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Abstract

In March 2020, the World Health Organization declared a world pandemic of
COVID-19, which can manifest in humans as a consequence of virus infection of
SARS-CoV-2. On this context, this work uses Data Mining and Machine Learning
techniques for the infection diagnosis. A methodology was created to facilitate this task
and can be applied in any outbreak or pandemic wave. Besides generating diagnosis
models based only on signals and symptoms, the method can evaluate if there are
differences in signals and symptoms between waves (or outbreaks) through explainable
techniques of the machine learning models. Another aspect is identifying possible
quality differences between exams, for example, Rapid Test (RT) and Reverse
Transcription–Polymerase Chain Reaction (RT-PCR). The case study in this work is
based on data from patients who sought care at Piquet Carneiro Polyclinic of the State
University of Rio de Janeiro. In this work, the results obtained with the tests were used
to diagnose symptomatic infection of the SARS-CoV-2 virus, based on related signals
and symptoms, and the date of the initial of these signals and symptoms. Using the
Random Forrest model, it was possible to achieve the result of up to 76% sensitivity,
86% specificity, and 79% accuracy in the results of tests in one contagion wave of the
SARS-CoV-2 virus. Moreover, differences were found in signals and symptoms between
contagion waves, in addition to the observation that exams RT-PCR and RT Antigen
tests are more reliable than RT antibody test.

1 Introduction 1

COVID-19, Coronavirus Disease 2019, which can manifest in humans as a result of an 2

infection caused by the SARS-CoV-2 virus, had the first cases reported in Wuhan, 3
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Hubei Province, China [1]. In March 2020, the WHO (World Health Organization) 4

declared the COVID-19 pandemic. The ease of contagion combined with the frequent 5

mutations of the SARS-CoV-2 virus, which even occur in the glycoprotein spike 6

(Protein S, D614G) [24], bring on the emergence of new variants. These factors 7

combined provide new waves of contagion around the world. 8

To try to reduce the number of infected people, it was necessary to test, especially 9

people with symptoms or who had contact with people infected with the virus. 10

Moreover, in the absence of tests, many doctors evaluate the patient’s signs and 11

symptoms, which are clinical manifestations perceived by the patient and are 12

fundamental in assessing diseases. Thus, the analysis and study of signs and symptoms 13

are essential to improve the quality and speed of diagnosis [Zhang et al. 2020] and, 14

consequently, treatment. 15

On the other hand, Machine Learning (ML) is one of the areas of Artificial 16

Intelligence (AI) that has been applied in various sectors of society, including health, 17

since the middle of the last century [28]. Its use has greatly intensified in this area, due 18

to the digital storage of patient data. Today its importance is recognized, with 19

innovative perspectives in several areas of health [29], [32], [31] and [33]. 20

Thus, Machine Learning has many advantages when applied to the health area, 21

manipulating a high volume of variables, in a safe and reproducible way, in a much 22

shorter period of time than a human being [34], [35], [36] and [33]. However, many of 23

the algorithms used in the ML area are considered black boxes, making it difficult for 24

the health area to accept the results achieved. 25

In this context, the objective of this work is to investigate and evaluate 26

methodologies and models based on ML for the diagnosis of COVID-19, based only on 27

signs and symptoms of patients, to assist health professionals during outbreaks or 28

pandemic. The main contributions of this paper are: (i) evaluate the use of ML 29

techniques to infer the diagnosis of COVID-19 considering different waves of contagion; 30

(ii) increase the quality and explainability of COVID-19 diagnoses, to help healthcare 31

professionals decide the best treatment for patients; (iii) indicate the most prevalent 32

signs and symptoms in the different waves of contagion; (iv) evaluate and identify the 33

variation of signs and symptoms in the different waves of contagion. 34

The rest of this document is organized as follows. The following section presents the 35

related work. Materials and methods with the methodology used in this paper to 36

evaluate signs and symptoms in different periods and tests used during the pandemic of 37

COVID-19 are presented in Section 3. In turn, Section 4 describes the Case Study and 38

finally, Section 5 concludes and presents prospects for future works. 39

2 Related Work 40

In a study conducted in Jordan [47], an online form was used to collect data for 41

developing a diagnostic tool for COVID-19 using Multi-Layer Perceptron (MLP) and 42

Support Vector machine (SVM). The attributes used in the study were signs and 43

symptoms, gender and age. The study also used X-ray images in the inference which 44

provided an accuracy above 90% for both models. 45

Another study, carried out in England [48], used data from more than one million 46

participants who took part in the REACT-1 survey (REal-time Assessment of 47

Community Transmission-1) on SARS-CoV-2 infection. The data used were: symptoms 48

of the patients, results of the Reverse Transcription Polymerase Chain Reaction 49

(RT-PCR) tests and results of the genetic analysis of the virus SARS-CoV-2, which were 50

divided into two groups, anyone who was infected with the virus SARS-CoV-2 51

wild-type, and the other group with those infected with the B.1.1.7 (Alpha) variant of 52

SARS-CoV-2. The LASSO algorithm was used to perform the analyses. The study 53
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obtained 72% of sensitivity and 64% of specificity for the first group (wild SARS-CoV-2 54

virus) and 74% of sensitivity and 64% specificity for the group with the Alpha variant. 55

Initially, tests were performed with 26 different symptoms, which were later reduced to 56

the seven following symptoms that provided the best results: anosmia, ageusia, fever, 57

cough, chills, lack of appetite and myalgia. 58

In turn, the study carried out in the United Kingdom [49], used a cell phone 59

application for users to inform the signs and symptoms after the third day of the first 60

symptom and the presence of pre-existing diseases. The Hierarchical Gaussian model, 61

Bayesian framework and Logistic Regression were used. There was a division into 62

groups: health professionals or not, gender, age, body mass index and date of onset of 63

symptoms. There was no data equalization, but an attempt was made to reduce the 64

imbalance between negatives and positives in the database using bootstrapping, where 65

the percentage of positives increased from 2% to 5%. The best result was obtained in 66

the groups of health workers using the hierarchical Gaussian model, achieving a 67

sensitivity of 76%. Although, in this study, the most relevant symptoms varied between 68

groups, in the younger people group, for example, only anosmia and chest pain were 69

significant for the positive diagnosis for COVID-19. 70

A similar study in England [50] used data from the United Kingdom and the United 71

States of America that were obtained through a cell phone application in which patients 72

reported symptoms, BMI (body mass index), sex, pre-existing diseases, demographic 73

data and the result of the RT-PCR test, in the period from March 24, 2020 to April 21, 74

2020. The Logistic Regression algorithm was used to make the inferences and the data 75

were not equalized. Instead, the inputs were divided into groups by sex, age and BMI. 76

The study had a mean sensitivity of 65% and mean specificity of 78% for UK data and 77

mean sensitivity of 66% and mean specificity of 83% for USA data. The following 78

symptoms were associated with a positive result: Anosmia, lack of appetite, fatigue, 79

fever, cough, diarrhea, delirium, hoarseness, breathing difficulty, abdominal pain and 80

neck pain. 81

On the other hand, the work presented in [52] developed a Machine Learning model 82

based on signs and symptoms, age, gender and whether there was contact with 83

confirmed cases of COVID-19. The Israeli Ministry of Public Health provided data with 84

RT-PCR results collected from March 2, 2020 to April 7, 2020. There was no 85

equalization of data between positive and negative. The gradient-boosting model was 86

used, with results that reached 0.90 in the area under the ROC (AUC) curve of 87

sensitivity x specificity. Using Shapley, a game-theoretic explainable technique, it was 88

concluded that the most significant attributes for the diagnosis were: cough, fever, 89

whether a person had contact with a confirmed case of COVID-19, if you are a man, if 90

you are over 60 years old, headache, sore throat and dyspnea. 91

Still, in the context of COVID-19 diagnosis, a study carried out in the State of Rio 92

de Janeiro [33] focused on identifying the underreporting of COVID-19 cases. Data were 93

obtained through an electronic form with self-reported signs and symptoms and onset of 94

symptoms of COVID-19. To infer whether or not a given respondent had COVID-19, 95

models were developed based on Machine Learning. The best model indicated accuracy 96

just above 60%. This model was used to identify respondents who were possibly sick 97

and not tested, being considered underreported cases. 98

Differently from the works presented in this section, the work proposed in this article 99

analyzes the signs and symptoms by waves and types of tests used to diagnose 100

COVID-19. To highlight the differences, a comparison of the work proposed in this 101

article and the studies presented in this section can be seen in Table 1. 102

As can be clearly seen, differently from the other works, only signs and symptoms 103

described by health professionals and the COVID-19 test results are used as attributes. 104

Moreover, data were divided and analyzed in waves to assess the impact on the model. 105

February 10, 2024 3/22

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302722doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302722
http://creativecommons.org/licenses/by/4.0/


Table 1. Comparison of proposed work with related work.
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this work X X X X X X
Souza [33] X X X X X X X X

Fayyoumi [47] X X X X
Elliott [48] X X X
Canas [49] X X X
Menni [50] X X
Zoabi [52] X X X

This work is also the only one that equalizes the data between positive and negative for 106

COVID-19 tests. Although the real world is not equalized, evaluating models with 107

balanced data is important to eliminate possibly biased results. In addition, this work 108

also analyzes the influence of signs and symptoms on the result generated by the 109

machine learning model through explainable and Shapley techniques. 110

3 Materials and methods 111

The context of data manipulation by Machine Learning algorithms normally inserts it in 112

the Data Mining process for extracting information from databases. Thus, based on the 113

process applied in Data Mining, the data must be initially evaluated, verifying the need 114

to apply data pre-processing techniques. In general, it is necessary to organize the data, 115

identify outliers and missing data, normalize and equalize databases and, finally, select 116

variables, so that the algorithms can make the most of the data and present better 117

results [41] [42] [43]. 118

An overview of the methodology adopted in this work can be seen in Figure 1. The 119

process can be divided into three phases: data acquisition, pre-processing and 120

application and, finally, analysis of classification results obtained by Machine Learning. 121

Fig1.tif 122

Initially, the data corresponding to the patient’s signs and symptoms and the results 123

of the COVID-19 tests are obtained through health information systems (Figure 1.(1)) 124

or by any electronic form (Figure 1.(2)). In turn, the preprocessing step starts with the 125

combination of the corresponding data identified in the databases (signs and symptoms 126

+ test results), if they are stored in different files (Figure 1.(3)). It is essential to 127

highlight that the data does not need to be identified, that is, personal or sensitive data 128

do not need to be available. Then, when applicable, quantitative data is normalized, 129

Figure 1.(4). Qualitative attributes, sortable or not, must be transformed into numeric 130

data. In the case of this work, the attributes are categorical and dichotomous, being 131

therefore transformed into zero (0) or one (1). Still, during the data preprocessing stage, 132

the data are separated by contagion waves, Figure 1.(5), that is, the data are divided 133
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based on the start and end dates of the outbreaks, and have their bases balanced with 134

respect to the output attribute (the number of patients with COVID-19 test results 135

positive and negative). The next step is the selection of attributes, Figure 1.(6), with 136

the application of filter-type techniques, selecting the most relevant variables for the 137

Machine Learning algorithms, aiming to maximize the classification accuracy. 138

After data preprocessing, stage 3 starts with the training of the Machine Learning 139

algorithms, Figure 1.(7). Each model is proposed based on the definition of its 140

hyperparameters, followed by the evaluation of its results through cross-validation, 141

which can be based on one or more metrics (in general, the averages of accuracy, recall, 142

precision and f1 and the ROC/AUC) obtained with the n models during cross-validation. 143

The best average cross-validation results identify the most suitable algorithms/models. 144

Once the models are selected, the testing phase is started (Figure 1.(8)), which is 145

evaluated (Figure 1.(9)) by the same metrics used in the validation and, in general, plus 146

the confusion matrix. Finally, in order to understand the importance of each attribute 147

in the obtained result, the phase of understanding the results (Explainable), Figure 148

1.(10), is carried out, using, for example, the method from Shapley. 149

Thus, five algorithms were selected, four for the COVID-19 prediction, focusing on 150

the specificities of each wave, and one for the Explainable analysis: Random Forrest [9], 151

Multi-Layer Perceptron [10], XGBoost [45], Logistic Regression [46] and the Shapley 152

Additive Explanation for the input importance analysis. This set of algorithms was 153

chosen to investigate the database’ linear and nonlinear characteristics and explore each 154

algorithm separately and combined (ensemble). 155

The Random Forest (RF) algorithm is an ensemble decision tree algorithm that 156

generates many classifiers and combines their results. The algorithm uses bootstrap 157

aggregating or bagging, by randomly selecting records, with replacement, to be used in 158

the construction of each tree, reducing variance without harming bias [9]. Breiman [8] 159

observed that there was a deep correlation between decision trees, and to reduce this 160

effect, a random selection of attributes that may be available for the construction of 161

each tree, or even each branch of the tree, was implemented, decreasing the correlation 162

between the decision trees. 163

The XGBoost was developed primarily to increase the performance and speed at 164

which small decision trees are created to reduce the errors of previous ones, using 165

gradient-boosted. In the case of the gradient-based “boostin” algorithm, the errors 166

made by previous trees as they are created are minimized by the decreasing gradient 167

algorithm, and this algorithm has been proposed by Tianqi Chen [11] and applied by 168

many other developers. XGBoost or Extreme Gradient Boosting combines software and 169

hardware optimization techniques to produce superior results. This has the benefit of 170

improving the algorithm by tuning the model for better performance. The XGBoost can 171

choose among three gradient boosting techniques: gradient boosting, regularized 172

gradient boosting and Stochastic Boosting. It is effective in reducing computation time, 173

provided by optimal use of memory resources. In addition, the algorithm can handle 174

missing values, supports parallel structures when building trees, and has the unique 175

quality of boosting performance by adding data to already trained models (Continuous 176

Training) [12] [13]. 177

The Multi-Layer Perceptron (MLP) is an algorithm inspired by biological neurons. It 178

is based on constructing Neural Networks (NN)(interconnecting neurons between layers) 179

that learn to map input data relationships to output data, in supervised problems, by 180

adjusting synaptic weights based on errors identified during the learning process [53]. 181

Logistic regression is a simple statistical technique widely used in many areas. It 182

aims to generate, from input data (whether numerical or nominal), a linear model that 183

allows the prediction of values defined by a categorical variable, usually binary [14]. 184

Lundberg and Lee [19] included Shapley Additive Explanations as an approach to 185
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explain the output of machine learning algorithms, enabling model interpretation. The 186

Shapley algorithm’s essence is to measure each variable’s contribution to the final result. 187

This algorithm category has become important for models that are not intrinsically 188

explainable. 189

4 Results and Discussion 190

This section presents and evaluates the results considering the diagnostic investigation 191

from the perspective of different waves of the COVID-19 pandemic, and the 192

qualification of the tests used. 193

Database 194

All data used in this research refer to the COVID-19 tests carried out at the Piquet 195

Carneiro Polyclinic, which is part of the health complex of the State University of Rio 196

de Janeiro. 197

This study was conducted in accordance with ethical principles outlined in the 198

Declaration of Helsinki and was approved by the Pedro Ernesto University Hospital 199

Ethical Committee (CAAE: 30135320.0.0000.5259). 200

The symptoms freely described on the form by the patients were unified (e.g., 201

“cephalea and headache”), based on the analysis of three evaluators. To perform the 202

diagnoses, the following laboratory tests were considered: RT-PCR, Rapid Antibody 203

Test (RT-antibody), and Rapid Antigen Test (RT-antigen). 204

Serologic antibody tests are used to identify infection (IgM) or immunity (IgG) to 205

COVID-19. Results can be positive for immunoglobulin G and M antibodies from days 206

4-5 of symptom onset. In general, 70% of patients show IgM type antibodies within 8-14 207

days of symptom onset and 98% of IgG after several weeks, but the duration of this 208

immune response is not rigid and may vary from person to person [38]. In turn, nasal 209

RT-PCR should be performed within 3-7 days of the onset of symptoms [39]. On the 210

other hand, the Rapid Antibody Test (RT-antibody) (a rapid chromatographic 211

immunoassay for the qualitative detection of specific antigens of SARS-CoV-2 present in 212

the human nasopharynx), is based on the identification of antibodies and thus should be 213

performed after day seven from the onset of symptoms. The RT-PCR is considered the 214

standard test for COVID-19. More recently, a new type of Rapid Test has been 215

increasingly used, the antigen RT. The latter is considered more accurate than the 216

RT-antibody. As can be seen, some tests may be more or less appropriate depending on 217

the time the test is performed and the onset of signs and symptoms. 218

From Figures 2 and 3, the start and end dates of the first, second and third waves 219

were defined. These figures indicate the moving average of patients notified by the Rio 220

de Janeiro state health system. Thus, the start and end dates of the first wave are 221

03/18/2020 and 06/18/2020 (Figure 2). Similarly, based on the analysis of those notified 222

by the Rio de Janeiro State health system (Figures 2 and3), we obtained the start and 223

end dates for the second wave, 10/18/2020 and 2/18/2021, respectively, and the dates 224

12/25/2021 and 2/25/2022, for the start and end for the third wave (Figure 3). Possible 225

waves are indicated with red rectangles in Figure 3 that presents the chart of confirmed 226

cases of symptomatic infection by the SARS-CoV-2 virus by date of onset of symptoms 227

in the city of Rio de Janeiro. The light blue line represents the 7-day moving average1. 228

Fig2.tif 229

Fig3.tif 230

1Source: Municipal Health Secretariat of Rio de Janeiro -
https://experience.arcgis.com/experience/38efc69787a346959c931568bd9e2cc4 - 11/17/2021
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After evaluation by health specialists, 19 signs and symptoms, with the highest 231

prevalence, were selected for 1st and 2nd waves and 19 signs and symptoms for 3rd 232

wave (not exactly the same signs and symptoms). At this first stage, a decision was 233

made to consider these 19 signs and symptoms more broadly, including those with low 234

representativeness in the database. This approach allows the variable selection step and 235

the machine learning algorithms to purge signs and symptoms that do not contribute to 236

discriminating the diagnosis in each of the three waves. 237

Figure 4 shows the prevalence of the 19 signs and symptoms in patients with 238

negative and positive results, according to the RT-PCR test, considered from the first 239

and second waves. On the other hand, Figure 5 presents a bar chart depicting the 240

primary signs and symptoms reported by patients during the third wave, all of whom 241

underwent the Rapid Antigen Test at PPC, with samples collected by nasal swab. 242

Fig4.tif 243

Fig5.tif 244

Preprocessing Database 245

It is important to highlight that, for a detailed analysis, instead of only analyzing data 246

from the first, second, and third waves, data were divided according to the different 247

waves and types of tests (RT-PCR, RT-Antigen, and RT-antibody) performed to 248

diagnose the patient as positive or negative. 249

This division resulted in 10 datasets that can be seen in the list below and the first 250

column of Table 2, and also in the first column of most of the following tables (i.e. 251

column with the label Data group). 252

1. RT-PCR (1st wave + 2nd wave) 253

2. RT-PCR 1st wave 254

3. RT-PCR 2nd wave 255

4. RT-antigens 3rd wave 256

5. RT-antibody (1st wave + 2nd wave) 257

6. RT-antibody 1st wave 258

7. RT-antibody 2nd wave 259

8. RT-PCR + RT-antibody (1st wave + 2nd wave) 260

9. RT-PCR + RT-antibody 1st wave 261

10. RT-PCR + RT-antibody 2nd wave 262

The quantitative records of patients with signs and symptoms related to the type of 263

test and its results (negative and positive) for the first, second and third waves were 264

unbalanced. Therefore, for the models to have a better performance, without bias 265

influence, data equalization was performed, i.e., based on the number of positives, 266

entries with negative results were randomly chosen, making a balance by undersampling 267

the class with the major number of records. 268

The data from the first, second and third waves, that indicated symptoms, were 269

defined as input attributes in dichotomous format (zero and one). Thus, the symptoms 270

were defined as “1” for the patient who indicated that he had the symptom and “0” 271

otherwise. In addition, the diagnosis column was also categorized as “1” if the test 272

result (RT-PCR, RT-antibody or RT-antigen) was positive and “0” when negative for 273

SARS-CoV-2 infection. 274
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After that, approximately 10% of positive and negative cases were separated from 275

the balanced base to compose the test base, and the rest was left for model training and 276

validation. This procedure was performed on all bases, and Table 2 shows the amount 277

of data for each phase (i.e. Training and Validation or Test). 278

Table 2. Number of records for each database: using approximately 90% for training
and validation, and 10% for testing

Data group Training and validation Test
1 - RT-PCR (1st wave + 2nd wave) 2436 272
2 - RT-PCR 1st wave 1228 138
3 - RT-PCR 2nd wave 839 93
4 - RT-antigens 3rd wave 1080 120
5 - RT-antibody (1st wave + 2nd wave) 1990 222
6 - RT-antibody 1st wave 1748 196
7 - RT-antibody 2nd wave 67 9
8 - RT-PCR + RT-antibody (1st wave + 2nd wave) 4426 494
9 - RT-PCR + RT-antibody 1st wave 2926 332
10 - RT-PCR + RT-antibody 2nd wave 769 87

Model Evaluation and Attribute Selection 279

A detailed evaluation of attributes was carried out separately for each base. A 280

sensitivity analysis type evaluation was performed, which led the models to the best 281

results; such analysis consists of removing each of the signs and symptoms and 282

evaluating the improvement in validation results, (i.e., after the improvement evaluation 283

by removing one attribute, we proceeded with other evaluations verifying the removal of 284

a second attribute). This evaluation only included data groups 2, 3, and 4. 285

This evaluation considered each algorithm indicated (Multi-Layer Perceptron, 286

Random Forest and Linear Regression) using the hyperparameters presented in Table 3, 287

which were applied to all groups (from 1 to 10). Through exploratory analysis, variable 288

selection, and the search for optimal hyperparameters (using a search grid) (Table 3), 289

we identified the signs and symptoms that most effectively enhance the models, leading 290

to better results. 291

Furthermore, this evaluation for the best attribute choice was jointly considered with 292

searching for better hyperparameters from the cross-validation method, which divided 293

the dataset into 5 equal parts stratified (each part has the same amount of positive and 294

negative diagnostics). Thus, the models were built with four parts of the database for 295

training and one part for validation. This procedure was performed five times and, at 296

least once, one of the five parts was used as the validation set. Finally, the model, per 297

database, with the best average accuracy was selected. The main metric for selecting 298

the best model was accuracy, but other measures of model performance were used, such 299

as precision, Recall, F1, AUC, sensitivity, and specificity. 300

Table 4 shows the attributes that produced the best results for each wave, the study 301

was carried out for data groups 2, 3 and 4. So, after evaluating the results with the 302

removal (individually) of each remaining attribute, it was concluded that after removing 303

“nasal congestion” and “chest pain” in the case of the first and second wave and only 304

“chest pain” for the third wave, removing more attributes from the databases was not 305

appropriate. 306

In Table 4 can be seen that the signs and symptoms of the 1st and 2nd wave, with 307

the best validation results, were the same. On the other hand, in the 3rd wave, some 308

signs and symptoms that better helped the model classify positive or negative for 309

SARS-CoV-2 infection were different. 310
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Table 3. Parameter settings used in SearchGrid for MLP, RF and LR.

hidden layer sizes 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100
activation relu, tanh
solver adam, sgd, lbfgs
alpha 0.001, 0.05

learning rate constant, adaptive
MLP nesterovs momentum True, False

beta 1 0.95
beta 2 0.999

learning rate init 0.0001, 0.005, 0.001, 0.05
momentum 0.9, 0.95

hidden layer sizes 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100
activation relu, tanh
solver adam, sgd, lbfgs
alpha 0.001, 0.05

RF learning rate constant, adaptive
nesterovs momentum True, False

beta 1 0.95
beta 2 0.999

learning rate init 0.0001, 0.005, 0.001, 0.05
momentum 0.9, 0.95

tol 0.5, 0.001
C 1.0, 2.0, 3.0

LR fit intercept True, False
class weight None

solver lbfgs, saga

Table 4. Attributes selected by sensitivity analysis with best wave validation result

1st wave 2nd wave 3rd wave
ageusis ageusis asthenia
anosmia anosmia chills
asthenia asthenia headache
chills chills nasal congestion

headache headache runny nose
runny nose runny nose diarrhea
diarrhea diarrhea dyspnoea
dyspnoea dyspnoea abdominal pain

abdominal pain abdominal pain joint pain
back and lumbar pain back and lumbar pain sore throat

sore throat sore throat eye pain
eye pain eye pain sneeze
fatigue fatigue fatigue
fever fever fever

lack of appetite lack of appetite lack of appetite
myalgia myalgia myalgia
cough cough nausea or vomiting

cough

Table 5 presents the best results obtained for the databases considered, with the best 311

hyperparameters shown in Tables 6, 7 and 8. Again, each database had its 312

hyperparameters determined by the hyperparameter search algorithm, and the criteria 313
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Table 5. Metrics - average validation errors

Method Data group #records Accuracy Precision Recall f1 AUC
1 2852 0.65 0.67 0.60 0.63 0.70
2 1228 0.62 0.61 0.53 0.57 0.66
3 839 0.70 0.70 0.64 0.67 0.71
4 1080 0.67 0.67 0.65 0.66 0.68
5 1990 0.64 0.64 0.53 0.58 0.65

RF 6 1748 0.64 0.64 0.48 0.55 0.65
7 67 0.64 0.64 0.67 0.66 0.66
8 4426 0.65 0.67 0.59 0.62 0.68
9 2956 0.62 0.64 0.54 0.58 0.66
10 769 0.69 0.70 0.67 0.68 0.72
1 2852 0.65 0.67 0.60 0.63 0.70
2 1228 0.62 0.62 0.61 0.62 0.65
3 839 0.69 0.70 0.64 0.67 0.71
4 1080 0.66 0.66 0.68 0.66 0.68
5 1990 0.64 0.65 0.59 0.62 0.66

MLP 6 1748 0.61 0.66 0.47 0.55 0.65
7 67 0.62 0.66 0.47 0.55 0.64
8 4426 0.67 0.65 0.67 0.67 0.68
9 2956 0.68 0.65 0.68 0.68 0.65
10 769 0.68 0.66 0.68 0.68 0.61
1 2852 0.65 0.65 0.62 0.62 0.70
2 1228 0.61 0.62 0.54 0.57 0.64
3 839 0.68 0.66 0.76 0.71 0.74
4 1080 0.65 0.66 0.61 0.64 0.68
5 1990 0.62 0.63 0.59 0.61 0.65

RL 6 1748 0.61 0.64 0.51 0.56 0.64
7 67 0.57 0.65 0.50 0.53 0.51
8 4426 0.63 0.64 0.60 0.62 0.67
9 2956 0.61 0.66 0.43 0.52 0.64
10 769 0.66 0.67 0.66 0.66 0.72

were based on the validation metrics. 314

Observing Table 5 and evaluating the results for all metrics loosely (without 315

considering the significance of the proximity between the results), it can be mentioned 316

that: 317

- for data group 1, RT-PCR (1st wave + 2nd wave), the RF and MLP algorithms 318

obtained equal measures for all metrics evaluated, and RL obtained almost equal values 319

except for precision, recall and f1. 320

- the MLP algorithm showed slightly better results for the RT-PCR 1st wave (data 321

group 2) than RF and RL. 322

- the RF and MLP algorithms also remained almost identical for the RT-PCR 2nd 323

wave database (data group 3). However, the results for the metrics recall, f1 and AUC 324

were superior when using the RL algorithm. 325

- for RT-antigens for the third wave (data group 4), the RF and MLP algorithms 326

had nearly identical metrics and RL showed slightly lower results. 327

- overall, the RL algorithm outperformed the RF and RL algorithms for all 328

RT-antibody bases (data groups 5,6 and 7), with a highlight to the 64% accuracy for 329

the base relative to the patients of the second wave (data group 7). This result is out of 330

line, but the very small amount of data from this base should be noted. 331
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Table 6. Best hyperparameters per data group - Random Forest
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1 entropy 10 2 4 8
2 entropy 4 2 7 4
3 gini 10 4 7 2
4 gini 4 8 2 16
5 gini 8 2 3 16
6 entropy 8 3 6 2
7 entropy 10 2 8 16
8 gini 7 3 7 100
9 entropy 10 2 8 100
10 gini 6 3 8 100

Table 7. Best hyperparameters per data group - Multi-Layer Perceptron

D
at
a
gr
ou

p

ac
ti
va
ti
on

al
p
h
a

h
id
d
en

la
ye
r
si
ze
s

le
ar
n
in
g
ra
te

co
n
st
an

t

m
om

en
tu
m

n
es
te
ro
v
s
m
om

en
tu
m

so
lv
er

1 relu 0.05 50 adaptive 0.05 0.95 True sgd
2 tanh 0.001 90 constant 0.005 0.9 True adam
3 relu 0.05 50 adaptive 0.05 0.9 False sgd
4 relu 0.001 70 constant 0.05 0.95 True sgd
5 relu 0.001 30 constant 0.005 0.9 True adam
6 relu 0.05 50 constant 0.005 0.9 True adam
7 tanh 0.05 90 constant 0.001 0.9 True adam
8 relu 0.05 50 adaptive 0.05 0.95 True sgd
9 relu 0.05 50 adaptive 0.05 0.95 True sgd
10 relu 0.05 50 adaptive 0.05 0.95 True sgd

- the MLP algorithm (considering all metrics) performed better for the case of the 332

bases with the total number of patients tested by RT-PCR and RT-antibody were 333

aggregated (data group 8 and 9), except for the case of the second wave (data group 10), 334

where RF had the best result. 335

Applying the Mann-Whitney test on the values of the average accuracies, the 336

following p-values > 0.05 were obtained for the comparison of the results obtained 337

between MLP and RF, MLP and RL and RF and RL: p-value= 1, p-value= 0.1211 and 338

p-value= 0.1415, respectively. These values mean that the results are not significantly 339

different. 340

Applying the Mann-Whitney test on the mean values of the precision metrics, the 341

following p-values > 0.05 were obtained for the comparison of the results obtained 342

between MLP and RF, MLP and RL and RF and RL: p-value= 0.9362, p-value= 0.2713 343

and p-value= 0.4472, respectively. These values mean that the results, from the point of 344
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Table 8. Best hyperparameters per data group - Logistic Regression
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1 1.0 True lbfgs 0.001
2 1.0 True saga 0.5
3 1.0 True lbfgs 0.5
4 1.0 True lbfgs 0.001
5 2.0 True lbfgs 0.5
6 3.0 True saga 0.5
7 1.0 False saga 0.5
8 1.0 True lbfgs 0.001
9 1.0 True saga 0.5
10 1.0 True lbfgs 0.001

Table 9. Validation with medium accuracy (k-fold=5) with the best evaluated
hyperparameter set

Data group MLP RF RL
1 0.65 0.65 0.65
2 0.62 0.62 0.61
3 0.69 0.70 0.68
4 0.66 0.67 0.63
5 0.64 0.64 0.62
6 0.61 0.64 0.61
7 0.62 0.64 0.57
8 0.67 0.65 0.63
9 0.68 0.62 0.61
10 0.68 0.69 0.66

view of the precision metric, are not significantly different either. 345

Applying the Mann-Whitney test on the mean values of the algorithms recall 346

metrics, the following p-values > 0.05 were obtained for the comparison of the results 347

obtained between MLP and RF, MLP and RL and RF and RL: p-value= 0.4065, 348

p-value= 0.3628 and p-value= 0.7641, respectively. Again, these results mean that from 349

the point of view of the recall metric, they are not significantly different either. 350

In order to highlight the results, Table 9 presents the best average results of 351

validation accuracy (considering the exhaustive combinations of hyperparameters 352

indicated in Table 3), for all algorithms evaluated applied to all 10 data groups. 353

Although the metric chosen for selecting the best model was accuracy, the metrics recall, 354

f1 and AUC were also calculated and would serve, in this order, to break the tie in case 355

of very close accuracy values. 356

Applying the Mann-Whitney test, it obtains p-values < 0.05 for the comparison of 357

the results obtained by MLP and RF (p-value= 0.009) and by MLP and RL 358

(p-value= 0.002), but the test obtains a result p-value> 0.05 (p-value= 0.110) for RF 359

and RL. This means that the results of the MLP are significantly lower and can be 360

considered better than those obtained by RF and RL; the same cannot be said for the 361

results of RF and RL, i.e., they are equivalent results. 362

Considering the accuracy, the evaluation of the base RT-PCR 2nd wave (data group 363

3), in general, obtained the best diagnostic performance, also reflected in the RT-PCR 364

(1st wave + 2nd wave) database (data group 1). These results may indicate that these 365
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Table 10. Metrics for the results with the test set - Random Forrest
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1 0.64 0.65 0.64 0.64 0.64 0.62 0.66
2 0.65 0.66 0.65 0.65 0.65 0.62 0.69
3 0.79 0.85 0.79 0.79 0.79 0.76 0.82
4 0.72 0.72 0.70 0.72 0.71 0.70 0.73
5 0.59 0.55 0.59 0.59 0.59 0.58 0.60
6 0.62 0.65 0.62 0.62 0.59 0.51 0.67
7 0.44 0.40 0.44 0.44 0.50 0.50 0.40
8 0.60 0.61 0.60 0.60 0.60 0.57 0.64
9 0.62 0.68 0.62 0.62 0.62 0.63 0.64
10 0.60 0.54 0.60 0.60 0.59 0.63 0.67

signs and symptoms were more decisive in discriminating patients positive or negative 366

for SARS-COV-2 infection, associated with the test being more reliable in the results 367

generated, i.e., the positive or negative labels are more reliable than the results 368

produced by other tests. On the other hand, the failures of the RT-antibody, reducing 369

the confidence in the results, helped reduce the performance of the models for the bases 370

associated with this test. 371

Nevertheless, since it is necessary to choose one of the algorithms, we opted for the 372

RF algorithm, which outperforms MLP and RL on most bases for the average accuracy 373

results (Table 9). 374

Evaluation of Test Results 375

In this section, the evaluation of the results of the various tests performed, using the 376

ML models in the different bases, will be presented. 377

Observing Table 10, it can be seen that the Random Forrest model achieved better 378

metrics: 79% in accuracy using the RT-PCR 2nd wave database (data group 3). Also 379

noteworthy is the 85% in the precision metric, as can be seen in Table 10. It is also 380

important to highlight that the model achieved 76% of Sensitivity and 82% of 381

Specificity, indicating that in 76% of the positive cases for SARS-COV-2 infection, the 382

model gets it right. The results using the RT-antibody databases (data groups 5,6 and 383

7) confirmed the worst performance for all models, following what the results of 384

validation (Table 9) had already indicated. 385

Among the results of RT-antibody, it is important to highlight the worst 386

performance for the RT-antibody 2nd wave (data group 7), which certainly had its 387

result also hampered by the limited amount of data. The model could not predict the 388

results in a minimally satisfactory way. 389

Test with data outside the Confidence Interval 390

Therefore, all exams from October 18, 2020, to February 18, 2021, were included in the 391

sampling process. They were distributed proportionally, with 755 used for training and 392

validation, and 84 for testing, maintaining a balance between positive and negative cases. 393

The data sampling strategy considered the most restricted period for exam confidence. 394

As expected (see Table 11), adding data referring to tests with negative results 395

performed outside the confidence interval (3 to 7 days from the onset of symptoms) 396

does not improve the results. It highlights the high sensitivity and specificity for data 397
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Table 11. Metrics data group 3 (RT-PCR 2nd wave) test set with and without the
restriction of test reliability period RT-PCR - Random Forrest.
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3 - with period restriction 0.79 0.85 0.79 0.79 0.79 0.76 0.82
3 - without period restriction 0.64 0.55 0.64 0.64 0.64 0.55 0.70

within the range, reaching 76% and 82%, respectively, while data from negative tests 398

outside this interval reached only 55% sensitivity and 70% specificity. 399

Test with Data from a Different Wave 400

Usually, the training and validation of models are done with data before the test set so 401

that it can be used to predict future results, but the exchange of test data between 402

models trained with data from different times can help to identify the differences 403

between the sets of data, aiming to evaluate the adherence of the behavior between the 404

data. For this reason, data from the test set of the first symptomatic contagion wave of 405

the virus SARS-CoV-2 were used in the model trained with data from the second wave, 406

for example. 407

In order to change the test sets, it was necessary to fit the third wave test data set 408

to the model trained with the first and second wave data. Thus, the attributes of back 409

pain, ageusia, anosmia, and chest pain were added in the third wave test set (nasal 410

congestion, sneezing, fatigue, joint pain, and nausea or vomiting were removed). On the 411

other hand, when using the model trained with data from the third wave, it was 412

necessary to adjust the test set of the first and second waves by removing the attributes 413

low back pain, ageusia, anosmia, and chest pain and adding the attributes nausea or 414

vomiting, joint pain, fatigue, sneezing and nasal congestion. 415

All these variables were available in the databases at the beginning of the attribute 416

evaluation. Thus, seeking to increase the quality of the results obtained, some attributes 417

were removed after the variable selection process. For this reason, the bases related to 418

the 3rd wave had a distinct collection of characteristics from the 1st and 2nd waves. 419

Specifically, as the attributes of signs and symptoms between the first and second 420

waves of contagion were the same, exchanging data from the two waves should produce 421

close results. However, tests of models trained with data from a given wave and test 422

sets from another were extended to all cases to evaluate all cases comprehensively. 423

Table 12 illustrates the results metrics, using the best model trained with data from 424

the first wave, using different sets of tests. The decrease in sensitivity and recall when 425

using a test set of other waves is noteworthy. In addition, in general, the results of the 426

second wave test set outperform the results of the first wave tests, i.e., the test with 427

data relative to the same set used for training, except for sensitivity and recall. 428

As can be noticed in the table 13, the performance of the second wave model, 429

using data from the test set of the wave itself, obtains excellent results. However, when 430

tested with data from other waves, it starts to offer results below that what was 431

obtained with the model trained with the first and third waves: the results of line 2 of 432

Table 13 are below the results of line 1 of Table 12 and the results line 3 of Table 13 are 433

also below the values obtained in line 1 of table 14, except in the latter case for the 434

specificity metric. The decrease in sensitivity and recall to 38% with data from the 3rd 435

wave is noteworthy. 436

Likewise, Table 14 shows the tests of the third wave model with the test sets of the 437
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Table 12. Tests with RT-PCR 1st wave model (data group 2) - Random Forest
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2- RT-PCR 1st wave data 0.65 0.66 0.65 0.65 0.65 0.62 0.69
3- RT-PCR 2nd wave data 0.70 0.71 0.58 0.70 0.69 0.58 0.80
4- RT-antigens 3rd wave data 0.61 0.61 0.40 0.61 0.59 0.40 0.78

Table 13. Tests with RT-PCR 2nd wave model (data group 3) - Random Forest
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3 - RT-PCR 2nd wave data 0.79 0.85 0.79 0.79 0.79 0.76 0.82
2 - RT-PCR 1st wave data 0.62 0.61 0.60 0.62 0.62 0.60 0.65
4 - RT-antigens 3rd wave data 0.62 0.64 0.38 0.62 0.60 0.38 0.81

Table 14. Tests with RT-antigens 3rd wave model (data group 4) - Random Forest
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4 - RT-antigens 3rd wave data 0.72 0.72 0.70 0.72 0.71 0.70 0.73
2 - RT-PCR 1st wave data 0.58 0.58 0.46 0.58 0.58 0.46 0.70
3 - RT-PCR 2nd wave data 0.63 0.62 0.51 0.63 0.62 0.51 0.74

first and second wave separately. One can again observe the substantial worsening in 438

almost all metrics, using data from different waves in the tests. Line 1 represents the 439

tests using data from the third wave; it can be seen that all metrics were above 70%. 440

On the other hand, in lines 2 and 3, which represent tests performed with data from the 441

first and second wave, the metrics were much lower, except for specificity, which 442

increased when data from the second wave was used in the model trained with data 443

from the third. The sensitivity and recall of the model, which was 70%, with test data 444

from the third wave, dropped to 46% using data from the first wave and 51% with data 445

from the second wave. The models of the second wave and the third wave make it clear 446

that training a model with data from one wave does not serve to predict test results of 447

infection by SARS-CoV-2 on data from another wave; in other words, the models 448

indicate that there are differences in signs and symptoms of SARS-CoV-2 infection 449

between waves of symptomatic virus infection. 450

Explainable 451

In order to add explanations for the results obtained,this subsection presents graphs of 452

SHAP values of the SARS-CoV-2 infection predictors for the model RF for the RT-PCR 453

bases 1st, 2nd and 3rd wave, using the test base of each wave. The choice of this subset 454

of tests and databases can be justified because they were the subset with the best 455

results. 456

Thus, the graphs in Figures 6,7 and 8 present the distribution SHAP of each record 457
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of their respective bases in relation to the performance of the models, where blue 458

indicates low and red high values; positive red values indicate that the symptom’s 459

presence helps the model identify it as positive for symptomatic infection by the 460

SARS-CoV-2 virus. 461

The graph illustrated in Figure 6 is formed by points that represent all the training 462

data from the first wave of symptomatic infection by the virus SARS-CoV-2 for each 463

attribute. As the base is binary, there can only be two colors in the graphs: blue must 464

be 0 and red must be 1. The distribution of the points along the axis indicates greater 465

or lesser impact for the positive (1) or negative (0), considering the attributes that are 466

being classified. The occurrence of red and blue colors in opposite places indicates that 467

these attributes are good predictors; after all, only by changing their value can the 468

model verify its contribution to a class in a simpler way. These point clouds can also 469

expand vertically, indicating that the density of values for that variable to SHAP values 470

increases. 471

As can be seen, the attributes fever, cough and myalgia are the three most 472

important signs and symptoms in explaining the prediction of infection in the 1st wave. 473

However, specifically having anosmia and ageusia indicated a high impact on classifying 474

symptomatic infection by SARS-CoV-2, and not having one or the other did not 475

contribute significantly to the classification quality. In addition, not having a sore 476

throat or pain in the abdomen impacted the classification of SARS-CoV-2 infection. 477

Actually, not having a sore throat had a more significant impact on the indication of the 478

absence of symptomatic infection by SARS-CoV-2. 479

Fig6.tif 480

Fig7.tif 481

Fig8.tif 482

Figure 7 presents the graph for SHAP values for the second wave of symptomatic 483

infection by the virus SARS-CoV-2, where fever, cough, myalgia and sore throat had 484

the most significant impact on the classification results, as did the first wave data. It 485

should be noted that the coryza attribute becomes the most important 5th attribute for 486

predicting infection by the virus, and the headache symptom no longer appears among 487

the main ones, being together with eight other symptoms, represented by the last line 488

from the chart. 489

In the graph indicated by Figure 8, it is observed that fever, the main symptom, 490

remained in the graph, showing an even more significant impact. However, cough drops 491

to the third position. Other attributes appear to be more important. Nasal congestion 492

stands out, which was removed during the variable selection process for the second and 493

first waves. Unlike previous waves, sneezing and asthenia are critical new attributes in 494

the third wave. 495

Figure 9 shows the explanation (generated by SHAP) that each attribute provides 496

for predicting the diagnosis of a randomly chosen database record. This graph refers to 497

a random value of the prediction of the RF model using the database RT-PCR first 498

wave with the best validation result. The graph represents the impact of each attribute 499

(sign or symptom) for predicting symptomatic SARS-CoV-2 virus infection for a specific 500

input (a single patient); value closer to 1 is considered positive and closer to 0 is 501

considered negative. 502

Fig9.tif 503

The visualization of the explanation produced by the Shapley method for this record, 504

which belongs to the group related to RT-PCR 2nd wave (group 3) with all the 505

attributes described in Table 4, when evaluated by the RF model, can be seen in Figure 506

10. It can be seen that each attribute contributes positively (the model predicts a 507

positive category) and negatively (the model predicts another class). 508

The X-axis represents the SHAP values and the arrow values indicate the 509
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contributions of these variables. Thus, fever and cough, on the graph, appear, indicating 510

that the lack of these symptoms induces the model to classify as negative for 511

symptomatic infection by SARS-CoV-2. On the other hand, the presence of a sore 512

throat induces the model to classify as negative for symptomatic infection by 513

SARS-CoV-2 in the 2nd wave. 514

Fig10.tif 515

Figure 11 displays the ratings for a specific patient. The graph indicates that the 516

model predicted symptomatic infection by the virus SARS-CoV-2 from the reported 517

signs and symptoms (attributes). The presence of nasal congestion, sneezing and 518

coughing is a good indication for the model to be classified as positive for the virus. 519

The lack of fever somewhat disturbed the model’s prediction. 520

Fig11.tif 521

The scripts developed are registered under title ”MultuModelosIA” and code 522

BR512023000197-0, but are available for academic use. 523

Discussion 524

Data were analyzed and divided into waves, through visual analysis of the moving 525

average graph of confirmed cases of symptomatic infection by the SARS-CoV-2 virus. 526

In addition to signs and symptoms, other attributes were explored to improve the 527

sensitivity and specificity of the models. The gender attribute was irrelevant for 528

predicting the outcome of symptomatic infection with the SARS-CoV-2 virus. The 529

information if the patient had contact with confirmed cases, markedly worsened the 530

results. Analyzing the data from the third wave forms, it can be seen that many 531

patients confirmed contact after a date after the onset of signs and symptoms, 532

indicating that contact was not the cause of the infection. Data such as place of 533

residence and age could not be used, as most patients did not fill in this information. In 534

the database for the third wave, there was already information about the vaccine. 535

However, as the vast majority of patients were vaccinated (97.5% vaccinated), it was not 536

possible to use this information as an attribute to assess this base specifically. 537

Some Machine Learning models were used in exam databases that serve to detect 538

the presence of symptomatic infection by the SARS-CoV-2 virus based on signs and 539

symptoms only. The results of the tests used, which served as labels for the bases, were: 540

the RT-PCR test, the RT test of Antibodies and the RT test of Antigens, the latter only 541

for the third wave. The first and second wave analyses used the RT Antibodies and 542

RT-PCR tests. 543

It can be seen, through the results generated by the ML models, that the RT-PCR 544

exam is much superior in detecting symptomatic infection by the SARS-CoV-2 virus; 545

this is demonstrated by the metrics of the models when using the exams as labels 546

separately. The best result of the model that considered the RT-PCR exam used data 547

from the second wave, reaching 79% accuracy, 76% of sensitivity and 82% specificity, 548

while the best model using the RT of Antibodies was 62% accuracy, with only 51% 549

sensitivity and 67% specificity, considering the data from the first wave. All models that 550

used data from the RT of Antibodies obtained lower results than the other models based 551

on RT-PCR and RT of Antigens. The model’s best result using the RT of Antigens was 552

72% Accuracy with 70% sensitivity and 73% specificity, referring to the third wave. 553

The models of the first wave, in general, obtained worse results. The explanation for 554

these results may lie in the fact that tests were scarce during the first wave, especially 555

RT-PCR. At that time, the tests were reserved for people with comorbidities, the 556

elderly and health professionals. In addition, in most cases, the tests were only 557

performed on people with signs and symptoms; this fact may have led to false 558

information on the part of patients. 559
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Another aspect analyzed was the division into waves; the models were trained with 560

data from the first and second waves and data outside a specific wave, that is, the 561

period between waves. In this way, much more data is obtained; however, when mixing 562

wave data, the models obtained inferior results; this fact motivated the testing of the 563

models by training and validating them with data from a specific wave and testing with 564

data from another wave. The cross-tests showed that the models trained in a particular 565

wave do not obtain minimally acceptable results to predict the results of another wave. 566

We can highlight the model with data from the second wave that obtained excellent 567

results, 79% accuracy, 76% sensitivity and 82% specificity; however, when tested with 568

data from the third wave, it obtained only 62% accuracy with 38 % sensitivity and 81% 569

specificity. These results show that models need to be trained with data from the wave 570

itself. Another conclusion that can be drawn from this result is that the signs and 571

symptoms that explain the prediction of symptomatic infection by the SARS-CoV-2 572

virus vary between waves. 573

Considering the previous tests and the signs and symptoms prevalence charts, an 574

explainable technique was applied in order to assess the difference in these attributes 575

between the different waves. It can be highlighted that between the first and second 576

waves, there is a significant difference in the coryza attribute, which in the first wave 577

did not appear among the nine main attributes; however, in the second wave, it appears 578

as the 5th main symptom. Another attribute that changes from wave to wave in terms 579

of importance for explaining infection prediction is headache, which does not appear as 580

a top 9 in the second wave. The fever sign appears unchanged as being the most 581

important for the explanation in the three waves; however, there are many changes, 582

mainly in the third wave. It can be observed that ageusia and anosmia do not even 583

appear among the top nine and nasal congestion, which disturbed the models in the 584

previous waves, appears as the second most important attribute explaining the result. 585

Notably, the sore throat attribute appeared as a symptom indicating the lack of 586

infection in the first and second waves. Nevertheless, in the third wave, this attribute 587

helps to classify as being positive for symptomatic infection by the SARS-CoV-2 virus. 588

5 Conclusion 589

This work aimed to develop a methodology for diagnosing symptomatic infection with 590

the SARS-CoV-2 virus to help health professionals triage patients and assist with social 591

distancing. In addition, these models also allowed the study of the identification of the 592

main signs and symptoms of each wave, the differences between the signs and symptoms 593

observed in the waves of contagion of the SARS-CoV-2 virus and the quality of the 594

tests used in diagnosis. Considering the results obtained with the models, we believe 595

that the objectives of this work have been achieved, with some models achieving values 596

above 70% for the accuracy, sensitivity, and specificity metrics. From this model, it is 597

understood that the methodology proved helpful in studying and evaluating the 598

prevalence of signs and symptoms, considering the different waves of symptomatic 599

infection by the SARS-CoV-2 virus. 600

It can also be concluded that the models are viable for predicting symptomatic 601

infection by the SARS-CoV-2 virus, provided that data from the wave itself is used. 602

This recommendation is based on the observation of the reduction in the values of the 603

metrics when the test sets were exchanged between the waves. There is, therefore, 604

evidence that the Omicron variant (3rd wave) is related to reports of different signs and 605

symptoms. These models can help isolate patients more likely to be infected with the 606

SARS-CoV-2 virus and are quicker and cheaper than traditional tests. It was also 607

concluded that RT-PCR and TR Antigen tests are considerably more reliable than TR 608

antibody tests, as previously reported by Verotti [38]. 609

February 10, 2024 18/22

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302722doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302722
http://creativecommons.org/licenses/by/4.0/


As a future work, we intend to obtain new data on the variants that infected a given 610

patient, including vaccines received, and thus identify which variant presents a given set 611

of signs and symptoms. This same methodology could be evaluated for other diseases, 612

such as Dengue or Zika. New attributes can also be included, containing other types of 613

data, such as imaging or laboratory tests, using a multimodal approach or data fusion 614

to investigate disease diagnoses and outcomes. 615
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poĺıticas públicas. Experiências e impacto da pandemia pela Covid-19 no
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