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Abstract 

Recent advances in nonparametric Contrast Sensitivity Function (CSF) estimation have yielded a 

new tradeoff between accuracy and efficiency not available to classical parametric estimators. 

An additional advantage of this new framework is the ability to independently tune multiple 

aspects of the estimator to seek further improvements. Machine Learning CSF (MLCSF) 

estimation with Gaussian processes allows for design optimization in the kernel, acquisition 

function and underlying task representation, to name a few. This paper describes a novel kernel 

for CSF estimation that is more flexible than a kernel based on strictly functional forms. Despite 

being more flexible, it can result in a more efficient estimator. Further, trial selection for data 

acquisition that is generalized beyond pure information gain can also improve estimator quality. 

Finally, introducing latent variable representations underlying general CSF shapes can enable 

simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities or 

luminances. The conditions under which the new procedures perform better than previous 

nonparametric estimation procedures are presented and quantified. 
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Precis 

Machine learning contrast sensitivity function estimation is improved by incorporation of 

additional information about the nature of the underlying and data from other eyes. 
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Contrast sensitivity, psychophysics, machine learning, Bayesian modeling, active learning  
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Introduction 

Visual contrast sensitivity functions (CSFs) represent a generalization of visual acuity testing 

capable of yielding insight into both peripheral and central visual processing. The main 

drawback of CSF testing for research and particularly for clinical applications is long acquisition 

times. A standard compromise to achieve informative CSF estimates in practical amounts of time 

is to make strong assumptions about the nature of the CSF, i.e., its parametric form. Optimal data 

acquisition procedures under these assumptions result in efficient and practical testing 

procedures (Gu et al., 2016; Lesmes et al., 2010; Wang et al., 2016). Estimation accuracy for 

unusual CSF phenotypes suffers in the process, however (Chung & Legge, 2016; Rohaly & 

Owsley, 1993; Tahir et al., 2009; Woods et al., 1996). 

 

Conventional wisdom indicates that relaxing model assumptions to allow more flexibility would 

enable higher accuracy at the expense of lower efficiency. We showed previously that a flexible, 

nonparametric Bayesian estimator exhibits a compelling accuracy/efficiency tradeoff compared 

to classical CSF estimation strategies (Marticorena et al., 2024). Perhaps more importantly, this 

machine learning CSF (MLCSF) estimator has the added benefit of many options for further 

refining this and other tradeoffs in order to improve its performance. 

 

The first-generation MLCSF estimator, while reliable, had particular drawbacks. While it 

showed an improved ability to estimate unusual CSF shapes compared to a standard parametric 

estimator, it was challenged to fully capture behavior at the highest spatial frequencies at the 

same time. Additionally, the stimuli selected for delivery by strictly optimization were often not 

well-distributed along spatial frequency, often becoming concentrated at lower spatial 

frequencies. This lower density sampling at higher spatial frequencies appeared to increase the 

variance of final CSF estimates across repeated runs. Finally, the efficiency of MLCSF was 

overly sensitive to low-probability labels (i.e., a miss or a successful guess) at early stages of 

learning, as several nearby stimuli were typically needed to counter a mislabeled data point. 

Thus, it became apparent that some combination of improved stimulus selection (i.e., data 

sampling) and model regularization might combine to improve both accuracy and efficiency of a 

second-generation MLCSF estimator. 
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In this article we examine the ability to improve active MLCSF estimation upon relaxing two 

standard constraints: 1) strictly monotonic likelihood in contrast and 2) new stimulus selection 

using strictly maximum information gain. As a third manipulation, we explore the potential 

benefits of estimating two CSFs simultaneously, as an informed regularization method. This 

conjoint estimation procedure has been shown to accelerate final estimate convergence in 

psychometric fields even between dissimilar phenotypes (Barbour et al., 2018). 

Modeling Framework 

Background 

As in previous work, the conceptual starting point for a machine learning CSF estimation 

procedure is a probabilistic classifier that separates two regions in feature space designated 

“success” and “failure” (Marticorena et al., 2024; Song et al., 2015). Success for a contrast 

detection task is defined as a button press immediately following the delivery of a Gabor 

stimulus of a given spatial frequency and contrast. Failure is defined as exiting the response 

window following stimulus delivery without a button press. A probabilistic classifier is preferred 

over a true classifier because the boundary between success and failure in the former case is 

gradual rather than discrete, consistent with signal detection theory. 

 

Further, a probabilistic classifier is a natural framework to estimate a full psychometric field, 

which maps success probability for all combinations of independent variables (i.e., features), 

resulting in a generative model of item-level predictions (Song et al., 2018). In the present case, 

this is the Contrast Response Function (CRF), which takes the form of a probability surface 

defined over spatial frequency and visual contrast. If all non-psychometric independent variables 

are held constant (i.e., spatial frequency for the CRF), a psychometric field reduces to the 

familiar psychometric curve, in this case reflecting the probability of detecting a visual stimulus 

at any contrast value. A predetermined probability of detection (e.g., 50%) is the single point on 

the psychometric curve defining the threshold. Evaluating this threshold over all spatial 

frequencies contributing to the CRF yields the CSF. 
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The Gaussian process (GP) used to represent the Machine Learning CRF (MLCRF) is an 

inherently flexible, nonparametric modeling framework. It offers many potential options for 

customization that have the potential to improve estimation. Of particular interest is the ability to 

finely control the inductive bias (i.e., the modeling assumptions and their confidence) through 

several different means. Incorporation of a Bayesian informative prior, for example, has the 

potential to speed estimation, although it was not found to do so systematically under the 

MLCSF estimation conditions tested previously (Marticorena et al., 2024). In this study we 

evaluated the contributions of the 1) GP kernel, 2) acquisition function and 3) multitask GP 

configuration toward improving MLCRF and MLCSF estimation accuracy and efficiency.  

Gaussian process classification 

A full development of the following can be found in  (Marticorena et al., 2024). Briefly, define 

𝑓(𝐱) to be a latent function over a continuous multidimensional feature space 𝐱 ∈ 𝒳. A Gaussian 

process (GP) is a convenient way to encode prior knowledge about the latent function: 

 

𝑝(𝑓) = GP+𝜇(𝐱), 𝐾(𝐱, 𝐱/)0. 1 

 

This knowledge, encapsulated within the mean function 𝜇 and the covariance function or kernel 

K, can be updated following new data collection according to Bayesian principles.  

 

The GP is trained over a finite sample of independent features 𝐗 = {𝐱𝟏, 𝐱𝟐, . . . , 𝐱7}. In binary 

classification tasks the dependent variable can take on one of two values indicating failure or 

success: 𝑦: ∈ {0,1}. The latent function models this response-generating function, resulting in the 

MLCRF. Dividing the input domain of the psychometric field into subdomains of “task success” 

and “task failure” recasts the traditional signal detection regression problem in terms of 

classification, allowing advances in powerful machine learning classification algorithms to be 

exploited. 
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Kernel tuning 

In the first-generation MLCRF estimator, the probability of success 𝑝(𝑦 = 1|𝑓) was modeled by 

a sigmoidal link function 𝜓(𝐱) consistent with signal detection theory. This function is 

distributed according to a Bernoulli likelihood: 

 

𝜓(𝐱)~𝑝(𝑦 = 1|𝑓, 𝐱) = Bernoulli G𝜓+𝑓(𝐱)0H . 2 

 

Therefore, a linear kernel observed through the link function results in an inhomogeneous 

Bernoulli likelihood monotonic in contrast. The form of the link function accommodates 

mislabeled responses:  

 

𝜓(𝜅; 𝜃, 𝜎, 𝛾, 𝜆) = 𝛾 + (1 − 𝛾 − 𝜆)𝜙(𝜅; 𝜃, 𝜎), 3 

 

where 𝜙(∙) is a cumulative distribution parameterized by threshold 𝜃 and spread 𝜎, 𝛾 is a guess 

rate, and 𝜆 is a lapse rate (Wichmann & Hill, 2001). The independent variable 𝜅 represents 

contrast. 

 

A linear kernel operating on contrast alone reflects the assumption of monotonicity in contrast. 

To accommodate an assumption of local smoothness in spatial frequency, a squared exponential 

kernel was originally used, operating on spatial frequency alone: 

 

𝐾+(𝜔, 𝜔/)0 = 𝑠WWexp Z−
(𝜔 − 𝜔/)W

2𝑙W \ , 4 

 

where 𝑠W represents a scaling factor and l represents a length constant, which governs the 

smoothness of the function. The independent variable 𝜔 represents spatial frequency and 𝜔/ 

indicates any other spatial frequency to compute the covariance against. 

 

The overall kernel for the first-generation MLCRF was a simple linear combination of the 

constituent kernels (Marticorena et al., 2024): 
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𝐾(𝐱, 𝐱/) = 𝐾+(𝜔, 𝜅), (𝜔/, 𝜅/)0 = 𝑠^W𝜅𝜅/ + 𝑠WWexp _−
+`a`b0c

Wdc
e , 5 

 

where 𝐱 = (𝜅, 𝜔). Performance of the original MLCSF estimator indicated that while overall 

accuracy was good, threshold values at very high spatial frequencies were less accurate than 

average for some phenotypes. In particular, CSFs with very steep falloffs at high spatial 

frequencies required shorter squared exponential length constants to fit accurately, leading to 

inappropriate rippling at lower spatial frequencies, thus lowering overall accuracy. Conversely, if 

the lower spatial frequencies were fit well, accuracy at higher spatial frequencies may suffer due 

to longer squared exponential length constants. 

 

An alternate kernel design strategy involves relaxing the contrast constraint in order to obtain 

more flexibility for spatial frequency. The intent is to achieve good fits at both high and low 

spatial frequencies. This functionality is achieved by allowing contrast to have its own 

smoothness term in addition to the linear term of before. This second-generation kernel can be 

given as follows: 

 

𝐾(𝐱, 𝐱/) = 𝐾+(𝜔, 𝜅), (𝜔/, 𝜅/)0 = 𝑠^W𝜅𝜅/ + 𝑠WWexp Z−
(𝜔 − 𝜔/)W

𝑙^
W +

(𝜅 − 𝜅/)W

𝑙W
W \ . 6 

 

Acquisition function tuning 

Bayes’ rule is applied to compute updated posteriors upon observation of data {𝐲, 𝐗}. Because of 

the Bernoulli likelihood, the posteriors cannot be computed in closed form. They are estimated in 

this case via variational inference (Hensman et al., 2015; Titsias, 2009). Variational inference 

finds the best approximation of the true posterior distribution from a family of simpler 

distributions by minimizing the Kullback-Liebler divergence between the approximate and true 

posteriors (Gardner et al., 2018). 
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We can efficiently estimate the posterior distribution of the GP model, which when trained with 

all existing data can compute model updates for any new sample 𝐱∗ ∈ 𝐗∗ defined over spatial 

frequency and visual contrast. Therefore, the new sample 𝐱∗ that, upon observation, maximizes 

some utility function 𝑈(𝐱∗)	is optimal under that function: 

 

𝐴(𝐱∗) = argmax𝐱∗∈𝐗∗𝑈(𝐱∗|𝐗, 𝐲), 7 

 

where 𝐴(∙) represents the acquisition function and 𝑈(∙) is a utility function reflecting model 

quality. Previous implementation of the first-generation acquisition function prioritized 

uncertainty sampling by defining the utility function as the differential entropy calculated using 

the predictive mean 𝜇 and variance 𝜎2 of the model observed through the likelihood 

(Marticorena et al., 2024): 

 

𝐷𝐸(𝐱∗) = 𝐻 t𝛷 Z
𝜇(𝐱∗)
𝜎(𝐱∗)\

v −
𝐶

x𝜎W(𝐱∗) + 𝐶W
exp Z

−𝜇W(𝐱∗)
2𝜎(𝐱∗) + 𝐶W\ , 8 

 

where 𝐻 is the binary entropy function 𝐻(𝑥) = −𝑥logW(𝑥) − (1 − 𝑥)logW(1 − 𝑥), 𝛷 is the CDF 

of a standard normal, and 𝐶 is a normalizing factor	𝐶	 = {|}~(W)
W

 , which affords the 

approximation of the second term in closed form (Houlsby et al., 2011). This acquisition 

function finds the next best sample point 𝐱∗ that maximizes the differential entropy, which is a 

proxy for information gain.  

 

The gradients of differential entropy for the first-generation MLCRF estimator were very similar 

over contrast and very shallow over spatial frequency. Imposing a hard nonlinearity under these 

conditions can lead to degenerate conditions in which the updated model changes little, leading 

to multiple samples in close proximity. We hypothesized that implementing a sampling density 

penalty would provide a better balance between exploration and exploitation than the original 

acquisition function allowed.  
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The second-generation acquisition function, rather than taking the maximum of 𝑈(𝐱∗|𝐗, 𝐲), 

prioritizes a subset, 𝐗�:(7), which are the points within the highest n%. Next, it applies nearest 

neighbors to identify the point 𝐱∗, within 𝐗�:(7) that is furthest from any point in the existing 

sample set 𝐗. The new sampling density penalty in the acquisition function allows for more 

effective exploration initially, preventing proximity oversampling. As data acquisition continues, 

the new method enhances exploitation, ensuring more uniform sampling across spatial 

frequencies. 

Conjoint estimation 

The discussion above corresponds to a single GP defined over a feature space consisting of the 

independent variables of the psychometric field, resulting in a single MLCRF estimate. To 

estimate multiple GP models simultaneously, we extend our modeling framework and 

acquisition function over an augmented feature space for two eyes or experimental conditions. 

This can be accomplished in multiple ways, including kernel extension to learn different pairwise 

correlations for observations made in combinations of the individual feature spaces (Barbour et 

al., 2018). In that case, conjoining hyperparameter(s) are learned alongside other model 

hyperparameters. When data are acquired under active learning conditions for two phenotypes, 

conjoint estimation can halve the data requirements for accurate estimation, even when the 

phenotypes differ (Heisey et al., 2018). 

 

For the current study we implement conjoint estimation of two MLCRFs as a MultiTask GP  

using the linear model of coregionalization (Goulard & Voltz, 1992). This approach enables the 

modeling of multiple related tasks in a cohesive structure, where each task, 𝑓����(𝑥), is modeled 

as an output dimension of a linear combination of a set of latent functions, 𝑔(⋅) =

�𝑔(^)(⋅)	, . . . , 𝑔(�)(⋅)�. 

 

Each latent function is represented by an independent GP. The relationship is given as:  

 

𝑓�����(𝑥) =�𝑎(:,�)𝑔(:)(𝑥)
�

:�^

, 9 
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where 𝑎(:) are learnable parameters. This configuration facilitates the simultaneous learning of 

distinct sets of variational parameters and hyperparameters for each latent function. 

 

Because each MLCRF must be characterized by at least one latent function, the number of latent 

functions (Q) must be equal to or greater than the number of MLCRFs. The second-generation 

model sets the number of latent functions to be equal to the number of MLCRFs, which is 2 for 

the current experiments. Note that this implementation does not reduce the model to 𝑓�����(𝑥) =

𝑎(�)𝑔(�)(𝑥). 

Methods 

Simulations 

In experiment 1, ground truth CSF models for four canonical phenotypes were constructed from 

idealized threshold curves (Kalloniatis & Luu, 1995; Marticorena et al., 2024). In experiment 2, 

ground truth CSF models were drawn from 8 experimental conditions for 9 individuals (Jigo & 

Carrasco, 2020). 

 

In all cases, threshold curves as a function of spatial frequency were simulated by cubic spline 

interpolation and quadratic extrapolation. The resulting threshold curves were used to create 

generative ground truth CRF models representing a visual pattern-detection task as a function of 

spatial frequency and visual contrast. At each spatial frequency a one-dimensional sigmoidal 

psychometric curve was constructed using the four-parameter model in equation 3. One 

difference for the generative model, however, is that the sigmoid is given by the standard logistic 

function 

 

𝜙(𝜅) = ^

^����Ga���� H
. 10 

 

At any contrast value 𝜅, binary observations (i.e., detected or not detected) were generated by 

sampling from a Bernoulli distribution with success probability given by 𝜓(𝜅) = 𝑝(𝑦 = 1|𝜅). 
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Psychometric field for contrast response 

The psychometric field defining the item-level generative CRF model over the domains of 

spatial frequency and contrast is given by 𝜓(𝜔, 𝜅), while the underlying continuous latent 

function is defined by 𝑓(𝜔, 𝜅). The estimation procedure consists of acquiring the best data to 

learn model hyperparameters, which for the GP are given by the closed-form representations of 

the mean function and covariance function or kernel (Rasmussen & Williams, 2006). 

 

In all models for the current study, the GP mean function is given as a constant: 

 

𝜇(𝐱) = 𝜇+(𝜔, 𝜅)0 = 𝑐. 12 

 

This simple formulation purposefully imbues the kernel with most of the learning. 

 

First-generation estimators enforce strict linearity in contrast and smoothness in spatial 

frequency, as indicated in equation 5. For second-generation estimators the kernel encourages 

linearity and smoothness in contrast and smoothness only in spatial frequency, as indicated in 

equation 6. 

 

For first-generation estimators the acquisition function maximizes information gain, as seen in 

equation 7. Second-generation estimators generalize the acquisition function to include a 

sampling density consideration: 

 

𝐗��(7)
∗ = 	 {𝐱∗ ∈ 𝐗∗|𝑈(𝐱∗|𝐗, 𝐲) ≥ 𝐹�a^(1 − 𝑛)} 13 

𝒙∗ = argmax𝐱∗∈𝐗� (¡)∗ min𝐱∈𝐗𝐷(𝐱∗, 𝐱	), 14 

 

where 𝐹�a^ is the inverse cumulative distribution function, n is a percentile constant, and 

𝐷(𝐱∗, 𝐱	) is the distance between each candidate point 𝐱∗ and its corresponding nearest point in 

the previously collected data 𝐗. Thus, the acquisition function selects the point 𝐱∗ that, among 

points in 𝐗�:(7)∗ , has the greatest minimum distance to any given existing sample point. 
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Implementation 

All simulation, machine learning, and evaluation software was written in Python using major 

libraries Python (Python 3.10.9, n.d.), PyTorch (PyTorch 1.13.1, n.d.) and GPyTorch (GPyTorch 

1.8.1, n.d.). Project information, including code and data necessary to replicate these 

experiments, can be found at https://osf.io/7ujga/. 

 

Two experiments were conducted in order to test the new estimator configuration under different 

conditions. For experiment 1, four ground truth generative models were created from four 

canonical CSF phenotypes as in (Marticorena et al., 2024). Fifteen logarithmically spaced values 

were used along each of 6 octaves of spatial frequency (𝜔 ∈ [1, 64] cycles per degree) and 30 

values for each of 3 octaves of contrast (𝜅 ∈ [0.001, 1]), resulting in a 91×91 grid of 

logarithmically spaced values. This resolution is arbitrary and can be modified as needed. Cubic 

spline interpolation and quadratic extrapolation were used to determine continuous CSF values at 

every spatial frequency. This CSF curve was combined with a plausible psychometric spread 

value of 0.08 everywhere to create a generative CRF (Zhao et al., 2021). 

 

For each phenotype, data acquisition always began with a fixed primer sequence of two points: 

one at the origin of the grid (i.e., the lowest spatial frequency and lowest contrast on the grid), 

and an additional point at the first octave division of 𝜅 and third octave division of	𝜔. Active 

learning then commenced as determined by the acquisition function. The GP estimator models 

determined the next features to sample, and the generative models provided probabilistically 

determined labels of success or failure. Data acquisition for each eye or pair of eyes terminated 

following 100 or 200 total samples, depending on the protocol. 

 

Conjoint estimation take on a particular formulation for these experiments referred to as active 

mutual alternating conjoint estimation. In this case, odd stimuli are delivered to one eye and even 

stimuli to the other eye. After each stimulus delivery, posteriors for both eyes are updated and 

the next stimulus for the other eye determined strictly from the analysis of its utility function. 

 

The Cataract and Normal phenotypes were selected for an in-depth evaluation of the 4 

experimental conditions, as these phenotypes occupy opposite extremes of phenotype space. The 
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𝜙	= 0.5 contour of the CRF predictive posterior mean became the CSF estimate. The root mean 

square error (RMSE) between the ground truth CSF and the estimated CSF in log contrast units 

was quantified at all spatial frequencies. The estimated CSF was discretized to the nearest 

contrast grid value for this calculation. Each phenotype pair was evaluated separately for 25 

repetitions with different random seeds and the overall mean behavior summarized. 

 

Experiment 2 made use of generative ground truth models taken from a cohort of 9 individuals 

performing a large number of contrast sensitivity detections at a variety of eccentricities and 

attentional conditions. These highly oversampled, and thus highly confident, CSF phenotypes 

determined from the original threshold estimation procedure are depicted in Figure 1 (Jigo & 

Carrasco, 2020). Another 91×91 feature domain grid of logarithmically spaced values similar to 

Experiment 1 was used, except the spatial frequencies were estimated over the domain of 𝜔 ∈

[0.5, 32] cycles per degree. Because only discrete spatial frequencies were evaluated in the 

original experiments up to 11 cycles per degree, quadratic extrapolation was used to represent 

each CSF curve at higher spatial frequencies. Other experimental conditions were identical to 

experiment 1. 

 

 
Figure 1: The 72 different phenotypes evaluated from a population of 9 individuals under different stimulus 

conditions considered for generative models for experiment 2 (Jigo & Carrasco, 2020). Thicker dotted lines indicate 

20 representative CSF curves sampled for further analysis. These 20 curves, equally spaced in rank, form ventiles. 
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There are 2628 unique pairings for the 72 CSF phenotypes from the human data. Rather than 

evaluate all of them, averaged Pearson correlation coefficients were computed between each 

original CSF and the remaining 71. These averages were divided into 20 equally spaced ventiles. 

From each ventile, the curve with the median correlation was selected, yielding 20 representative 

curves encompassing the dataset’s diversity. These curves are highlighted in color in Figure 1. 

Estimation performance was averaged across all 210 unique pairings of these select phenotypes. 

 

For all estimator models, the mean function of the GP was initialized with c = 0. Zero on the 

latent function maps to a probability of success of 0.5, implying that without any data, the 

estimator assumes maximum uncertainty about the shape of the CRF. The kernel was initialized 

such that all hyperparameters were initially assigned a value of 1. The intention of this prior was 

to allow the sampled data to speak for itself in order to deliver a final estimate with few 

assumptions. Previous testing has not yet revealed a superior prior for CSF estimation 

(Marticorena et al., 2024). In every condition, a set of phantom shaping data points were added 

to assist estimator convergence. These values indexed detection failures at stimulus 

configurations well beyond any reported human contrast sensitivity. At each octave of spatial 

frequency, a phantom failure at a contrast of 0.0005 was added. Another phantom failure was 

added at a spatial frequency/contrast combination of (128, 1). 

Evaluation 

The MLCRF estimator generates a predictive posterior mean as a function of spatial frequency 

and contrast, which is equivalent to a maximum a posteriori estimate. The 0.5 probability 

counter as a function of spatial frequency was extracted to represent the MLCSF estimate. For 

each spatial frequency, the deviation of MLCSF from ground truth was quantified by RMSE 

over contrast. This summary of model quality was updated after each new sample point, allowing 

comparisons between experimental conditions in RMSE evolution plots. 
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Results 

Experiment 1 

A comparison of disjoint and conjoint estimation in model configuration 1 for twin Normal 

phenotypes can be seen in Figure 2. Following 50 actively acquired stimulus presentations per 

paired phenotype (100 per pair), credible CSF estimates are provided for all 4 individual 

phenotypes. For disjoint estimation shown in the top row, the models are essentially independent 

repeats of the same estimation procedure. The two estimated CSF curves are indicative of the 

variety of forms that first-generation MLCSF takes, including rippling at lower spatial 

frequencies. Conjoint estimation with the same model configuration in the bottom row, however, 

results in visibly higher accuracy at 50 samples. Closer inspection reveals that more of the 

conjointly-acquired stimuli are closely approximated to the ultimate CSF curve estimate, 

implying a more rapid convergence toward the final estimate than disjoint estimation produces. 

 

 
Figure 2: First-generation disjoint (top) and conjoint (bottom) MLCRFs estimated with 50 samples of active 

learning per phenotype (100 total) for a (Normal, Normal) canonical phenotype pair. Simulated behavioral responses 
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(blue plus signs = success, red diamonds = failure), ground truth Normal CSF (solid magenta curve), learned 

MLCSF (dashed cyan curve) and predictive posterior mean values (grayscale) are also plotted. Top RMSE values: 

0.101, 0.112. Bottom RMSE values: 0.0920, 0.0908. 

 

One potentially important difference between CSFs estimated disjointly versus conjointly for the 

first-generation kernel is that the latter make fewer systematic errors in threshold determination 

at particular spatial frequencies. This result comes about because the conjoint estimates are more 

regularized and thus smoother on average. Disjoint estimates often either end up rippling at low 

spatial frequencies with steeper estimates at higher spatial frequencies, or have smoother 

estimates at lower spatial frequencies with shallower estimates at higher spatial frequencies. 

Conjoint estimates, on the other hand, more frequently strike a middle ground between avoiding 

low-frequency rippling in addition to yielding acceptable slopes at higher spatial frequencies. 

 

Also noticeable is the occasional clustering of some stimuli quite close together, often at low 

spatial frequencies. The first-generation acquisition function is simply an information 

optimization, with no explicit component promoting a wide distribution of stimulus samples. 

Strict optimization of information gain can lead to such clustering under conditions in which the 

utility function changes little between samples. 

 

These two observations were made following the initial comparison between disjoint and 

conjoint MLCSF estimation, leading to the hypothesis that compensating for them directly might 

improve overall estimation accuracy and/or efficiency. For this reason, a new estimator was 

designed that relaxed constraints on the overall CSF shape while placing greater constraints on 

the distribution of stimulus samples to be delivered. Specifically, stimulus samples were selected 

such that similarity between any two stimuli was reduced. The result was the second-generation 

estimator MLCSF estimator. 

 

Figure 3 reveals the effects of these manipulations, once again for 50 samples per phenotype 

(100 per pair). All 4 MLCSF curves closely approximate the underlying ground truth models. 

Even though the second-generation MLCSF is free to curve back on itself at higher spatial 

frequencies with the new kernel, that occurrence is generally prevented by the particular 

selection of stimulus samples delivered. The wider sample distribution and lack of any clustering 
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is apparent and may be contributing to improved estimation accuracy in this case. Judging from 

the few stimuli far from threshold, selection of stimuli close to threshold happens at least as 

quickly as the first-generation example and probably faster. 

 

 
Figure 3: Second-generation disjoint (top) and conjoint (bottom) MLCRFs estimated with 50 samples of active 

learning per phenotype (100 total) for a (Normal, Normal) canonical phenotype pair. Plotting conventions are as in 

Figure 2. Top RMSE values: 0.0458, 0.0862. Bottom RMSE values: 0.0877, 0.0877. 

 

This estimator property has a synergistic effect on estimation accuracy. The guess and false 

positive rates for this detection experiment were 4%. When a mislabeled data point emerges, 

active learning selects several more similar stimuli in order to ensure the label is an error and not 

a surprise participant response. By converging toward threshold extremely rapidly—even 

without an informative Bayesian prior to shape the model early on—the average informativeness 

of each stimulus toward threshold determination increases, thus improving efficiency. The more 

distributed (i.e., less clumped) samples from the second-generation acquisition function appear to 

aid this rapid convergence. 
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To gain a better understanding of the utility of the second-generation estimator configuration, it 

was compared directly against the first-generation configuration for both disjoint and conjoint 

estimation, as well as a classical CSF estimator for comparison (Canare et al., 2019). Average 

MLCSF estimation accuracies as a function of the amount of data actively collected for three 

different phenotype pairings are depicted as RMSE evolution plots in Figure 4. In the (Normal, 

Normal) pairing (top row), active alternating mutual conjoint estimation tends to achieve higher 

accuracy at lower sample counts than disjoint estimation. At higher sample counts this disparity 

mostly disappears, indicating that all estimators are converging toward consistent estimates. The 

variation in conjoint estimates is systematically lower than in disjoint estimates, resulting in 

higher precision than the disjoint case. The poor precision of the first-generation disjoint case 

resulted from a single example that failed to converge. 

 

 
Figure 4: Mean ± standard deviation RMSE values in log contrast units for pairs of phenotypes averaged from 25 

repeat experiments using up to 50 samples per phenotype (100 per pair). Curves reflect first-generation disjoint 

MLCRF (green), first-generation conjoint MLCRF (purple), second-generation disjoint MLCRF (blue), second-
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generation conjoint MLCRF (red), and for comparison, an implementation of quick CSF (purple). Shaded polygons 

reflect estimate precision. Data were actively sampled across both members of each pair, for (Normal, Normal) 

(top), (Cataracts, Cataracts) (middle), and (Normal, Cataracts) pairs. 

 

To compare disjoint and conjoint estimators in Figure 4, models for both phenotypes were 

updated each time a new sample was acquired. Because in the disjoint case this new sample had 

no way of changing the other phenotype, the model for that phenotype was copied and repeated 

one sample forward, rather than being re-estimated. As a result, the disjoint RMSE evolution 

curves take on a staircase appearance. This same approach was taken for the quick CSF curve. 

The total amount of data reflected for the complete model for each phenotype in these plots is 50 

samples. The total amount of data for both models is 100 samples. 

 

A substantially similar result can be seen for the (Cataract, Cataract) condition in the middle row 

of Figure 4. Across model versions, conjoint estimation systematically converges faster 

compared to disjoint, while at the same time achieving obviously improved final estimates, 

irrespective of model version. The main difference from (Normal, Normal) is that first-

generation conjoint MLCSF performs as well as second-generation conjoint MLCSF for the 

(Cataract, Cataract) condition. Regardless of the model configuration, conjoint estimation is 

showing efficiency and consistency performance at least as good as disjoint estimation and, in 

some conditions, better. 

 

The previous two conditions involved learning models for two identical phenotypes. This 

condition reflects the inspiration for the original conjoint estimator design because many 

experimental conditions emerge in which two models are expected to be quite similar. A major 

surprise in previous work, however, was finding that even when the two phenotypes differed 

substantially, performance gains still occurred (Barbour et al., 2018; Heisey et al., 2018). 

Presumably enough similarity between even highly dissimilar phenotypes exists for an estimator 

learning those correlations (rather than assuming independence) to leverage them for improving 

estimation accuracy with fewer data. 

 

An interesting result is observed with the (Normal, Cataract) pairing in the bottom row of Figure 

4. Within model versions, the conjoint estimation advantage is no longer as obvious as with the 
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previous conditions. The only obvious trend across estimation of the disparate phenotypes is that 

second-generation conjoint MLCSF, in particular, converged more rapidly and with the best final 

estimates.  

 

Note that first-generation conjoint MLCSF estimation occasionally updates to a less accurate 

model, as can be seen in the occasional sharp peaks in the top and bottom rows of Figures 4. This 

type of momentary model unlearning does not tend to occur in the disjoint condition, nor in the 

second-generation conjoint MLCSF, leading to its designation as “negative inflexible conjoint 

interference.” Fortunately, the estimation process always recovers from these problematic model 

updates and goes on to deliver an accurate MLCSF estimate. Furthermore, the second-generation 

conjoint estimator appears not to be susceptible to negative conjoint interference, likely due to its 

increased flexibility.  

 

All previous analyses have been computed as RMSE vertically along contrast, averaged across 

all spatial frequencies. Average MLCSF estimation accuracy evaluated as a function of spatial 

frequency of data actively collected for a (Normal, Normal) phenotype pairing are depicted in 

Figure 5. The first-generation kernel, particularly with disjoint estimation, is susceptible to 

systematically greater, worsening error at higher spatial frequencies. This high-spatial-frequency 

error can be seen at values as low as around 8 cycles/degree, with maximal error reliably at the 

𝜅 = 1 intercept (i.e., the point of maximum contrast on the CSF). While conjoint estimation 

reduces these effects for the first-generation model, they are still strong and obvious. While the 

second-generation model also exhibits worsening error at higher spatial frequencies, it is 

substantially lower than the first-generation kernel, and generally low below 32 cycles/degree. 
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Figure 5: Mean ± standard deviation RMSE errors in cycles per degree of a (Normal, Normal) phenotype pair, 

averaged from 10 repeat experiments using 100 samples per phenotype. Data sources were as in Figure 4. 

 

Experiment 2 

Experiment 1 revealed that the second-generation MLCSF with its more flexible nature did not 

systematically worsen estimation performance and appeared to combine favorably with conjoint 

estimation procedures to produce consistently good results. Therefore, the second-generation 

configuration was selected for further experimentation. In order to obtain more realistic 

performance estimates, oversampled human data were reconstituted into simulated individuals, 

and CSFs were estimated for 210 distinct pairs, chosen from 20 phenotypes distributed across 

correlation quantiles within the population (Figure1). 

 

The result of these experiments can be seen in Figure 6. The larger number of examples in this 

case leads to smoother and more obvious trends. The conjoint estimator is statistically 

significantly more accurate than the disjoint estimator at 100 overall samples (p1000000 < 1.0×10–6, 

n = 420, permutation test). That difference disappears by 200 overall samples, however (p1000000 

= 0.593, n = 420, permutation test). Therefore, conjoint estimation under these experimental 

conditions requires significantly fewer data to achieve accurate final fits. Furthermore, the 

variance across pairs is also statistically significantly smaller in the conjoint condition with 100 

overall samples (p1000000 < 1.0×10–6, n = 420, permutation test), indicating greater consistency.  
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Figure 6: RMSE comparison between second-generation disjoint (blue) and conjoint (red) MLCSF estimates for 

210 unique pairs of 20 representative CSF curves acting as ground truth. For comparison, the performance of the 

quick CSF estimator is also shown (purple). At 119 data points, 1 of the 210 conjoint pairs destabilized its 

hyperparameters after acquiring a data point, resulting in large average error. The estimate recovered with the 

immediately following sample. Three of the qCSF phenotype estimates never converged even at 200 samples, and 

all pairs containing them were removed from analysis. 

 

Numerical quantification of accuracy (i.e., CSF estimate compared to ground truth) and precision 

(i.e., CSF estimate compared to a repeated estimate) for the two estimators is presented in Table 

1. All values are in log contrast units. Estimator precision was estimated directly by repeating 

estimates of all 210 unique phenotype pairs with a different random seed and quantifying the 

results. Disjoint and conjoint estimators are both unbiased and accurate, with conjoint estimators 

achieving higher precision. 

 
Table 1: Average differences between CSF estimates and ground truth (accuracy), as well as between repeated CSF 

estimates (precision) for all 210 unique pairs as a function of active sample count.  

Number of Active Samples 
 

20 50 100 
mean std mean std mean std 

 
Mean Signed Differences (second – first) 

Disjoint – Truth 0.0273 0.3486 0.0130 0.1915 –0.0029 0.0875 
Conjoint – Truth –0.0027 0.2672 0.0001 0.1419 –0.0001 0.0806 
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qCSF – Truth –0.0494 0.2210 0.0026 0.1512 0.0099 0.1287 
Disjoint – Disjoint 0.0222 0.4587 0.0048 0.2500 –0.0034 0.1174 

Conjoint – Conjoint –0.0108 0.3494 –0.0082 0.1862 0.0011 0.1086 
qCSF – qCSF 0.0035 0.3013 0.0029 0.1972 0.0013 0.1623 

 
Absolute Differences 

|Disjoint – Truth| 0.2460 0.2486 0.1195 0.1503 0.0663 0.0572 
|Conjoint – Truth| 0.1866 0.1913 0.0961 0.1044 0.0623 0.0511 

|qCSF – Truth| 0.1659 0.1542 0.1038 0.1100 0.0829 0.0990 
|Disjoint – Disjoint| 0.3376 0.3113 0.1677 0.1855 0.0898 0.0757 

|Conjoint – Conjoint| 0.2510 0.2433 0.1292 0.1343 0.0828 0.0703 
|qCSF – qCSF| 0.2218 0.2041 0.1317 0.1468 0.0970 0.1302 

 
Root Mean Square Errors/Differences 

RMSE(Disjoint, Truth) 0.3497	 	 0.1920	 	 0.0876	 	
RMSE(Conjoint, Truth) 0.2672  0.1419  0.0806  

RMSE(qCSF, Truth) 0.2265  0.1512  0.1291  
RMSD(Disjoint, Disjoint) 0.4592  0.2501  0.1174  

RMSD(Conjoint, Conjoint) 0.3495  0.1864  0.1086  
RMSD(qCSF, qCSF) 0.3014  0.1972  0.1624  

 

To investigate whether conjoint estimator’s advantage over disjoint estimation decreases for 

greater phenotypic difference between a pair of CSFs, the analysis of Figure 6 was repeated in 

subgroups stratified by the cumulate RMSE difference between the pair as sample count 

increases to 200. This analysis is shown in Figure 7. A weak trend (intercept = 3.3×10–2; slope = 

–2.2×10–3, 95% CI: [–3.5×10–3, –8.0×10–4]; r2 = 0.048) is observable and statistically significant 

(t208 = –3.2, p = 0.0016, n = 210, paired-samples t test). Therefore, the efficiency benefit of 

conjoint estimation is greater with similar ground truth CSFs, but not tremendously so. 
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Figure 7:  Efficiency gain for second-generation conjoint relative to disjoint MLCSF estimation. RMSE evolution 

analysis as in Figure 6 was conducted for each of the 210 phenotype pairs. For each pair, the conjoint RMSE 

evolution curve was subtracted from the disjoint curve up to 100 data samples. The integral of the resulting 

difference curve formed the RMSE difference between the two estimation methods for that pair. These values were 

plotted against the distance between the phenotypes in ventiles on the left. The red regression line shows a gradual 

decrease in the efficiency advantage of conjoint estimation for more dissimilar phenotypes. A violin plot 

summarizing the entire population distribution is shown on the right with median and range indicated by horizontal 

lines. 

 

Discussion 

The high degree of flexibility of GPs provides many potential adjustments to improve estimator 

performance, but also multiple conditions in which such adjustments may be necessary to 

achieve the full potential of the algorithm. These conditions may differ for different applications. 

For example, the machine learning audiogram is evaluated, like all audiogram procedures, in 

relative units. Healthy individuals with no symptoms of hearing loss result in audiogram 

thresholds near zero for all sound frequencies. Other individuals are compared against that 

baseline. As a result, even extreme cases of partial peripheral deafferentation result in threshold 

audiograms of relatively low curvature (Schlittenlacher et al., 2018). 
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In contrast, CSFs are represented in absolute units and curvatures can be higher at some spatial 

frequencies and simultaneously lower at other spatial frequencies. The squared exponential 

kernel in the first-generation MLCSF applies the same curvature constraint at all spatial 

frequencies. Multiple approaches exist to accommodate this additional knowledge about the 

nature of the latent function for this application. A typical approach would be to generalize the 

kernel form to one that provides the additional flexibility of multiple curvatures, including the 

rational quadratic or Matérn (Rasmussen & Williams, 2006). In fact, the Matérn kernel was 

selected for machine learning visual field estimation for this reason (Chesley & Barbour, 2020). 

 

While these types of kernel manipulations or even converting absolute CSF units to relative units 

prior to fitting were considered, a simpler approach became apparent. Because of the reliable 

concave-down shape of CSFs, adding additional model flexibility to be able to represent closed-

path arcs was hypothesized to have utility. The kernel change adopted for second-generation 

MLCSF would allow circles, ellipses or other closed-form paths to be represented. Such paths 

are not functions and thus could not represent actual CSFs. Enough flexibility was retained in the 

second-generation kernel to represent actual CSFs, however, so the empirical question is whether 

the extra flexibility can improve accuracy without penalizing efficiency. In terms of overall 

accuracy, Figure 4 reveals that the second-generation kernel performs no worse on average under 

experiment 1 conditions than the first-generation kernel.  

 

The second-generation model’s systematically improved performance suggests that real-world 

data may exhibit particularities that disadvantage a strict adherence to strict CSF shapes. The 

more rigid first-generation model employs a linear kernel in the contrast dimension and a 

squared exponential kernel in spatial frequency. The more flexible second-generation model, on 

the other hand, extends the squared exponential kernel to both dimensions. This alteration allows 

for shared local covariance modeling across both dimensions but relaxes strict CSF shape 

enforcement as a consequence. 

 

The higher flexibility of the second-generation model compared to the first-generation model is 

particularly clear at the characteristically steep falloffs at high spatial frequencies. Here, the 

capabilities of the first-generation model weaken as its assumptions approach invalidity. 
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Noticeable threshold estimation inaccuracies result, as evidenced in Figure 5. On the other hand, 

the second-generation model can precisely characterize the entire CSF at both shallower as well 

as steeper regions. Maintaining accuracy and reliability across a range of conditions underscores 

the flexible kernel’s superiority in data modeling. 

 

First-generation models also imposed a hard nonlinearity in the acquisition function: the absolute 

maximum of the utility function. The most obvious consequence of this design is that stimuli 

tend to cluster in some areas and fail to explore other informative areas simply because the utility 

function in those areas is slightly smaller. This phenomenon is especially prominent in mid and 

later stages of active learning when entropy gradients become very shallow with respect to 

spatial frequency. Thus, imposing the maximum of the utility function routinely leads to quasi-

random local distributions of stimuli. Because this issue tended to worsen as data collection 

continued, the idea to enforce a dispersion of data throughout collection seemed reasonable. This 

basic alteration successfully distributed stimuli across spatial frequency, leading to coarse shape 

approximations of ground truth much more quickly. 

 

The conjoint model coregionalization method results in more degrees of freedom than two 

combined disjoint models. Especially when coupled with the already flexible GP nature, the need 

to fit additional hyperparameters would conventionally be expected to require more data to 

achieve good fits, not fewer. Nevertheless, the conjoint MLCSF behavior observed here is 

consistent with estimator behavior in other domains (Barbour et al., 2018; Heisey et al., 2018).  

 

Early in data collection, the second-generation kernel can produce the unrealistic CSF estimates 

described earlier. The top panels of Figure 8 show this phenomenon clearly at 30 samples. Both 

disjoint CSF estimations in that case curved back upon themselves at high spatial frequencies. 

With the conjoint estimator, however, this phenomenon does not typically occur and when it 

does is less dramatic compared to the disjoint estimator. For both estimator types the final 

estimates are highly accurate. 
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Figure 8: Estimations of second-generation disjoint (top) and conjoint (bottom) MLCSFs estimated at various stages of active 

learning (15, 30, 50, and 100 samples per task) for a (Normal, Normal) canonical phenotype pair. Conjoint estimation achieves 

final estimates considerably faster than disjoint estimation. Note that 100 samples per task means 50 samples per phenotype. 

 

Convergence toward final CSF estimate is systematically faster for conjoint estimation compared 

to disjoint estimation. While this is true on average, Figure 7 shows that there are certainly 

examples in which disjoint estimation at 100 samples was more accurate than conjoint 

estimation. Negative RMSE differences indicate when these situations occur. The relative 

advantage of conjoint estimation steadily declines as the phenotype differences increase. On 

average, however, conjoint estimation does improve efficiency of CSF estimation. 

 

A slight distinction in clock time also exists between disjoint MLCRF and conjoint MLCRF 

estimation. Both conditions required steadily increasing model retraining times as data quantity 

increase, though these values differed for disjoint (e.g., 0.63 ± 0.015 seconds at 10 data points 

and 1.3 ± 0.036 seconds at 100 data points) and conjoint (e.g., 0.57 ± 0.022 seconds at 10 data 

points and 1.3 ± 0.038 seconds at 100 data points). Notably, both conditions are twice as fast as 

the procedure in (Marticorena et al., 2024). Timing computations were made using the CPU on a 
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Dell Precision 5820 Workstation with Xeon W-2245 8-core 3.90 GHz CPU and 128 GB of 

RAM.  

 

The collection of improvements between the first and generation MLCRF kernels and acquisition 

functions reflect the flexibility intrinsic to the GP method. Two modifications—removing the 

inductive bias of strictly functional CSF shapes and adding a sampling density consideration— 

systematically sped up convergence rates and improved final estimates across many varying 

phenotypes. While the present generation of MLCRF may have a high-performing configuration 

across the included population, the expected CSF form for any particular subpopulation can 

justify adjustments to the model’s covariance structure or active sampling procedure. 

 

Naive conjoint estimation of two eyes, as demonstrated in this paper, uses the least interesting 

form of such information: item-level responses from another CSF. In this case, the linear model 

of coregionalization is free to learn with no priors and no constraints, and thus in large part acts 

as a mildly informed regularizer. In experimental use with many conditions, however, directed 

hyperparameter adjustments to the coregionalization matrix could encourage sampling based on 

expected form shifts, such as the well-known effects of eccentricity or luminance. The flexible 

coregionalization method can handle non-item-level information such as field of view or visual 

acuity evaluations to inform CSF estimates and vice versa. This capability opens the door for 

further developments of semi-parametric, high-speed, low-budget, multi-outcome visual 

evaluations. 

Conclusions 

An updated nonparametric Bayesian estimator learning from simulated contrast behavioral 

responses has demonstrated improvements in CSF estimation efficiency and accuracy from 

informed manipulation of model structure and flexibility. These improvements incur no 

computational penalty when learning two CSFs simultaneously and are scalable to exploit 

additional data-informed model constraints for further improvements. Future work will evaluate 

its performance in real-time human data acquisition. 
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