship between the concentrations of amino acids/proteins in the 

CSF of individuals with ASD. 
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Table 4: Protein levels in CSF 

 
Age (study 
group / control 
group) 

Study group 
(ASD 
participants) 

Control group 
(Non-ASD 
participants) 

Observations (in the study group) 

Khera et al.  
2022 

6 months / 6 
months 

18 Wistar rats 
(PPA-induced 
rat model of 
autism) 

12 Wistar rats 

The level of CSF STAT3 protein is significantly 
elevated in the ASD model; long-term treatment with 
GST improved locomotor activity, memory, depressive 
behavior, and STAT3 level 

Smedler et al. * 
2021   

8 - 23 years /    
8 - 23 years  

19 
 

41  
 

Twin study; in CSF across individuals, autistic traits 
correlated negatively with CCL23, AGRP, and CHI3L1, 
and positively with LITAF; within twin pairs, no CSF 
protein concentrations were significantly related with 
autistic traits 

Runge et al.  
2020 

18 - 53 years / 
18 - 61 years 

36 (23 males, 13 
females) 

39 (6 males, 33 
females) 

Increased protein concentrations and albumin 
quotients in ASD 

Riikonen et al. 
2006 

1.9 - 15.9 years 
25 (20 males, 5 
females) 

16 (8 males, 8 
females) 

IGF-1 concentration was significantly lower; head 
circumferences correlated with IGF-1; no difference in 
IGF-2 concentrations  

Vanhala et al.  
2001 

1.9 - 6.5 years / 
1.9 - 5.5 years 

11 (7 males, 4 
females) 

11 (5 males, 6 
females) 

Levels of IGF-1 were significantly lower in ASD 

Riikonen et al 
1999 

Mean age:  
3.9 years /  
4.3 years 

14 (9 males, 5 
females) 

24 (12 males, 12 
females) 

No significant between-group difference in NGF in CSF 

Ahlsén et al.  
1993 

1.2 – 16 years / 
1.3 – 18 years 

47 (32 males, 15 
females) 

10 (7males, 3 
females) 

No difference in CSF S-100 protein; CSF GFAP in 
ASD was ~3x higher than in the control group 

Rosengren et al. 
1992 

1.2 - 16 years / 
1.3 - 29 years 

47 (32 males, 15 
females) 

13 (8 male, 5 
females) 

Higher CSF GFAP levels in ASD; similar S-100 protein 
concentrations in both groups 

Jaeken and 
Berghe 1984 

1.6 - 3.7 years /  
3 (2 males, 1 
female) 

82 
CSF concentration of succinyladenosine and 
succinylaminoimidazole carboxamide riboside were 
significantly increased compared to controls  

Perry et al. ** 
1978 

2 - 23 years / 2 - 
15 years 

16 23 
The mean concentration of ethanolamine in CSF was 
significantly elevated 

 
Abbreviations- GFAP: Glial fibrillary acidic protein, BCAA: Branched-chain amino acids, IGF: Insulin-like growth factor,  
                        GST: Guggulsterone, NGF: Nerve growth factor; PPA: Propionic acid, CCL23: C-C motif chemokine ligand 23,  
                        AGRP: Agouti-related protein, LITAF: Lipopolysaccharide-induced TNF-α factor 
 
  * ASD group (19/86); Control group (41/86); Males (55/86); Females (33/86) 
** ASD group (28/34); Males (19/28): CSF analyzed in ASD group (16/19) 

 

 

Monoamine neurotransmitter synthesis in ASD 

Serotonin and the catecholamines dopamine, adrenaline, and noradrenaline are all important monoamine 

neurotransmitters. These compounds are involved in many CNS functions, including motor control, 

cognition, and emotion, and autonomic functions such as cardiovascular, respiratory, and gastrointestinal 

control (Pons, 2010). The synthesis of serotonin and dopamine leads to the formation of 5-

hydroxyindolacetic acid (5-HIAA) and homovanillic acid (HVA), respectively (Lenchner JR, & Santos C., 

2023). Changes in the levels of 5-HIAA and HVA are associated with aggressive, impulsive, and 

depressive behavior (Seo et al., 2008). In ASD, the CSF HVA was found to be increased (Gillberg et al., 
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1983; Gillberg & Svennerholm, 1987; Komori et al., 1995; Toda et al., 2006), indicating a disturbance in 

dopamine synthesis. However, no significant difference was reported for 5-HIAA (Gillberg et al., 1983; 

Gillberg & Svennerholm, 1987; Komori et al., 1995). A later study found no significant difference in the 

mean HVA and mean 5-HIAA levels in the ASD and control groups (Narayan et al., 1993). A case report 

of one male child with ASD reported low 5-HIAA values (Adamsen et al., 2011). Extending this study to a 

larger ASD cohort (Adamsen et al., 2014), low 5-HIAA levels were found in 56% (26/46) participants. A 

2020 study also reported reduced 5-HIAA concentration compared to controls in 34% (13/38) of the ASD 

participants (Ramaekers et al., 2020).  

 

Tryptamines, such as the serotonin and melatonin neurotransmitters, are derived from the essential 

amino acid, tryptophan. Tryptamine is a trace amine that activates amine-associated receptors in the 

brain of mammals and regulates the activity of dopaminergic, serotonergic, and glutamatergic systems 

(Gainetdinov et al., 2018). Indoleacetic acid, a tryptamine metabolite, was found in typical concentration 

in the CSF of people with ASD (Anderson et al., 1988), suggesting that the central metabolism of 

tryptamine is likely normal in ASD. However, differences in the tryptophan metabolism were reported in 

ASD (Boccuto et al., 2013; Kałużna-Czaplińska et al., 2017) particularly in relation to the kynurenine 

pathway (Bryn et al., 2017; Carpita et al., 2023; Launay et al., 2023), but CSF analyses of metabolites 

generated by the kynurenine pathway are lacking.  

  

Tetrahydrobiopterin (BH4) participates in the synthesis of monoamine neurotransmitters like dopamine, 

noradrenaline, and serotonin. This compound contributes to cellular metabolic pathways generating 

energy and protecting cells from inflammation (Eichwald et al., 2023). Studies have shown that ASD is 

related to the dysfunctional cerebral dopaminergic and serotoninergic systems (Nakamura et al., 2010). In 

the ASD group, the CSF BH4 levels were found to be significantly reduced compared to the control group 

(Tani et al. 1994). Low serotonin levels (5-HIAA) in CSF were unchanged when 6R-L-erythro-5,6,7,8-

tetrahydrobiopterin (R-THBP) was used as an oral therapy (Komori et al., 1995), but half of the ASD 

group (7 out of 14) showed improvement in autistic traits. Secretin, a digestive hormone, was found to 
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promote the metabolism of serotonin and dopamine in the CNS and improved speech and sociability in 

58%  (7/12) of the participants with ASD whose CSF HVA level was elevated (Toda et al., 2006). 

   

Table 5 summarizes the results related to monoamine neurotransmitters. 

 

Table 5: Monoamine neurotransmitters in CSF 

 
Age (study 
group / control 
group) 

Study group 
(ASD 
participants) 

Control group 
(Non-ASD 
participants) 

Observations (in the study group) 

Ramaekers et 
al., 2020  

3.6 – 18 years / 
4.4 - 16 years 

38 (31 males, 7 
females) 

24 (12 males, 12 
females) 

Lowered 5HIAA in 34%; low 5HIAA to HVA ratio in 
13%; low 5HIAA in 5% of ASD group 

Adamsen et al. 
2014 

- 98  CSF not analyzed Low 5HIAA in CSF in 26 ASD participants 

Adamsen et al. 
2011 

4.5 years 1 male Case report Low levels of the 5-HIAA in CSF 

Toda et al.  
2006 

4 - 16 years / 3 
- 15 years 

12 (8 males, 4 
females) 

17 (12 males, 5 
females) 

Increased HVA (9 out of 12), 5-HIAA (7 out of 12), 
R-BH4 levels (7 out of 12) in CSF and improved 
autistic symptoms after secretin administration 

Komori et al. 
1995 

2 - 9 years / 2.8 
- 7 years  

14 (7 males, 7 
females) 

18 (17 males, 1 
female) 

Increased level of mean HVA in ASD; no significant 
difference in mean 5-HIAA between ASD and 
control group; 7 participants showed improvements 
in autistic traits after R-THBP therapy 

Tani et al.  
1994 

2.3 - 22.5 years 
/ 0 - 12 years 

20 (15 males, 5 
females) 

10 (7 males, 3 
females) 

NH2 and R-BH4 levels in autistic children were 
reduced to 66.1% and 41.5% with respect to 
controls 

Anderson et al. 
1988 

5.2 - 10.8 years 
/ 3.7 - 9 years 

8 (7 males, 1 
female) 

10 (all males) 
No difference in CSF levels of the tryptamine 
metabolite and IAA between the ASD and the 
control groups 

Narayan et al. 
1993 

2.9 - 8.5 years / 
6.1 - 11.5 years 

17 (12 males, 5 
females) 

15 (11 males, 4 
females) 

No significant difference in the group means for 
5HIAA and HVA levels in the autistic children and 
the control group 

Gillberg at al.  
1987 

1 - 16 years / 
Mean age: 8.3 
years 

25 (20 males, 5 
females) 

20 (15 males, 5 
females) 

Increased mean HVA concentration; no significant 
difference in 5-HIAA, between ASD and control 
group 

Gillberg et al. 
1983 

3 - 14 years /  
3 – 14 years 

13 (10 males, 3 
females) 

13 (10 males, 3 
females) 

Increased level of HVA in ASD; no significant 
difference in 5-HIAA between ASD and control 
group  

 
Abbreviations- 5HIAA: 5-hydroxyindolacetic acid, R-BH4:  6R-5,6,7,8-tetrahydrobiopterin, NH2: 7,8-dihydroneopterin,  
                        HVA: Homovanillic acid, IAA: Indoleacetic acid 
                         

 

 

Change in Oxytocin and Arginine vasopressin concentration in CSF 

Oxytocin (OT) and arginine vasopressin (AVP) are nonapeptides that can cross the blood-brain barrier. 

These peptides are mainly synthesized by neurons of the paraventricular nucleus (PVN) and supraoptic 
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nucleus (SON) of the hypothalamus (Higashida, 2016; Jin et al., 2007). Studies have demonstrated that 

AVP/OT neurons extend processes that cross the walls of the third ventricle to release these 

neuropeptides directly into the CSF (Grinevich et al., 2016; Taub et al., 2021). Both nonapeptides are 

found in the brains of males and females alike (Higashida et al., 2018; Neumann, 2008) and have an 

important role in neuronal function, social recognition, and social behavior in mammals, including humans 

(Higashida, 2016; Lukas & Neumann, 2013). Any change in the level of OT and AVP in CSF is indicative 

of impaired social behavior in mammals.  

 

In the CSF, the effect of OT and AVP has mostly been studied on monkeys and rodent models (e.g., 

VPA-induced rat models of autism). In the VPA-induced model, the pregnant rats were injected with 

valproic acid (VPA). The offspring of these VPA-exposed mothers show behavioral, immunological, and 

physiological changes similar to those described in the autistic population (Liu et al., 2018). 

 

CSF OT/AVP levels were altered in studies on monkeys and rat models of ASD. Low levels of OT in CSF 

(Dai et al., 2018; Gerasimenko et al., 2020) were found in adult VPA-induced rats and adult CD-157 

knockout mice. The suggested therapy in the case of low OT concentration is to give oral nicotinamide 

riboside (Gerasimenko et al., 2020), a naturally occurring form of vitamin B3 (Conze et al., 2016),  and 

aerosolized OT administration (Modi et al., 2014). These treatments provided a therapeutic effect on 

autistic-like behaviors in rodents and monkeys. The AVP studies established that CSF AVP 

concentrations correlate with social behaviors in monkeys (Oztan et al., 2021; Parker, 2022; Parker et al., 

2018).  

 

In OT/AVP studies on humans, the mean CSF AVP level was significantly lower in an all-male ASD group 

(Parker et al., 2018) as compared to controls. The mean CSF AVP concentration was found to be 

decreased in the ASD group (24 males, 12 females), irrespective of sexes (Oztan et al., 2018). Intranasal 

vasopressin treatment improved autism-like symptoms (Parker, 2022). Research reported that infants 

who were later diagnosed with ASD had very low mean neonatal CSF AVP concentrations (Oztan et al., 
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2020). In an OT study with 0-3 months infants, no difference in mean neonatal CSF OT concentrations 

was found in infants later diagnosed with ASD compared to control.  

 

Altogether, the studies support the use of OT and AVP as CSF biomarkers in studying ASD or social 

symptoms in autism. Table 6 comprises the ASD-related studies evaluating the concentration of these 

nonapeptides in the CSF.    

 

Table 6: Concentration of OT and AVP in the CSF 

 

 

 
Age (study 
group / control 
group) 

Study group (ASD 
participants) 

Control group 
(Non-ASD 
participants) 

Observations (in the study group) 

Parker  
2022 

Infant monkeys  
7 Rhesus monkeys (all 
males) 

7 Rhesus monkeys 
(all males) 

Low CSF AVP concentration in ASD animal 
models 

Oztan et al. 
2021 

1.3 - 6.3 years / 
1.3 - 6.3 years 

75 Rhesus monkeys (all males) Test-retest at 3 time points; low AVP levels; 
monkeys with the lowest CSF AVP concentration 
showed maximum social impairment 

42-43 Rhesus monkeys (all males) 

42-43 Rhesus monkeys (all males) 

Wu et al.  
2021 

Adolescent rats  
VPA-induced rat model 
12 (all males) 

15 (all males) 
 

Rats exposed to VPA showed impaired 
communication and repetitive behavior; reduced 
number of AVP-ir cells in CSF 

Gerasimenko et 
al. 2020 

Adult mice 
CD-157 knockout mice 
(all males) 

Wild-type mice (all 
males)  

Low levels of OT in CSF; suggested treatment 
was the oral nicotinamide riboside 

Oztan et al. * 
2020 

0 - 3 months 9  21 

Infants later diagnosed with ASD had significantly 
lower mean neonatal CSF AVP concentrations 
((9/9) as compared to those who were not later 
diagnosed with ASD (17/21)) 
No difference in mean neonatal CSF OT 
concentrations in infants (6/9) later diagnosed with 
ASD compared to those who were not later 
diagnosed with ASD (12/21) 

Parker et al. 
2018 

1 - 5 years / 1 - 5 
years  

15 (male Rhesus 
monkeys; low social)   

15 (male Rhesus 
monkeys; high 
social) 

CSF AVP concentrations were correlated with 
sociability  

5.3 - 19 years / 
5.3 - 19.5 years 

7 (all males) 7 (all males) 
Significantly decreased CSF AVP concentrations 
in the ASD group 

Oztan et al. 
2018 

1.5 - 9 years 
36 (24 males, 12 
females) 

36 (24 males, 12 
females) 

Mean CSF AVP concentration was lower in the 
ASD group; no sex differences for AVP were 
found between the ASD and the control groups 

Dai et al. 2018 adult rats 
VPA induced rat model 
(12 male and 15 female 
rats) 

21 male and 18 
female rats 

Reduced OT concentration in CSF of VPA rats 

Abbreviations- AVP: Arginine vasopressin, VPA: Valproic acid, OT: Oxytocin, ir: immunoreactive 
 
* ASD group (9/33); Control group (21/33); Females (3/33); Males (30/33) 
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Beta-endorphin levels and gangliosides in CSF 

β-Endorphins are one of five groups of naturally occurring opioid peptides found in neurons of the 

hypothalamus and the pituitary gland. In stressful situations, the pituitary gland releases beta-endorphins 

into the CSF (Gifford & Mahler, 2012). Beta endorphins are associated with emotions like hunger, thrill, 

pain, and cognition (Pilozzi et al., 2020). Studies found no significant difference in beta-endorphin levels 

between the ASD and the control group (Nagamitsu, 1993). 

 

Brain gangliosides play an important role in synaptic transmission, and increased synaptic activity leads 

to the release of more gangliosides (Lekman et al., 1995). Four major gangliosides (GM1, GD1a, GD1b, 

and GT1b) were found to be increased in the CSF of the ASD group (Lekman et al., 1995; Nordin et al., 

1998) Table 7 presents the results related to beta-endorphin and gangliosides in CSF of ASD. 

 

Table 7: Concentration of beta-endorphins and gangliosides in the CSF 

 
Age (study 
group / 
control 
group) 

Study group 
(ASD 
participants) 

Control group 
(Non-ASD 
participants) 

Observations (in the study group) 

Nordin et al. 
1998 

1 - 22 years /  
3 - 20 years 

85 (65 males, 
20 females) 

29 
Significantly higher concentration of ganglioside GM1 in ASD 
group but no significant differences in ganglioside GDla, GDlb, 
GTlb, and total ganglioside concentration  

Nagamitsu et 
al. 1997 
 

2 - 6.4 years / 
 0 - 10.8 
years 

19 (17 males, 2 
females) 

23 (18 males, 5 
females) 

No significant difference in β-endorphin levels in ASD 

Lekman et al. 
1995 

9.0 ± 3.8 
years / 8.8 ± 
5.0 years 

20 (12 males, 
 8 females) 

25 
Brain gangliosides, GM1, GD1a, GD1b and GT1b, and their 
sum was increased in CSF of ASD group 

 

 

Discussion 

Our systematic review highlights the various changes in the composition of CSF associated with ASD. 

This systematic review provided clear evidence of increased cytokines (TNF-α, IFN-γ, IL-6, IL-8, MIP1β, 

NAP-2, IFN-γ), chemokines (MCP-1), lymphocytes, proteins, and growth factors in the CSF of the ASD 

population. ASD is also characterized by increased axial-CSF, GM1 ganglioside, and decreased folate, 

oxytocin, vasopressin, and serotonin (Fig 3a). 
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Different treatments were proposed to treat various deficiencies, such as nicotinamide riboside and 

aerosolized OT administration for low oxytocin, intranasal vasopressin (in animal models) for decreased 

AVP, folic acid supplements (Leucovorin) for folate deficiency, and secretin to promote dopamine and 

serotonin metabolism (Fig 3b).  

                  

                   (a)           (b) 

Fig 3: Summary of the CSF properties in ASD and the suggested treatments. Panel (a) summarizes 
the CSF properties that are increased, decreased, and not significantly different from neurotypicals. 
Panel (b) highlights the treatments, as mentioned in the literature for different abnormal 
physiological traits of CSF.        

          

These physiological characteristics of CSF in ASD led us to draw the conclusions discussed in the 

following subsections. 

 

Neuroinflammation and active innate immune system 

The increased presence of immune markers like cytokines, chemokines, and growth factors suggests an 

active innate immune system. Elevated CSF-TNF-α but normal blood serum- TNF-α indicates 

neuroinflammation. This unregulated inflammation can induce apoptosis or cells’ death (Idriss & Naismith, 

2000) and lead to inflammatory diseases (Van Loo & Bertrand, 2023).   

 

Extra-axial CSF increases between 6 months and 2 years of age in ASD 

EA-CSF at a young age indicates a disruption in CSF absorption in the first year after birth when CSF 

production is elevated (Murphy et al., 2020). The CSF increases till age 2 and then plateaus. This 

elevation results in increased head circumference, third ventricle, and total CSF volume in ASD compared 
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to typically developing individuals. The increased EA-CSF constitutes a promising biomarker for the early 

detection of ASD. 

 

Folate deficiency is linked to autistic characteristics 

Folate + S-adenosylmethionine (SAMe) is crucial in regulating the production of THBP (or BH4), which is 

a co-factor in the synthesis of monoamine neurotransmitters (Bender et al., 2017). Thus, folate deficiency 

in ASD can be linked to low BH4 and impaired monoamine synthesis, low serotonin levels, and high HVA. 

Research indicates that these deficiencies result in sleep disorders and disrupted psychomotor, social, 

and verbal skills (Galli et al., 2022; Sasa et al., 2003; Yoshimura et al., 2020), all traits associated with 

ASD. These observations explain the use of R-TBHP and folic acid as treatments to improve 

concentration, motor skills, and verbal communication in ASD.  Fig 4 shows the relationship of ASD with 

folate deficiency. 

 
Fig 4: Folate deficiency linked to ASD characteristics. 

 

Anxiety and sleep disorder in ASD are related to disturbed dopamine synthesis 

Anxiety (Guerrera et al., 2022; van Steensel et al., 2011) and sleep disorders (Devnani & Hegde, 2015) 

are two of the most common comorbidities associated with ASD. Research has shown that the 

dopaminergic system is involved in anxiety disorder (Dong et al., 2020) and in the regulation of the sleep 

cycle (Oishi & Lazarus, 2017). CSF studies establish that high HVA levels are found in ASD, indicating a 

disturbance in dopamine synthesis. Thus, anxiety and sleep disorders in ASD can be attributed to defects 

in the dopamine pathway. 
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Impulsive behavior is related to low serotonin levels 

Self-injurious behaviors (SIB) and aggression are some of the severe symptoms associated with ASD 

(Gulsrud et al., 2018). Low serotonin (synthesized as 5-HIAA) is found to be responsible for aggression 

and self-harming behaviors (Linnoila & Virkkunen, 1992; Seo et al., 2008), suggesting an association 

between autistic traits like SIB and altered serotonin pathways.  

 

Disturbed tyrosine (TYR) and tryptophan (TRP) pathway in ASD 

The TYR and TRP are the two important metabolic pathways (Fig 5) modulating mood, behavior, 

cognition, and neuroimmune interaction (Aquili, 2020). These pathways lead to the formation of 

metabolites like HVA, quinolinic acid, IAA, and 5-HIAA (Galla et al., 2021). Elevated HVA, low 5-HIAA, 

and quinolinic acid, as well as altered BH4 and NH2 levels indicate dysfunction in TYR and TRP 

pathways. 

    

 

 

 

 

 

 

 

Fig 5: Tyrosine and Tryptophan pathways leading to the formation of HVA, Quinolinic acid, IAA, 5-HIAA 

 

Limitations 

This systematic review has some limitations. Most importantly, we used only one database (Pubmed) for 

the search, and the studies were systematically screened and reviewed by only one author (VS). Also, no 

review protocol was prepared in writing and registered before conducting the review. However, the two 

authors regularly discussed the search and review procedures, the intermediate and final outcomes of 
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this process, and the problematic cases. The senior author (COR) selectively reviewed papers and areas 

with inconsistent or seemingly problematic results to ensure consensus between the two authors.  

 

Gaps and future directions 

We found several gaps in the literature. For example, treatments that showed promising results (Chez et 

al., 2012; Frye et al., 2013; Komori et al., 1995; Toda et al., 2006) were not tested on large cohorts. Also, 

only 12 out of 54 studies were carried out on ASD adults. Adult studies on ASD would help understand its 

progression in later life and the physiological changes taking place with age. Furthermore, the research 

findings in ASD adults may motivate customized healthcare services to improve their quality of life. Also, 

many papers did not highlight the results by sex despite studying both males and females (Pardo et al., 

2017; Ramaekers et al., 2020; Runge et al., 2020; Vargas et al., 2005). The reporting of research 

observations by biological sex is crucial because of between-sex differences. A disorder like ASD may 

present different physiological traits in females than males, thus requiring different treatment and 

healthcare services.  

 

With this systematic review, we found that the impairment of different inter-connected systems 

characterizes ASD, leading to a significant change in CSF traits. This conclusion confirms our hypothesis 

that the properties and composition of CSF are altered in ASD. 
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