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Abstract  

Physical exercise (PE) as antidepressive therapy is a promising alternative, as shown by multiple 

meta-analyses. However, there is no consensus regarding optimal intensity and duration of exercise, 

and there are no objective criteria available for personalized indication of treatment. The aims of this 

study were (1) to evaluate whether individual activity patterns before intervention can predict the 

response to treatment; and (2) to evaluate whether the patient outcome can be improved by using 

prior information on treatment efficacy at individual level. The study included subjects with mild to 

moderate depression randomized to three levels of exercise intensity in the Regassa study. Using a 

previously developed pipeline for data analysis, we have generated linear regression ensembles to 

predict the response to treatment using features extracted from actigraphy recordings. To 

understand the contribution of individual features, we performed a Bayesian analysis of coefficients, 

and found that different levels of PE intensity yield distinct signatures in enriched feature subsets. 

Next, we used the trained ensembles for a counterfactual analysis of response and remission rate 

provided prior knowledge of response to treatment outcome. The response to either PE regime was 

estimated for all patients, irrespective of original treatment assignment. Each patient was then 

virtually allocated to the PE regime predicted to yield best outcome, and the response and remission 

rates were compared against simulated random assignment to treatment. The simulation showed 

that assignment to best individual PE regime yields significantly higher (~35% increase) response and 

remission rates as compared to random assignment to treatment. In addition, the counterfactual 

analysis found improved response in about 30% of the patients as compared to observed treatment 

outcome. While it is not possible to claim individual protocol optimization, our data suggest it may be 

possible to identify a PE regime to yield the best results for a patient based on individual circadian 

patterns of activity.  
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Introduction 

The world-wide prevalence of depression is reported to be 4.4% and it is increasing, especially in 

young persons [1]. Depression is a recurrent often life-long disorder and long-term recovery is low, 

approximately 60% at 2 years, 40% at 4 years, and 30% at 6 years [2].  

Due to the large number affected and the chronicity there is a need for treatment options that are 

easily accessible, have minor side effects and are cost-effective. Today the treatments that are 

available is mainly different types of psychotherapy and antidepressant medication. However, 

psychotherapy is costly and not always available, while antidepressant medications have side-effects. 

The adherence to antidepressants is quite low, at a six-month examination approximately 50% had 

discontinued the treatment [3]. Additionally, even intensively monitored antidepressant treatment 

have low response rates; the STAR*D trial looked at remission rates after level 1 to 4 treatments and 

found a remission rate of 35% [4]. Response rates after psychotherapy are almost equally low, a 

meta-analysis reported 46.3% in mild to moderate depression [5] There is also a large treatment gap, 

only one-third of those affected receive adequate treatment [6]. 

Physical exercise (PE) is a promising therapy, since there is evidence from multiple meta-analyses 

showing good effects on depression [7–9]. There are no side-effects, on the contrary physical 

exercise has other positive effects on overall somatic health. Depression is considered as a risk factor 

for cardiovascular disorders and thus the potential positive benefit of exercise might be of even 

greater value [10]. Despite mounting evidence, PE is rarely used in a structured way. Adherence is a 

common problem for antidepressive therapies, and exercise is no exception. A large study reported 

that 50% of non-depressed individuals who start to exercise do not continue after six months [11]. 

Due to the nature of depression with symptoms like lack of energy and initiative, adherence is 

probably even lower in depressed individuals. It is problematic to look at adherence in clinical studies 

of exercise as a treatment since those involve extensive support that most likely is not feasible to use 

in daily clinical practice. Currently there is no consensus regarding optimal intensity and duration of 

exercise as antidepressive treatment, and there are no objective criteria available for personalized 

indication of treatment. The aims of this study were (1) to evaluate whether individual activity 

patterns before intervention can predict the response to treatment; and (2) to evaluate whether the 

patient outcome can be improved by using prior information on treatment efficacy at individual level. 

The study included subjects with mild to moderate depression randomized to three levels of exercise 

intensity, which allowed a counterfactual analysis of potential improvement in patient outcome 

when treatment allocation uses a priori information on predicted response.  
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Materials and Methods 

Subjects 

Data derived from the Regassa study, a single blind, multi-center randomized controlled trial 

conducted in six Swedish regions (Stockholm, Kronoberg, Blekinge, Skåne, Västra Götaland and 

Västmanland) (for further description see [12]). The main aim was to compare treatment as usual, 

physical exercise, and Internet-based cognitive behavioural therapy as treatments for mild to 

moderate depression in primary care patients. The study was registered with the German Clinical 

Trial Register (DRKS study ID: DRKS00008745) and approved by the Stockholm regional ethical review 

board (Dnr: 2010/1779-31/4). Inclusion criteria were primary care patients, aged 18–67 years with 

mild to moderate depression according to Montgomery-Åsberg Depression Rating Scale (MADRS) 

[13]. Exclusion criteria were a primary diagnosis of alcohol or drug dependency, serious somatic 

disorder, or requiring specialist psychiatric treatment. Subjects for this study were recruited between 

2011-02-04 and 2014-02-28. All subjects provided informed consent for participation in the study 

after having received written information about the study. This study is based on reanalysis of data 

collected for the Regassa study, and for this purpose, the data was accessed starting on 2018-05-07. 

The authors did not use any information that could identify individual participants and used 

exclusively anonymized records.  

Exercise intervention and measurements 

Before starting and the week after the participants ended the 12-weeks intervention, they wore a 

triaxial accelerometers (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) to measure physical 

activity level. The instructions were to wear the accelerometer for seven days on the right hip, 

continuously throughout the waking part of the day, removing it only for bathing or swimming.  

The subjects randomized to physical activity were further randomized to one of three exercise 

intensity levels as follows: (1) light exercise, e.g., flexibility and balance exercises; (2) moderate 

exercise-intermediate-level aerobics; and (3) vigorous exercise- more strenuous aerobics. 

Participants were asked to attend three classes of 55 min duration per week for 12 consecutive 

weeks. The classes were offered at a modern fitness centre organization with premises throughout 

Sweden and all participants received free membership.  

To ensure that the intensity levels differed between the recommended gym classes, members of the 

research team designed classes of differing intensity that were tested using indirect calorimetry and 

pulse watches in a laboratory setting. They then attended different classes at the gym using pulse 

watches and compared the results with the laboratory classes. The results were used to select 

classes with different intensity levels to recommend to the participants.  
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To see if the participants exercised at the assigned intensity level, they wore pulse watches during 

the exercise classes. These data were collected each week. The results showed that the three groups 

differed from each other on the average proportion of calculated maximal heart rate and minutes 

spent above 80% of maximal heart rate (MHR) [14]. The primary outcome of this study was the 

change in severity of depression, assessed as percentage change in MADRS after treatment.  

Data processing and feature extraction 

The raw data was exported using the proprietary software and processed in Matlab® (version 9.x; 

The MathWorks Inc, Natick, MD, USA) using custom scripts (see also [15,16]). The quality control was 

performed by the same observer, blind to group belonging. All recordings were first inspected 

visually using a standardized procedure designed to identify stretches of missing data, artifacts, and 

gross abnormal circadian patterns of activity (e.g., shift work, or other consistent activity at night). 

We considered a maximum of 8 consecutive days at the very beginning of the recording period. 

Recordings with less than 3 consecutive days within the first week were excluded. This procedure 

yielded 100 recordings. Before processing for feature extraction, all recordings were cropped 

between first and last recorded midnights to restrict the length to an integer number of 24-h periods 

and normalized by mean daily activity. The complete list of features extracted is available in 

Supplementary Table 1. Where possible, the features were calculated for each recorded day, or on 3 

consecutive days with wrap-around for first and last days recorded and used for estimation of 

variability. In addition, a complete set of features was calculated on the full-length recording. The 

following features were measured: circadian period; circadian peak; scaling exponents [17]; intradaily 

variability (IV); interdaily stability (IS) [18]; day-to-day variability; and propensity to sustain activity. 

The subjects were instructed to recharge the actigraphs overnight, which limited the recording to the 

active phase exclusively. This provided an approximation of activity onset and offset but did not allow 

the estimation of activity during daily trough (presumably reached during resting period) or relative 

amplitude of circadian rhythms [19,20].  

Circadian period was estimated using the Lomb-Scargle algorithm implementation optimized for 

Matlab [21]. The Lomb-Scargle periodogram was preferred over the commonly used Sokolove-

Bushell algorithm [22] because the latter has been shown to yield period estimates biased towards 

periods below 24 h [23]. The circadian period was calculated over the entire recording using an 

oversampling factor of 10 to yield a resolution in the range of minutes for the estimate. The scaling 

exponent for detrended fluctuation analysis was calculated for the magnitude of measured activity in 

1-min bins using boxes equally spaced on a logarithmic scale between 4 min (4 consecutive samples) 

and 24 h (1440 consecutive samples) as described by Hu et al. [17]. The scaling exponent is a feature 

of the intrinsic regulatory mechanisms controlling the rest/activity patterns. It has not been shown to 
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be sensitive to extrinsic factors the subject is exposed to in normal daily activity but is altered 

because of disease [17,24,25]. Intradaily variability estimates the fragmentation of activity patterns 

by calculating the ratio between mean squared differences between consecutive time intervals and 

the mean squared difference from global mean activity per interval; it increases as the frequency and 

the magnitude of transitions between rest and active intervals increase and decreases as the active 

and inactive intervals consolidate [26]. Interdaily stability evaluates the coupling between activity 

patterns and circadian entrainers and is calculated as the ratio between variability around circadian 

profile and global variability. High values indicate consistent activity patterns across days, consistent 

with strong coupling between activity and circadian entrainers. The day-to-day variability comprised 

3 features as follows: circadian profile variance between consecutive days (rmssd), calculated as 

Euclidean distance between consecutive days, normalized to the total number of samples per day; 

variation from average circadian profile rmsep), calculated as the Euclidean distance between each 

day and the average profile, normalized to the total number of samples per day; and the normalized 

difference between consecutive days (ddv), calculated as the ratio between mean difference 

between circadian profiles of consecutive days and mean deviation from average circadian profile. 

The propensity to sustain activity (pHiSlope) was calculated as the slope of likelihood to sustain or 

increase activity in the next minute against current level of activity. The distribution was calculated 

for minutes with activity count>10 (which eliminated the range specific for sleep, ~30% of 

datapoints/day) in 20 equally spaced bins covering the range up to the 99th percentile of active 

minutes. This is a hybrid measure applying a sequence-based analysis on the distribution of activity 

counts/min (assumed to have exponential distribution). The likelihood to further increase activity 

drops with increasing the activity counts in the current minute, therefore the slope is negative, and 

approaches 0 at the right tail of the distribution. A flat slope indicates the subject is unlikely (not 

willing) to sustain even low levels of activity. For scrambled data (preserved distribution, but random 

sequence), the slope is about -0.3 (likelihood to sustain activity decreases by 30% when activity 

increases 10-fold).  

Feature selection  

There is virtually no consensus around parameter selection for actigraphy. To mitigate the impact of 

multicollinearity, we used a hybrid heuristic and data driven feature selection procedure to facilitate 

the interpretation of results from Bayesian model averaging. First, we investigated the correlations 

between daily averages, sequential variability, variability around average profile, and full-length 

recording, and selected the sets with least significant correlations for further analyses: variability 

around average profile and full-length recording (Supplementary Fig. S1). The features included 

displayed various degrees of similarity, as illustrated by the matrix of correlations in Supplementary 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.12.24302721doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302721
http://creativecommons.org/licenses/by/4.0/


Page 6 of 23 
 

Fig. S2. Starting from the observation of clusters of conceptually related and highly correlated 

features, we reduced the number of features to be used for ensemble training as follows: from each 

cluster we kept only one feature (the one with lowest number of correlations overall), including both 

full-length recording and daily variability. The feature space consisted of 26 features (Supplementary 

Fig. S2).  

Ensemble training and model averaging 

Three independent ensembles were generated -one for each level of physical activity intensity. Each 

initial ensemble was generated by independent homogenous training using a systematic 

bootstrapping scheme (with replacement) for selecting up to 6 features/model, which yielded 313 

912 models/ensemble. The pruning procedure consisted of an application of Occam’s window 

algorithm [27,28]. First, we excluded all models satisfying the following criteria: VIF>5 for any single 

feature in the model (to avoid multicollinearity); or adjusted R-square<0.3. Next, we excluded all 

models receiving less support from the data than their simpler sub-models. Thus, more complex 

models (using n features) were excluded if they are less accurate than any lower complexity models 

trained on the same set of features (using any combination of k<n subsets). This procedure penalizes 

more complex models if their accuracy is not superior to simpler models. Lastly, we defined the 

metamodel (aggregated ensemble output) as the weighted mean of individual models using the 

inverse of model RMSE as weights [27]. To evaluate the performance of each ensemble, the models 

were sorted by increasing RMSE (decreasing accuracy) and the aggregated output for each subject 

was calculated as the cumulative weighted mean. The aggregated output was then used for 

estimating the precision and accuracy, estimated by adjusted R-square and RMSE, respectively. 

Bayesian coefficient analysis 

The prior inclusion probability for any individual feature was calculated as the number of models 

including a specific feature relative divided by the total number of models possible to train under the 

constraint of maximum 6 features/model (see Supplementary Material for calculation), which yielded 

a value of 0.2179. The posterior inclusion probability (PIP) for each feature was calculated as the 

frequency of occurrence in the pruned ensembles, and was used for defining levels of evidence 

strength as follows: PIP>0.2179 identifies features with frequency of occurrence increased as 

compared to initial probability (enriched), and indicates medium to strong evidence of correlation; in 

contrast, PIP < prior inclusion probability denotes features depleted after pruning, and indicates 

weak evidence of correlation. The effect size for individual features was estimated as the average of 

standardized coefficients across all models in the pruned ensemble. The stability of individual 
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features (context-independence) was evaluated using the coefficient of variation (CV=standard 

deviation/average) for standardized coefficients.  

Prediction of response to treatment and counterfactual analysis 

The purpose of this calculation was to estimate the potential impact of prior knowledge on response 

to treatment on patient outcome. We used the pruned ensembles to estimate the response to either 

treatment for each patient, independent from treatment allocation in the original clinical trial. The 

predicted responses were then filtered to remove predictions below -1 (i.e., yielding negative values 

for MADRS after treatment), and kept the best predicted response for each patient. The symptom 

severity after treatment (MADRSpost) was estimated as 𝑀𝐴𝐷𝑅𝑆𝑝𝑜𝑠𝑡 = [(1 + 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)𝑀𝐴𝐷𝑅𝑆𝑝𝑟𝑒], 

where MADRSpre is the symptom severity score measured before treatment, and response is the best 

estimated response to any of the treatment options, and the result was rounded to nearest integer. 

Remission was defined as MADRSpost<10.  

Results 

A description of the study sample is presented in Table 1. The subjects with complete accelerometer 

data had a lower MADRS mean score and were less often unemployed than those that did not 

provide complete accelerometer data. The feature selection procedure yielded only sparse 

differences across groups or genders within the population used for modelling the response to 

treatment (Supplementary Fig. S2). 

Aggregated prediction performance 

First, we asked whether individual features describing the patterns of activity before treatment 

correlate with the magnitude of response to treatment, and whether the pattern of correlations is 

treatment specific. We found distinct patterns of correlations with the response to treatment (Fig. 

3A), and the correlations surviving Benjamini-Hochberg FDR correction can be summarized as 

follows: better response to low intensity PE correlates with more variable scaling exponent; better 

response to moderate intensity PE correlates with lower amplitude of circadian peak and lower 

variability of circadian profile; and better response to high intensity PE correlates with stronger 

circadian entrainment. The maximum coefficient of determination (R-square) for individual features 

was 0.19, 0.16 and 0.22 (corresponding RMSE: 0.22, 0.42, and 0.31) for low, moderate, and high 

intensity physical activity, respectively.  

Next, we trained linear regression ensembles using a parallel, independent training procedure, 

followed by model pruning. This yielded ensembles of multivariate linear regression models widely 

outperforming individual single features. The pruned ensembles consisted of 3503, 2088, and 6423 

models with coefficient of determination >0.3 for low, moderate, and high intensity, respectively (Fig. 
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3B, see also Supplementary Fig. S3). We evaluated the aggregated accuracy as the cumulative 

average of predicted individual responses, weighted by the inverse model RMSE for each treatment 

option (Fig. 3C). The aggregated accuracy displayed distinct minima, followed by progressive 

degradation as the accuracy of included models increased. The best accuracy achieved was 0.12 

(N=13 models), 0.15 (N=126 models) and 0.15 (N=17 models) for low, moderate, and high intensity 

physical activity, respectively, which corresponds to an increase in aggregated accuracy between 1.8 

and 2.6 times as compared to single models.  

Analysis of coefficients and feature enrichment 

The importance of the variables in a model can be assessed using various approaches [29]. In an 

ensemble training procedure, however, the contribution of individual features may change 

depending on the context, i.e., the subset of features included in the model. We assessed the 

importance of features by means of a Bayesian analysis of coefficients and used the following 

parameters to evaluate the contribution of individual features: PIP (to estimate how relevant a 

specific feature is across all models in an ensemble); mean standardized coefficient (to estimate 

effect magnitude across all models); and coefficient of variance (to estimate the context-

dependence) (Fig. 4A, Supplementary Fig. S4). These three measurements are not necessarily 

orthogonal, but their joint analysis highlights the most relevant features and supports the 

interpretation of correlation coefficients. Of note, the actual values of these parameters change with 

the size of the ensemble (i.e., they depend on how restrictive the pruning criteria are), but the 

overall ranking by PIP is rather stable, and the standardized coefficients change only marginally (Fig. 

4A: all enriched features have CV<0.6).  

We next focused on the subset of enriched features, particularly asking whether individual features 

have similar contributions across ensembles (Fig. 4B). The subsets of enriched features expanded 

beyond the subset of features displaying significant correlation with the response to treatment for 

low intensity physical activity, while for moderate intensity there was only partial overlap (1 out of 2 

features with significant correlation with the response was enriched in the final ensemble), and no 

overlap for high intensity physical activity (compare Fig. 3A and Fig. 4B). The subsets of features 

enriched yielded distinct signatures for each ensemble, with 9 out of 16 enriched features shared 

between ensembles (Fig. 4B). The subsets of enriched features can be summarized as follows: for low 

intensity PE, better response is predicted by later and more variable offset of activity, lower, and less 

variable circadian peak of activity, lower variability of circadian profile and higher propensity to 

sustain activity; for moderate intensity PE, better response is predicted by weaker circadian 

entrainment, lower variability of circadian profile, and later circadian peak of activity (-aM10L); and 

for high intensity PE, better response is predicted by younger age, a circadian peak of activity which 
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is high, late, and less variable across days, overall stronger circadian entrainment, and lower 

propensity to sustain activity. To better visualize the differential impact of individual features across 

ensembles, we plotted the mean standardized coefficient in 2D (Fig. 4C), and found only 1 out of 9 

shared features between pairs of ensembles to have similar impact in both ensembles. The 

distribution of standardized coefficients across the quadrants indicates that (1) the prediction of 

response to moderate intensity PE is to a large extent independent from both low and high intensity 

PE; and (2) predicted response to low intensity PE is inversely correlated with the predicted response 

to high intensity PE (Supplementary Fig. S4). 

Improvement in patient outcome provided a priori knowledge of individual response to treatment 

We designed a counterfactual analysis assuming a priori information on individual response to 

different PE regimes. The ensemble pruning criteria were arbitrarily generous in order to capture 

both optimum accuracy and gradual degradation of performance. Therefore, we focused on the 

point before the performance starts to degrade significantly rather than using the entire ensemble 

(inflection point for each ensemble in Fig. 2C). The rationale is that the metamodel is implicitly 

overfitting, since it is based on performance on the training dataset by definition, and the 

generalizability of the metamodel presumably increases as less accurate models are included. Given 

the cumulative calculation underlying the aggregated output estimation, the contribution of 

additional models decreases with the size of the ensemble. Thus, the beginning of monotonous 

degradation signals that the performance of models beyond the threshold is dropping at increasing 

rate. For the counterfactual analysis we estimated the response to each of the three levels of 

intensity for PE as antidepressive treatment, regardless of the assignment in the ensemble training 

phase. The response to treatment was calculated as the weighted average of predicted response 

(prediction weight = the inverse of model RMSE) and was then used for estimating the MADRS score 

after treatment. We first generated a reference dataset consisting of 1 million simulated outcomes by 

randomly assigning the subjects to PE regimes. Each patient was then virtually assigned to the 

treatment predicted to yield the best outcome. The response and remission rates were then 

calculated for each dataset independently. For the random assignment to treatment, the response 

rate was 66.7 ± 5.8% (mean ± standard deviation), and the remission rate was 57.1± 5.4% (Fig. 5A). 

As expected, these values were very close to the observed response and remission rates, 62.1% and 

57.6% respectively (Fig. 5A). When each subject was allocated to the PE regime predicted to yield the 

best outcome, the response rate was 90.9%, and the remission rate was 83.3% (p<0.05, one sample 

t-test) (Fig. 5A). This corresponds to an increase in response and remission rates by 36% and 46%, 

respectively, as compared to random assignment to treatment. For comparison, the simulated 

outcome in case all subjects were allocated to the same PE regime did not outperform random 
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assignment to treatment (Fig. 5A). The actigraphy data analyzed in this study was recorded on a 

subset of subjects enrolled in the original study [12]. Therefore we referred to the original dataset, 

focusing on treatment as usual (TAU) as comparator, and PE. The remission rate for TAU was 37.7% 

(CI: 32.1% - 43.0%), and for PE was 47.0% (CI: 41.5% - 52.5%; effect size +0.25 vs. TAU). Assuming a 

similar effect size as in the current sample, the remission rate for PE when each patient is assigned to 

the treatment predicted to yield best response increased to 68.6% (CI: 63.5% - 73.8%; effect size 

+0.82 vs. TAU) (See Supplementary Fig. S5). The analysis of differences between observed outcome 

and best predicted outcome at individual level identified better response to another treatment than 

originally assigned in 20 out of 66 patients (30.3%; Fig. 5B, bottom right quadrant).  

Discussion 

Physical activity, particularly as exercise, produces antidepressant effects, and several biological and 

psychosocial mechanisms have been suggested to be involved (reviewed in [30,31]). In addition, 

several features of the PE regime have been shown to impact the outcome (e.g., how structured the 

PE regime is, as well as session duration, frequency, and intensity), and the optimal protocol varies 

widely among patients. In our retrospective, explanatory regression analysis, the response to specific 

PE regimes correlates with distinct subsets of features describing the patient’s patterns of activity. 

While it is not possible to claim individual protocol optimization, our results suggest it may be 

possible to identify a PE regime to yield the best results for an individual patient. Using a prospective, 

predictive approach, we estimated the potential improvement in patient outcome if a priori 

information on response to different treatment options is used instead of random assignment. The 

simulation predicted improved response in about 30% of the patients as compared to random 

assignment to treatment.  

Ensemble learning has been developed to improve predictive accuracy by combining the predictive 

power of multiple models, and it outperforms approaches based on model selection because it does 

not assume the underlying data-generating model is included in the model list. The design of 

analyses had to accommodate the asymmetry of the feature matrix (low number of patients per 

group, high number of features). The diversity of models, combined with the Bayesian model 

averaging, is supposed to better account for the heterogeneity within the group of patients suffering 

from major depressive disorder. The Bayesian analysis of coefficients highlights the global differences 

among ensembles modelling the response to treatment. The features used for modelling (except 

age) can be assigned to 3 main categories, namely descriptors of circadian profile, circadian 

entrainment, and ultradian patterns. With the notable exception of propensity to sustain activity 

(which is a hybrid feature combining distribution with sequence analysis), enriched features belong 
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to descriptors of circadian profile and circadian entrainment, suggesting that ultradian patterns do 

not have a major contribution to predicting the response to PE as antidepressive intervention. 

Weaker circadian entrainment, in general, predicts better response to low intensity PE, but worse 

response to moderate and high intensity PE. We have applied a similar data analysis pipeline for the 

modelling the response to iCBT or ketamine [15]. For iCBT, weaker circadian entrainment correlated 

with better response, similar to low intensity PE. In contrast to iCBT and PE, the most relevant 

correlates of the response to ketamine were descriptors of circadian profile and ultradian patterns of 

activity [15]. This further emphasizes the differences in feature subsets correlating with the response 

to different antidepressive therapies.  

The patient groups we have analysed were homogenous in terms of inclusion criteria and data 

collection (including recording conditions, device, and compliance). This allowed a counterfactual 

evaluation of the benefit of using a priori information of the response to treatment as compared to 

random assignment. The precision of aggregated prediction corresponds to an average error 

between 2 and 4 points on MADRS scale after treatment for an initial MADRS score between 20 and 

30. However, we can identify several caveats for this investigation. First, the accuracy of aggregated 

predictions has not been verified on external datasets, and there is a risk of overfitting the training 

dataset. Second, there is no consensus for how to balance accuracy and predictive power for linear 

regression ensembles, which means we currently do not have definite criteria to drive the pruning of 

the ensembles. In our datasets, we observed very small differences between predicted outcomes 

when varying the ensemble size used. Third, the use of hard thresholds for patient stratification, such 

as for defining remission (MADRS<10) or responder status (response<-0.5), as well as “treatment 

option with best predicted outcome”, may yield unrealistic estimates. This implies that relevance of 

deviation from true (observed) response to treatment and absolute MADRS score varies across the 

range: a predicted response between -1 and -0.5 means “significant improvement”, and a predicted 

MADRS <10 (remission) is the desirable outcome of any given treatment. Visual inspection of the 

data yielded two remarkable subgroups. The first group consisted of patients for which most likely an 

alternative treatment option would yield better outcome, containing ~30% of the patients. The 

second group consisted of patients for which we could not identify a treatment option that would 

significantly decrease symptom severity (i.e., classified as responder or in remission). The former 

illustrates the gain over random assignment (i.e., without prior indication of efficacy as criterion for 

assignment to treatment), the latter corroborates the contribution of prior indication of treatment 

efficacy, namely that an alternative treatment should be considered (i.e., outside the range of 

options we could test, such as CBT, antidepressants, or combinations thereof).  
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The diversity of protocols used in randomized clinical trials provides little support for estimating the 

success rate for standardized regimes, but recent meta-analyses found PE to be effective as 

antidepressive intervention, with remission rates comparable to pharmacotherapy [9,32]. In our 

cohort, the remission rate following random assignment to treatment was 57.1% and was estimated 

to increase by46% if prior information on treatment efficacy is used for treatment assignment. Most 

randomized clinical studies include a comparator group of usual care or TAU, which is typically 

defined as treatment according to national guidelines followed up by general practitioners (i.e., no 

particular focus on individual follow-up or personalized treatment). In primary care, the remission 

rate has been estimated to be between 26% and 35% for TAU [33,34]. The success rate increases by 

30-35% when using enhanced evidence-based care (EEC; measurement-based care and algorithm-

guided therapy) [35]. Targeted interventions in primary care reach remission rates around 54% for 

monotherapy (antidepressants or psychotherapy) and 67% for combined antidepressants and 

psychotherapy (~24% increase over monotherapy) [33]. Similarly, a recent re-analysis of STAR*D data 

has shown that sequential antidepressant interventions including switching and augmentation 

yielded a combined increase of remission rate of ~37% from first step (citalopram) [4]. The 

improvement in treatment outcome in our prospective counterfactual analysis does not appear 

overestimated, and the percentage of patients predicted to have a better treatment outcome is in 

line with previously reported increase in remission rate following stepwise, measurement-based 

adjustments in antidepressant treatment [35].  

Limitations 

The data we have analysed is derived from a clinical trial where the participants were closely 

monitored. The population sample may be biased because (1) there are no data available on the 

number of patients fulfilling the inclusion criteria which declined to take part in the trial; (2) the 

probability to drop-out was most likely higher among non-responders, which artificially inflates the 

remission rate at the end of the 12-week trial (see also [36] for review). The response and remission 

rates in our dataset were comparable to targeted interventions and EEC [33,35], and the inflation as 

compared to observational studies can be due to the close follow-up of each subject. Therefore, the 

percentage of patients for which the predicted outcome was better than random assignment to 

treatment and the relative change in response and remission rates, are probably more informative 

than the theoretical estimation of response and remission rates.  

When training machine learning models, the limitations of the training dataset are typically carried 

over in predictive applications. For instance, the range of predicted outcome for an external dataset 

is projected to a range similar as the training dataset. This can be observed in our prospective 
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application of the ensembles (Supplementary Fig. S4: no predicted worsening following low intensity 

PE), and is a direct consequence of the selection bias embedded in the training dataset. However, the 

impact of restricted range of response may not be relevant in prospective applications, since the 

outcome of treatment is typically evaluated using arbitrary thresholds (responder/non-responder; in 

remission/not in remission).  

The models we have developed for predicting the response to PE as antidepressive treatment yield 

good performance retrospectively, but implementation in clinical practice must satisfy the following 

prerequisites: (1) the patient needs to meet the inclusion/exclusion criteria of the original clinical 

trial [12]; the actigraphy device (preferably similar) must be worn attached to the same location on 

the patient's body as in the training dataset (in the hip region). The effects of placement of the 

recording device on parameters of interest (e.g., features describing sleep, physical activity, or 

posture) has been discussed extensively [37–39]. In addition, the recording protocol may prevent the 

calculation of relevant features: in our dataset, for instance, we could not estimate the relative 

amplitude of circadian rhythms (RA; see [19]), because the recording device was not worn at night. 

To make best use of the data available, we focused the design of feature extraction pipeline on 

normalized profiles, distributions, and first order dynamics with the explicit aim of capturing device-

independent features. The feature selection procedure was data-driven, and we cannot exclude that 

alternative feature subspaces would be relevant for different applications (e.g., differential diagnosis 

for psychiatric conditions with overlapping symptoms). Therefore, we believe that our data analysis 

pipeline provides a sound basis for further applications based on activity monitoring as objective 

measurement. While we provide proof-of-concept for prediction of response to treatment (see also 

[15,16]) training ML models to support personalized treatment for depression requires standardized 

actigraphy recording procedure and antidepressive interventions.  

Conclusion 

Currently, most patients with mild to moderate depression are treated with antidepressants or 

psychotherapy, or combinations thereof. There is evidence that physical exercise as alternative 

treatment can have a positive effect. However, we do not know which patients that will benefit from 

this treatment or what intensity of activity that is required. The result from the current study 

suggests that the analysis of patients’ own pattern of activity could assist in choosing antidepressive 

treatment. 

Acknowledgements 

The collection of the original data was supported by The Vårdal Foundation (RS2009/27), The 

Swedish Brain Foundation (Hjärnfonden), and the six Swedish counties and regions involved in the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.12.24302721doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302721
http://creativecommons.org/licenses/by/4.0/


Page 14 of 23 
 

study (YF). Data analysis was supported by Swedish Research Council (2019-01191), The Swedish 

Brain Foundation (Hjärnfonden, FO2016-0116), Torsten Söderberg Foundation (M59/16), and 

Karolinska Institutet research grants (SC). The funding agencies and sponsors did not have any 

influence on the conceptualization, design, data collection, analyses, decision to publish, or 

preparation of the manuscript.   

Author contribution 

Conceptualization: SS. Data curation: SS, YF. Formal Analysis: SS, YF. Funding acquisition: YF, SC. 

Investigation: YF. Methodology: YF, SS. Project administration: SC, YF. Resources SC, YF. Software: SS. 

Supervision: SC, YF. Validation: SC, YF. SS. Visualization: SS. Writing – original draft: SS, YF. Writing – 

review & editing: SS, SC, YF. 

Conflicts of interest 

SS and SC are co-inventors on US Patent No. 10,731,216, and co-founders of NorthernLight 

Diagnostics AB. YF has no conflict of interest to declare.  

Software and data availability 

The codes used for data analysis and visualization are available in a public GitHub repository 

(https://github.com/stefanspulber/Regassa). The actigraphy data can be made available upon 

reasonable request. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.12.24302721doi: medRxiv preprint 

https://github.com/stefanspulber/Regassa
https://doi.org/10.1101/2024.02.12.24302721
http://creativecommons.org/licenses/by/4.0/


Page 15 of 23 
 

 

Bibliography 

1.  World Health Organization. Depression and Other Common Mental Disorders Global Health 

Estimates. Global Health Estimates. Geneva; 2017.  

2.  Verduijn J, Verhoeven JE, Milaneschi Y, Schoevers RA, van Hemert AM, Beekman ATF, et al. 

Reconsidering the prognosis of major depressive disorder across diagnostic boundaries: full 

recovery is the exception rather than the rule. BMC Med. 2017;15: 215. doi:10.1186/s12916-

017-0972-8 

3.  Sansone RA, Sansone LA. Antidepressant adherence: are patients taking their medications? 

Innov Clin Neurosci. 2012;9: 41–6.  

4.  Pigott HE, Kim T, Xu C, Kirsch I, Amsterdam J. What are the treatment remission, response and 

extent of improvement rates after up to four trials of antidepressant therapies in real-world 

depressed patients? A reanalysis of the STAR*D study’s patient-level data with fidelity to the 

original research protocol. BMJ Open. 2023;13: 63095. doi:10.1136/bmjopen-2022-063095 

5.  Casacalenda N, Perry JC, Looper K. Remission in major depressive disorder: a comparison of 

pharmacotherapy, psychotherapy, and control conditions. American Journal of Psychiatry. 

2002;159: 1354–1360. doi:10.1176/appi.ajp.159.8.1354 

6.  Thornicroft G, Chatterji S, Evans-Lacko S, Gruber M, Sampson N, Aguilar-Gaxiola S, et al. 

Undertreatment of people with major depressive disorder in 21 countries. British Journal of 

Psychiatry. 2017;210: 119–124. doi:10.1192/bjp.bp.116.188078 

7.  Morres ID, Hatzigeorgiadis A, Stathi A, Comoutos N, Arpin-Cribbie C, Krommidas C, et al. 

Aerobic exercise for adult patients with major depressive disorder in mental health services: A 

systematic review and meta-analysis. Depress Anxiety. 2019;36: 39–53. doi:10.1002/da.22842 

8.  Krogh J, Hjorthøj C, Speyer H, Gluud C, Nordentoft M. Exercise for patients with major 

depression: a systematic review with meta-analysis and trial sequential analysis. BMJ Open. 

2017;7: e014820. doi:10.1136/bmjopen-2016-014820 

9.  Heissel A, Heinen D, Brokmeier LL, Skarabis N, Kangas M, Vancampfort D, et al. Exercise as 

medicine for depressive symptoms? A systematic review and meta-analysis with meta-

regression. Br J Sports Med. 2023;57: 1049–1057. doi:10.1136/bjsports-2022-106282 

10.  Dhar AK, Barton DA. Depression and the Link with Cardiovascular Disease. Front Psychiatry. 

2016;7: 1. doi:10.3389/fpsyt.2016.00033 

11.  Robison JI, Rogers MA. Adherence to Exercise Programmes. Sports Medicine. 1994;17: 39–52. 

doi:10.2165/00007256-199417010-00004 

12.  Hallgren M, Kraepelien M, Öjehagen A, Lindefors N, Zeebari Z, Kaldo V, et al. Physical exercise 

and internet-based cognitive–behavioural therapy in the treatment of depression: 

Randomised controlled trial. The British Journal of Psychiatry. 2015;207: 227–234. 

doi:10.1192/BJP.BP.114.160101 

13.  Montgomery S, Åsberg M. A new depression scale designed to be sensitive to change. Br J 

Psychiatry. 1979;134: 382–389. doi:10.1192/BJP.134.4.382 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.12.24302721doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302721
http://creativecommons.org/licenses/by/4.0/


Page 16 of 23 
 

14.  Helgadóttir B, Hallgren M, Ekblom Ö, Forsell Y. Training fast or slow? Exercise for depression: A 

randomized controlled trial. Prev Med (Baltim). 2016;91: 123–131. 

doi:10.1016/J.YPMED.2016.08.011 

15.  Spulber S, Elberling F, Ceccatelli S, Gärde M, Tiger M, Lundberg J. Correlations between 

patterns of activity and the response to treatment yield distinct signatures for different 

antidepressive treatments. MedRxiv.org. 2023. doi:10.1101/2023.09.29.23294935 

16.  Spulber S, Elberling F, Svensson J, Tiger M, Ceccatelli S, Lundberg J. Patterns of activity 

correlate with symptom severity in major depressive disorder patients. Transl Psychiatry. 

2022;12: 226. doi:10.1038/s41398-022-01989-9 

17.  Hu K, Ivanov PCh, Chen Z, Hilton MF, Stanley HE, Shea SA. Non-random fluctuations and multi-

scale dynamics regulation of human activity. Neuroscience. 2004;149: 508–517. 

doi:10.1016/j.physa.2004.01.042.Non-random 

18.  Gonçalves BSB, Cavalcanti P, Tavares GR, Campos TF, Araujo JF. Nonparametric methods in 

actigraphy: An update. Sleep Science. 2014;7: 158–164. doi:10.1016/j.slsci.2014.09.013 

19.  Lyall LM, Wyse CA, Graham N, Ferguson A, Lyall DM, Cullen B, et al. Association of disrupted 

circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: a 

cross-sectional study of 91 105 participants from the UK Biobank. Lancet Psychiatry. 2018;5: 

507–514. doi:10.1016/S2215-0366(18)30139-1 

20.  Edgar N, McClung CA. Major depressive disorder: a loss of circadian synchrony? Bioessays. 

2013;35: 940–4. doi:10.1002/bies.201300086 

21.  Saragiotis C. Lomb normalized periodogram. MATLB Central File Exchange; 2021. Available: 

https://www.mathworks.com/matlabcentral/fileexchange/22215-lomb-normalized-

periodogram 

22.  Sokolove PG, Bushell WN. The chi square periodogram: its utility for analysis of circadian 

rhythms. J Theor Biol. 1978;72: 131–160.  

23.  Tackenberg MC, Hughey JJ. The risks of using the chi-square periodogram to estimate the 

period of biological rhythms. PLoS Comput Biol. 2021;17: 1–16. 

doi:10.1371/JOURNAL.PCBI.1008567 

24.  Chapman JJ, Roberts JA, Nguyen VT, Breakspear M. Quantification of free-living activity 

patterns using accelerometry in adults with mental illness. Sci Rep. 2017;7: 1–12. 

doi:10.1038/srep43174 

25.  Fasmer OB, Hauge E, Berle JØ, Dilsaver S, Oedegaard KJ. Distribution of active and resting 

periods in the motor activity of patients with depression and schizophrenia. Psychiatry 

Investig. 2016;13: 112–120. doi:10.4306/pi.2016.13.1.112 

26.  Gonçalves B, Adamowicz T, Louzada F, Moreno C, Araujo J. A fresh look at the use of 

nonparametric analysis in actimetry. Sleep Med Rev. 2015;20: 84–91. 

doi:10.1016/j.smrv.2014.06.002 

27.  Raftery AE, Madigan D, Hoeting JA. Bayesian Model Aeraging for Linear Regression Models. J 

Am Stat Assoc. 1997;92: 179–191.  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.12.24302721doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302721
http://creativecommons.org/licenses/by/4.0/


Page 17 of 23 
 

28.  Madigan D, Raftery AE. Model Selection and Accounting for Model Uncertainty in Graphical 

Models Using Occam’s Window. J Am Stat Assoc. 1994;89: 1535–1546. 

doi:10.1080/01621459.1994.10476894 

29.  Grömping U. Variable importance in regression models. Wiley Interdiscip Rev Comput Stat. 

2015;7: 137–152. doi:10.1002/WICS.1346 

30.  Kandola A, Ashdown-Franks G, Hendrikse J, Sabiston CM, Stubbs B. Physical activity and 

depression: Towards understanding the antidepressant mechanisms of physical activity. 

Neurosci Biobehav Rev. 2019;107: 525–539. doi:10.1016/J.NEUBIOREV.2019.09.040 

31.  Xie Y, Wu Z, Sun L, Zhou L, Wang G, Xiao L, et al. The Effects and Mechanisms of Exercise on 

the Treatment of Depression. Front Psychiatry. 2021;12: 705559. 

doi:10.3389/FPSYT.2021.705559/BIBTEX 

32.  Blumenthal JA, Rozanski A. Exercise as a therapeutic modality for the prevention and 

treatment of depression. Prog Cardiovasc Dis. 2023;77: 50–58. 

doi:10.1016/J.PCAD.2023.02.008 

33.  Dawson MY, Michalak EE, Waraich P, Anderson JE, Lam RW. Is remission of depressive 

symptoms in primary care a realistic goal? A meta-analysis. BMC Fam Pract. 2004;5: 1–6. 

doi:10.1186/1471-2296-5-19/FIGURES/1 

34.  Kolovos S, van Tulder MW, Cuijpers P, Prigent A, Chevreul K, Riper H, et al. The effect of 

treatment as usual on major depressive disorder: A meta-analysis. J Affect Disord. 2017;210: 

72–81. doi:10.1016/J.JAD.2016.12.013 

35.  Xiao L, Qi H, Zheng W, Xiang YT, Carmody TJ, Mayes TL, et al. The effectiveness of enhanced 

evidence-based care for depressive disorders: a meta-analysis of randomized controlled trials. 

Translational Psychiatry 2021 11:1. 2021;11: 1–8. doi:10.1038/s41398-021-01638-7 

36.  Ormel J, Hollon SD, Kessler RC, Cuijpers P, Monroe SM. More treatment but no less 

depression: The treatment-prevalence paradox. Clin Psychol Rev. 2022;91: 102111. 

doi:10.1016/J.CPR.2021.102111 

37.  Full KM, Kerr J, Grandner MA, Malhotra A, Moran K, Godoble S, et al. Validation of a physical 

activity accelerometer device worn on the hip and wrist against polysomnography. Sleep 

Health. 2018;4: 209–216. doi:10.1016/j.sleh.2017.12.007 

38.  Driller MW, O’Donnell S, Tavares F. What wrist should you wear your actigraphy device on? 

Analysis of dominant vs. non-dominant wrist actigraphy for measuring sleep in healthy adults. 

Sleep Science. 2017;10: 132. doi:10.5935/1984-0063.20170023 

39.  Zinkhan M, Berger K, Hense S, Nagel M, Obst A, Koch B, et al. Agreement of different methods 

for assessing sleep characteristics: A comparison of two actigraphs, wrist and hip placement, 

and self-report with polysomnography. Sleep Med. 2014;15: 1107–1114. 

doi:10.1016/j.sleep.2014.04.015 

  

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2024. ; https://doi.org/10.1101/2024.02.12.24302721doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302721
http://creativecommons.org/licenses/by/4.0/


Page 18 of 23 
 

Table 1. Description of the participants randomized to physical activity with and without complete 

accelerometer data. 

Characteristics All n=316 With complete 
accelerometer data n=66 

Gender 
 Male, n(%) 
 Female, n(%) 

 
74(23.4) 
176(55.7) 

 
21(31.8) 
45(68.2) 

Mean age (SD) 42.3(12.2) 42.6 (11.9) 

Exercise group 
  Light,n(%) 
  Moderate,n(%) 
  Vigorous,n(%) 

 
106(33.5) 
106(33.5) 
104(32.9) 

 
25(37.9) 
20(30.3) 
21(31.8) 

Have a tertiary education,n(%) 128(40.5) 26(39.4) 

Born outside Sweden,n(%) 67(21.2) 15(22.7) 

Unemployed,n(%) 37(11.7) 2*(3.0) 

MADRSpre, mean(SD) 22.2(6.9) 20.3(5.1)* 

MADRSpost, mean(SD) 11.4(7.9) 10.2(7.3) 

Response (relative change in 
MADRS), mean(SD) 

-0.43(0.54) -0.48(0.35) 

*p<0.01 
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Figures 

Figure 1. Graphic description of workflow for data analysis.  
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Figure 2. Description of data used for model training. (A) Top panel: heatmap of normalized activity 

used for feature extraction. Individual days recorded form each subject shown in temporal order of 

recruitment, independent from treatment assignment. Bottom panel: location of activity onset and 

offset for each day (corresponding columns in the top panel). Ticks on horizontal axis indicate the 

end of the recording for each patient. (B) Change in MADRS score recorded for each patient assigned 

to either level of physical activity intensity.  
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Figure 3. Correlations with response to treatment. (A) Correlations between individual features and 

response to treatment. Note the distinct patterns of direction and magnitude of linear correlations 

across groups. Significant correlations displayed in the right panel. No correlation survives FDR 

correction for multiple comparisons. (B) Performance of individual models trained to fit the response 

to treatment. (C) Cumulative performance in fitting the response to treatment. Note that all 

ensembles display an initial improvement in aggregated performance, then the performance 

degrades as less accurate individual models are included.  
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Figure 4. Bayesian analysis of coefficients. (A) Synoptic view of effect size (color-coded), variability 

(CV), and probability of inclusion in models (PIP) for individual features. Features with PIP higher 

than the initial inclusion probability (0.2179, indicated by horizontal red dashed line) are defined as 

enriched. (B) Illustration of differences in ensemble composition. The heatmap in the first panel 

shows average standardized coefficients. The second panel display only the coefficients with PIP > 

0.2179 (see (A) for reference). Note the distinct signatures for each ensemble. (C) Direct comparison 

between effect sizes of individual features across ensembles. Enriched features highlighted and 

color-coded based on differential enrichment in each ensemble. Features mapping in top-right and 

bottom-left quadrants indicate similar effects, while features mapping in top-left and bottom-right 

quadrants (shaded) indicate opposite effects between ensembles.   
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Figure 5. Predicted improvement in patient outcome if a priori information on best individual 

treatment is used for selection of treatment. (A) Counterfactual analysis for predicted response and 

remission rates using random assignment to treatment (1 million simulations) as comparator. The 

observed response and remission rates (used for ensemble training) were within 1 standard 

deviation from the simulated mean rates. Assigning each patient to the PE regime predicted to give 

best response yield significantly higher response and remission rates (beyond +4 standard deviations; 

p<0.05, single sample t-test). If all subjects are assigned to the same PE regime, the response and 

remission rates do not outperform random assignment. (B) Illustration of differences between 

observed and best predicted response. The grey shaded rectangles highlight the patients with 

significant improvement in treatment outcome, namely patients predicted to have reached remission 

if they followed another treatment than originally assigned. Red shaded panel highlights failed 

predictions, i.e., patients reaching remission in the clinical trial, but predicted not to reach remission. 

Right panel: distribution of assignment to different levels of PE intensity.  
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