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ABSTRACT  

Objective: 

To study body mass index (BMI) changes among individuals aged 18-99 years with and without 

SARS-CoV-2 infection. 

Subjects/Methods: 

Using real-world data from the OneFlorida+ Clinical Research Network of the National Patient-

Centered Clinical Research Network, we compared changes over time in BMI in an Exposed 

cohort (positive SARS-CoV-2 test between March 2020 - January 2022), to a contemporary 

Unexposed cohort (negative SARS-CoV-2 tests), and an age/sex-matched Historical control 

cohort (March 2018 - January 2020). Body mass index (kg/m2) was retrieved from objective 

measures of height and weight in electronic health records. We used target trial approaches to 

estimate BMI at baseline and change per 100 days of follow-up for Unexposed and Historical 

cohorts relative to the Exposed cohort by categories of sex, race-ethnicity, age, and 

hospitalization status. 

Results: 

The study sample consisted of 44,436 (Exposed cohort), 164,118 (Unexposed cohort), and 

41,189 (Historical cohort). Cumulatively, 62% were women, 21.5% Non-Hispanic Black, 21.4% 

Hispanic and 5.6% Non-Hispanic Other. Patients had an average age of 51.9 years (SD: 18.9). At 

baseline, relative to the Exposed cohort (mean BMI: 29.3 kg/m2 [95%CI: 29.0, 29.7]), the 

Unexposed (-0.07 kg/m2 [95%CI; -0.12, -0.01]) and Historical controls (-0.27 kg/m2 [95%CI; -

0.34, -0.20]) had lower BMI. Relative to no change in the Exposed over 100 days (0.00 kg/m2 

[95%CI; -0.03,0.03]), the BMI of those Unexposed decreased (-0.04 kg/m2 [95%CI; -0.06, -

0.01]) while the Historical cohort’s BMI increased (+0.03 kg/m2 [95%CI;0.00,0.06]). BMI 

changes were consistent between Exposed and Unexposed cohorts for most population groups, 

except at start of follow-up period among Males and those 65 years or older, and in changes over 

100 days among Males and Hispanics. 

Conclusions: 
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In a diverse real-world cohort of adults, mean BMI of those with and without SARS-CoV2 

infection varied in their trajectories. The mechanisms and implications of weight retention 

following SARS-CoV-2 infection remain unclear.  
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Introduction 1 

Poor cardiometabolic health, including obesity and diabetes, are known risk factors for 2 

COVID-19 severity and mortality.1 Recent studies of post-acute sequelae of COVID-19 (PASC) 3 

suggest COVID-19 may, in turn, worsen cardiometabolic health as increased rates of type 2 4 

diabetes, high blood pressure, and dyslipidemia have been reported for individuals infected with 5 

SARS-CoV-2.2–8 Few studies have examined changes in body mass index (BMI) which may 6 

contribute to observed associations of COVID-19 with incident cardiometabolic diseases, 7 

particularly for younger, healthier adults. Racial and ethnic minorities in the US have also been 8 

underrepresented in prior studies of PASC, making the findings of this research difficult to 9 

generalize to communities that experience disproportionately higher rates of SARS-CoV-2 10 

infection, COVID-19-related morbidity and mortality, and cardiometabolic disease in the US.9–11 11 

Understanding the magnitude and direction of changes in cardiometabolic risk factors during the 12 

post-acute period of SARS-CoV-2 infection status in diverse, real-world populations can provide 13 

insights into pathways through which COVID-19 may increase rates of type 2 diabetes and other 14 

cardiometabolic conditions. 15 

The purpose of this real-world evidence study was to characterize key changes in BMI 16 

among individuals who survived the acute phase (defined as the first 30 days) of SARS-CoV-2 17 

infection in a socio-demographically diverse cohort and compare them with a contemporary 18 

cohort who always tested negative for SARS-CoV-2 as well as a historical cohort (prior to the 19 

pandemic) matched on age and sex to those who tested positive. Using analytical approaches for 20 

target trial emulation, we examined if BMI changes differed by socio-demographic (sex, race-21 

ethnicity, age) category and hospitalization status.  22 

Methods 23 
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Study Design 24 

We conducted a secondary analysis of patient-level electronic health record (EHR) data  25 

from the OneFlorida+ clinical research network (CRN) in the National Patient-Centered Clinical 26 

Research Network (PCORnet).12 PCORnet CRNs have become a valuable resource to study 27 

symptom profiles of PASC.13,14 For the current study, the OneFlorida+ Data Analytics team 28 

independently queried the clinical data warehouse, built on the PCORnet Common Data Model, 29 

to extract data on socio-demographic and clinical characteristics of eligible patients.15  30 

We built three retrospective cohorts of adult individuals who sought care at least three 31 

times in the OneFlorida+ clinical sites over the period 2016-22.12 Individuals were included if 32 

they were 18 years or older with at least two inpatient or outpatient encounters recorded in 33 

OneFlorida+ in the two years before inclusion, and at least one inpatient or outpatient encounter 34 

in the period after inclusion (30 days from inclusion until last visit or 28 February 2022). 35 

Individuals were excluded if they had diabetes mellitus, as defined by previously validated 36 

computable phenotypes for type 1 diabetes (T1DM) and type 2 diabetes (T2DM; at least two of 37 

three criteria: ICD-9/10 diagnosis code for diabetes, antidiabetic medication, and/or HbA1c 38 

≥6.5%), in the 24 months preceding the date of first test or COVID-19 diagnosis code 39 

(Supplementary Table 1).16  40 

The Institutional Review Board of Emory University determined the study met criteria 41 

for exemption under 45 CFR 46.104(d). This study followed the REporting of studies Conducted 42 

using Observational Routinely-collected health Data (RECORD) Statement.17 43 

Exposure Cohorts 44 
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The Exposed cohort were individuals exposed to SARS-CoV-2, defined by meeting at 45 

least one of two criteria between 1 March 2020 and 29 January 2022: any positive test (Nucleic 46 

Acid Amplification Tests [NAAT] or antigen) or COVID-19 related ICD-10-CM codes (E08 to 47 

E13).13 The index date of infection exposure (T0) was defined as the date of the first positive test 48 

or date of record for the ICD-10-CM code. The timeline for cohort selection and follow-up is 49 

presented in Supplementary Figure 1. 50 

The Unexposed cohort were individuals not measured to have had exposure to SARS-51 

CoV-2 and consisted of individuals who met all of three criteria between 1 March 2020 and 29 52 

January 2022: at least one negative test (NAAT or antigen), no COVID-19 related International 53 

Classification of Diseases-10 CM (ICD-10 CM) codes (E08.X to E13.X), and no positive test 54 

during follow-up period. Since the Unexposed cohort tested negative throughout the follow-up 55 

period, to maximize follow-up duration, the index date (T0) was defined as the date of the first 56 

negative test.  57 

The Historical cohort was constructed to be representative of typical clinic visits among 58 

patients who utilized the healthcare delivery systems in the pre-pandemic period, and ensure 59 

differences observed in the Exposed and Unexposed cohorts were not due to the pandemic 60 

period. Patients who were not subsequently part of Exposed or Unexposed cohorts were sampled 61 

into the Historical cohort after matching on sex and 5-year age intervals. The index dates of 62 

Historical cohort ranged from 2 March 2018 and 30 January 2020, and were selected such that 63 

the last date of possible follow-up (29 February 2020) did not overlap with the start of the 64 

calendar period of identification (1 March 2020) for the Exposed and Unexposed cohorts.  65 

We restricted our study sample to individuals who had at least one measurement of 66 

weight in the year preceding their observation period in our study (Supplementary Figure 2). 67 
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The final analytic sample consisted of 44,436 Exposed, 164,118 Unexposed controls and 41,189 68 

Historical controls. All subsequent analysis accounted for the stratified sampling of Historical 69 

controls.  70 

Outcomes – Cardiometabolic Health Indicators 71 

We explored average longitudinal change in body mass index (BMI) based on objective 72 

measures recorded in the EHR. Follow-up period (in days) was calculated as number of days 73 

from 30 days after index date (i.e. Time tF = t – [T0 + 30]), defined as the post-acute phase of the 74 

disease. To exclude weight changes associated with severe illness and weight loss prior to 75 

mortality, we included only those participants who were alive at least 30 days after SARS-CoV2 76 

infection was detected.2,13  77 

Effect Modifiers – Socio-demographic Characteristics and Hospitalization Status 78 

 Socio-demographic characteristics included sex (male, female), race-ethnicity (Non-79 

Hispanic White, Non-Hispanic Black, Hispanic), and age at index date (18-39 years, 40-64 years, 80 

65 years and older). We determined all-cause hospitalization status (not hospitalized, 81 

hospitalized) based on the clinical encounter coded on the index date.  82 

Confounders  83 

We used a combination of biologically plausible covariates and empirically identified 84 

covariates to adjust for baseline differences between cohorts using inverse probability weighting 85 

(IPW) (see Supplementary Methods). Biologically plausible covariates known to be associated 86 

with higher cardiometabolic risk were derived from data collected before the index date. We 87 

used data collected within 1 year of index date to define smoking status (yes/no), use of 88 

medications relevant to cardiometabolic health (yes/no; antihypertensives, statins, 89 
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antidepressants, antipsychotics, steroids), and laboratory parameters (HbA1c, random glucose, 90 

lipid panel). Given the lower frequency of reporting diagnosis codes, we used data collected 91 

within 2 years before the index date to identify comorbidities using grouped ICD-10-CM codes 92 

(yes/no; obesity, cardiovascular disease, cerebrovascular disease, hyperlipidemia, hypertension, 93 

pulmonary disease). Information on medication, laboratory, and diagnosis codes used for 94 

categorization are provided in Supplementary Table 1. We identified the health system and 95 

primary insurance type (Medicare, Medicaid, Other Government, Private, No Insurance, No 96 

Information) used on index date.  97 

Empirically identified covariates were computed across six data dimensions available in 98 

OneFlorida+ : inpatient diagnoses, outpatient diagnoses, inpatient procedures, outpatient 99 

procedures, prescriptions, and laboratory tests.18 We used participant records from within 1 year 100 

before index date to compute the covariates. Diagnostic codes and prescriptions were categorized 101 

into 537 Clinical Classifications Software Refined (CCSR) categories and 89 Anatomical 102 

Therapeutic Chemical (ATC) Level 3 classes respectively. The 1,951 procedure codes (Current 103 

Procedural Terminology, ICD-10-CM) and abnormalities in 876 laboratory tests (Logical 104 

Observation Identifiers Names and Codes [LOINC]) were included without additional 105 

categorization. We identified the top 200 covariates in each data domain based on their 106 

prevalence in the sample. For each covariate, we then computed three intensity dummy variables 107 

(at least once, sporadic [more often than median participant], frequent [more often than the 75th 108 

percentile]).  109 

Statistical Analysis 110 

We present an overview of the analytic strategy in Supplementary Figure 3. 111 
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Inverse probability weighting for cohort membership and follow-up 112 

Since this is an observational study, baseline characteristics may differ between exposed, 113 

unexposed, and historical control cohorts resulting in non-random cohort membership. To 114 

minimize instrumental variable bias when constructing propensity scores, we performed variable 115 

selection of empirically identified covariates longitudinally associated with BMI after adjusting 116 

for multiple comparison correction using the Benjamini-Hochberg procedure. Next, random 117 

forests models for probability of membership in each exposure cohort, relative to other cohorts, 118 

were fit separately with 5-fold cross-validation. We tuned the parameters based on the area under 119 

receiver operating characteristic curve (AUC) and identified 2000 trees and 10 observations per 120 

node as the best combination of hyperparameters. We included both biologically-plausible and 121 

algorithmically selected covariates to estimate the high-dimensional propensity score.19,20. We 122 

assessed covariate balance between the Unexposed and Historical Control cohorts, relative to the 123 

Exposed, after IPW using population standardized bias.21 Population standardized bias is the 124 

maximum difference between IP weighted group mean and unweighted pooled mean.21 Bias less 125 

than 0.1 after weighting was considered as indicative of covariate balance.  126 

We additionally constructed IPW for availability of follow-up data for BMI to minimize 127 

selection bias, since not all participants had data on all cardiometabolic health indicators during 128 

the follow-up period.22 The final weight for each individual in the analytic sample is a product of 129 

treatment weights and selection weights. We provide additional detail of the modeling strategy in 130 

an extended methodological note (Supplementary Methods). 131 

IPW were also constructed separately for each socio-demographic, clinical, and 132 

community characteristic of interest with numerator reflecting probability of cohort membership 133 
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under levels of each characteristic (sex, race-ethnicity, age) when assessing differences between 134 

levels.23 135 

Changes in BMI 136 

First, we modeled BMI in the follow-up period for Exposed, Unexposed, and Historical 137 

Control cohorts using marginal structural models. We used a difference-in-differences 138 

framework to understand if changes in BMI per 100 days of follow-up differed for Unexposed 139 

and Historical cohorts relative to the Exposed cohort. We adjusted for all imbalanced 140 

characteristics except laboratory parameters in the regression model since the latter had high 141 

rates of missingness. Second, we estimated average BMI at origin date and longitudinal change 142 

in BMI per 100 days of follow-up across categories of sex (male vs female), race-ethnicity (NH 143 

White vs NH Black vs Hispanic), age (18-39 vs 40-64 vs 65 and older) and hospitalization status 144 

by exposure group. We did not adjust for multiple comparisons in these prespecified subgroup 145 

analysis. 146 

Sensitivity Analysis 147 

First, to minimize the influence of patients who rarely used the health system, we 148 

restricted the analytic sample to those patients with at least 100 days of follow-up and at least 149 

two encounters where BMI was measured in the follow-up period. Second, to account for 150 

differences in health outcomes due to differences in reasons for visit during follow-up period, we 151 

adjusted for number and types of clinical encounters between measurements of the 152 

cardiometabolic risk factors as a time-varying covariate. Third, to account for differences in 153 

timing of follow-up visits, we adjusted for COVID-19 transmission in county of residence on 154 

dates when cardiometabolic risk factors were measured. COVID-19 cases and test positivity per 155 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302697doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302697
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

100,000 persons in the 7 days prior to the date of measurement were obtained from Centers for 156 

Disease Control and Prevention’s COVID-19 County Level of Community Transmission data 157 

archive. New cases and test positivity would be zero on all dates for the Historical Control 158 

cohort. Finally, we used multiple imputation (5 datasets) to impute missing values of laboratory 159 

parameters in lookback period and adjusted for imbalanced covariates in the regression model. 160 

All analysis was carried out using R 4.2.0 and Python 3.11.4.  161 

Results 162 

The study sample consisted of 249,743 adults, of whom 44,436 (19.2%) belonged to the 163 

Exposed cohort, 164,118 (61.5%) belonged to the Unexposed cohort, and 41,189 (19.3%) 164 

belonged to the Historical cohort (Table 1). Most of the study sample were women (155,223 165 

[62%]), with an average age of 51.9 years (SD: 18.9). Nearly half the sample belonged to 166 

minority race-ethnicity groups (Non-Hispanic Black: 21.5%, Hispanic: 21.4%, Non-Hispanic 167 

Other: 5.6%). Most patients used private insurance (46%) or Medicare (18%) on index date and 168 

27% were hospitalized on index date. The average BMI on index date in the study sample was 169 

29.5 kg/m2
 (SD: 7.4) with 30% and 40% having overweight and obesity respectively. The 170 

excluded sample without weight available in the preceding year were healthier than the study 171 

sample with weight available (Supplementary Table 2).  172 

The Exposed cohort was younger (48.8 years [SD: 18.4]) and more likely to be female 173 

(65%) relative to the Unexposed cohort (age: 53.6 years [SD: 19.0], 61% female). The Exposed 174 

cohort was also more likely to be Non-Hispanic Black or Hispanic race-ethnicity (50.6% vs 175 

40.6% Unexposed and 43.5% Historical), privately insured (53% vs 42% Unexposed and 42% 176 

Historical) and had higher obesity (46% vs 39% Unexposed and 38% Historical). The 177 
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Unexposed cohort was more likely to be hospitalized due to any cause relative to other cohorts 178 

(31% vs 28% Exposed and 7.4% Historical). The proportion with comorbidities and medications 179 

prescribed were similar between the three cohorts. After inverse probability weighting 180 

(Supplementary Table 3), some covariates remained imbalanced between the three groups, 181 

namely age, race-ethnicity, smoking, health system at admission, hospitalization status, BMI, 182 

and laboratory parameters (HbA1c, serum creatinine, HDL, LDL) in the previous year.  183 

Trajectories of body mass index in follow-up period 184 

 Of the study sample, only 194,792 (77.9%) had BMI information in the follow-up period 185 

(Exposed: 32,384, Unexposed: 127,142, Historical: 35,266). Socio-demographic and clinical 186 

characteristics were similar between those with and without BMI information in the follow-up 187 

period (Supplementary Table 2). The random forests model to predict loss to follow-up had 188 

high model fit in the hold-out test set (AUROC: 0.97; Supplementary Methods Note). The time 189 

(median [IQR]) to the first follow-up visit of BMI was shorter for Exposed (39 [12, 107]) and 190 

Unexposed (33 [11, 98]) cohorts, relative to the Historical (74 [22, 180]) cohort (Supplementary 191 

Table 4). The Historical cohort had more frequent (median: 4 vs 3 each for Exposed and 192 

Unexposed) and longer duration of follow-up (median days [IQR]; 464 [271, 592] vs 178 [76, 193 

357] for Exposed and 212 [85, 374] for Unexposed). BMI at the first follow-up was higher for 194 

the Exposed (29.3 kg/m2, 95% Confidence Interval [CI]: 24.9, 34.9), relative to Unexposed (27.9 195 

kg/m2, 95%CI: 23.9, 33.0) and Historical (27.8 kg/m2, 95%CI: 23.8, 32.8) cohorts. 196 

 Adjusting for imbalanced covariates and after IPW, the average estimated BMI at origin 197 

date (Table 2) was higher for the Exposed (29.3 kg/m2, 95%CI: 29.0, 29.7) relative to the 198 

Unexposed (difference: -0.07 kg/m2, 95%CI: -0.12, -0.01) and Historical (difference: -0.27 199 

kg/m2, 95%CI: -0.34, -0.20) cohorts. Change in BMI per 100 days of follow-up was null for the 200 
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Exposed (0.00 kg/m2, 95%CI: -0.03, 0.03), negative for the Unexposed (-0.03 kg/m2, 95%CI: -201 

0.04, -0.02) and positive for the Historical (0.04 kg/m2, 95%CI: 0.03, 0.05) cohort. The change in 202 

BMI per 100 days of follow-up for the Unexposed (-0.04 kg/m2, 95%CI: -0.06, -0.01) and 203 

Historical (0.03 kg/m2, 95%CI: 0.00, 0.06) cohorts were different, relative to the Exposed cohort 204 

(Table 2). 205 

 Adjusted differences in BMI at origin date for subgroups of sex, age, race-ethnicity, and 206 

hospitalization status are presented in Figure 1A. Across most socio-demographic subgroups 207 

(except among adult Males, those aged 65 and older, Hispanic adults, non-hospitalized adults) 208 

BMI at origin date was higher among Exposed, relative to Unexposed and Historical cohorts 209 

(Supplementary Table 5). Relative to Exposed cohort (Figure 1B), the change in BMI per 100 210 

days of follow-up among the Unexposed cohort was lower among Males (difference-in-211 

differences [DiD]: -0.07 kg/m2, 95%CI: -0.12, -0.02) and non-Hospitalized adults (DiD: -0.04 212 

kg/m2, 95%CI: -0.07, -0.01). Relative to the Exposed cohort, the change in BMI per 100 days of 213 

follow-up among the Historical cohort was higher among Females (DiD: 0.07 kg/m2, 95%CI: 214 

0.03, 0.11), Non-Hispanic White adults (DiD: 0.07 kg/m2, 95%CI: 0.03, 0.11) and non-215 

Hospitalized adults (DiD: 0.03 kg/m2, 95%CI: 0.00, 0.06) 216 

 Results were similar when restricting to those with at least 100 days of follow-up and at 217 

least two encounters when BMI was measured (Supplementary Table 6), after adjusting for 218 

number and types of encounters between BMI measurements (Supplementary Table 7) and 219 

after adjusting for COVID-19 cases and testing (Supplementary Table 8). Results were also 220 

similar after accounting for missing data in laboratory parameters using multiple imputation 221 

(Supplementary Table 9).   222 

Discussion 223 
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 In a diverse real-world cohort of adults who sought medical care during the pandemic, 224 

those who tested positive for COVID-19 (Exposed) were heavier at the start of the post-acute 225 

phase of SARS-CoV-2 infection compared to contemporary controls who tested negative 226 

(Unexposed), and age-sex matched historical controls. The BMI of those Exposed did not change 227 

per 100 days of follow-up, while the BMI of those Unexposed decreased, and the BMI of 228 

historical controls increased. The change in BMI over time differed between Exposed and 229 

Unexposed cohorts at start of follow-up among Males and those 65 years or older, and in 230 

changes per 100 days among Males and Hispanics. 231 

 The persistent higher BMI, including before infection, among those Exposed compared to 232 

those who were Unexposed suggest that those infected by SARS-CoV-2 may have been at higher 233 

risk of COVID-19 when seeking care.5 This finding is consistent with numerous reports of 234 

elevated BMI being a risk factor for severe COVID-19.24,25 The current study extends the 235 

findings of this prior research to examine BMI trajectories following SARS-CoV-2 infection at 236 

the individual level. To date, most studies have examined the pandemic’s impact on BMI at a 237 

population level.  For instance, a meta-analysis of observational studies showed that the 238 

pandemic resulted in a small increase in BMI and prevalence of obesity among adults.26,27 239 

Potential explanations for BMI increases at the individual and population level include rise in 240 

sedentary time and unhealthy dietary habits, downward social mobility from loss of income and 241 

employment, and disruption of preventive care.26 The bidirectional relationship of viral 242 

infections and cardiometabolic disease may be mediated by excess adiposity, insulin resistance, 243 

inflammation and/or delayed recovery after COVID-19 as a post-acute sequelae.2–4,28,29.  244 

 This analysis of real-world data has several strengths. We used a validated computable 245 

phenotype for prevalent T2DM as part of our exclusion criteria to identify a cohort of adults free 246 
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of T2DM, who were users of the healthcare system before the pandemic, and who were tested for 247 

SARS-CoV-2. We additionally included a historical control cohort, matched on age and sex, to 248 

characterize differences in the patient population attributable to the pandemic. The OneFlorida+ 249 

Data Trust is a part of the National Patient-Centered Clinical Research Network (PCORnet) and 250 

follows the common data model, facilitating reproducibility. Compared to other real-world 251 

studies, the analytic sample was younger and more diverse across categories of race-ethnicity, 252 

age, and sex.2,5 The duration of follow-up was longer than other studies reporting post-acute 253 

sequelae of COVID-19.3,5,6,13 We used methods for target trial emulation to minimize 254 

confounding, including minimizing the potential for instrumental variable bias in high 255 

dimensional confounder selection. 256 

 There are several limitations for this study. First, the OneFlorida+ CRN includes data 257 

from many but not all of Florida’s healthcare providers; our analyses could not account for 258 

patients testing positive at centers not participating in the OneFlorida+ CRN. However, the 259 

criteria we used for the lookback period were meant to identify regular users of healthcare 260 

systems participating in OneFlorida+.30 Additionally, our sample selection was not biased by 261 

home testing because it became widespread only after the last date of follow-up in February 262 

2022. Second, although we used a high dimensional propensity score for confounding 263 

adjustment, we cannot rule out all differences in clinical characteristics at the time of the index 264 

encounter. For instance, those Exposed and Unexposed may have had different reasons for 265 

seeking care. Finally, singly-robust machine learning based propensity scores are inferior to 266 

doubly-robust methods for lower bias and confidence-interval coverage.31 However, to our 267 

knowledge, there were no standard software packages to implement doubly-robust causal 268 

inference methods for sparse, longitudinal datasets such as electronic health records. 269 
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 This analysis of diverse, real-world data showed that among those who sought medical 270 

care during the pandemic, patients testing positive were heavier at the start of the post-acute 271 

phase of COVID-19 and retained weight during the post-acute phase of follow-up compared to 272 

those testing negative throughout the observation period. Although the subgroup analysis 273 

revealed some heterogeneity in these associations, the observed associations were present among 274 

racial-ethnic minorities and young adults who were disproportionately affected by COVID-19.  275 

The mechanisms influencing this observed increase in weight retention after COVID-19 276 

infection warrant further investigation. 277 

 278 

 279 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302697doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302697
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

ACKNOWLEDGEMENT/SUPPORT 

Acknowledgements: This research was supported by the National Institute for Diabetes and 

Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health, award number 

3R01DK120814-05S1. MKA was partially supported by the Georgia Center for Diabetes 

Translation Research which is funded by the National Institutes of Health (P30DK111024). The 

authors thank the OneFlorida+ Data Trust team (Kathryn Shaw, Meggen Kaufman, Jiang Bian, 

Elizabeth Shenkman) for support on query development and data extraction. The authors thank 

Shihab Chowdhury for administrative support. 

Author contributions: RJC, WTD and JSV conceptualized the study with inputs from MKA 

and YG. JSV conducted the analysis. JSV wrote the first draft with inputs from RJC. All authors 

reviewed and edited subsequent drafts. 

Competing Interest: The authors declare no competing financial interests. 

Data availability statement: The code for the analysis is available on 

https://github.com/jvargh7/pasc_cardiometabolic_risk. Information of the OneFlorida+ CRN is 

provided at https://onefloridaconsortium.org/, and OneFlorida+ data are made available to 

researchers with an approved study protocol at https://onefloridaconsortium.org/front-door/prep-

to-research-data-query/. For questions regarding OneFlorida+, email: 

OneFloridaOperations@health.ufl.edu. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302697doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302697
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

References 

1. Singh AK, Khunti K. COVID-19 and Diabetes. Annu Rev Med. 2022;73(1):129-147. 
doi:10.1146/annurev-med-042220-011857 

2. Xie Y, Al-Aly Z. Risks and burdens of incident diabetes in long COVID: a cohort study. The 
Lancet Diabetes & Endocrinology. 2022;10(5):311-321. doi:10.1016/S2213-8587(22)00044-4 

3. Barrett CE, Koyama AK, Alvarez P, et al. Risk for Newly Diagnosed Diabetes >30 Days 
After SARS-CoV-2 Infection Among Persons Aged <18 Years — United States, March 1, 
2020–June 28, 2021. MMWR Morb Mortal Wkly Rep. 2022;71(2):59-65. 
doi:10.15585/mmwr.mm7102e2 

4. Rathmann W, Kuss O, Kostev K. Incidence of newly diagnosed diabetes after Covid-19. 
Diabetologia. Published online March 16, 2022. doi:10.1007/s00125-022-05670-0 

5. Holman N, Barron E, Young B, et al. Comparative Incidence of Diabetes Following Hospital 
Admission for COVID-19 and Pneumonia: A Cohort Study. Diabetes Care. 2023;46(5):938-
943. doi:10.2337/dc22-0670 

6. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of 
COVID-19. Nature. 2021;594(7862):259-264. doi:10.1038/s41586-021-03553-9 

7. Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort 
study. The Lancet Diabetes & Endocrinology. 2023;11(2):120-128. doi:10.1016/S2213-
8587(22)00355-2 

8. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat 
Med. 2022;28(3):583-590. doi:10.1038/s41591-022-01689-3 

9. Mude W, Oguoma VM, Nyanhanda T, Mwanri L, Njue C. Racial disparities in COVID-19 
pandemic cases, hospitalisations, and deaths: A systematic review and meta-analysis. J Glob 
Health. 2021;11:05015. doi:10.7189/jogh.11.05015 

10. Dalsania AK, Fastiggi MJ, Kahlam A, et al. The Relationship Between Social Determinants 
of Health and Racial Disparities in COVID-19 Mortality. J Racial and Ethnic Health 
Disparities. 2022;9(1):288-295. doi:10.1007/s40615-020-00952-y 

11. Beckles GL, Chou CF. Disparities in the Prevalence of Diagnosed Diabetes — United States, 
1999–2002 and 2011–2014. MMWR Morb Mortal Wkly Rep. 2016;65(45):1265-1269. 
doi:10.15585/mmwr.mm6545a4 

12. Hogan WR, Shenkman EA, Robinson T, et al. The OneFlorida Data Trust: a centralized, 
translational research data infrastructure of statewide scope. Journal of the American Medical 
Informatics Association. 2022;29(4):686-693. doi:10.1093/jamia/ocab221 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302697doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302697
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

13. Zhang H, Zang C, Xu Z, et al. Data-driven identification of post-acute SARS-CoV-2 
infection subphenotypes. Nat Med. 2023;29(1):226-235. doi:10.1038/s41591-022-02116-3 

14. Hernandez-Romieu AC, Carton TW, Saydah S, et al. Prevalence of Select New Symptoms 
and Conditions Among Persons Aged Younger Than 20 Years and 20 Years or Older at 31 to 
150 Days After Testing Positive or Negative for SARS-CoV-2. JAMA Netw Open. 
2022;5(2):e2147053. doi:10.1001/jamanetworkopen.2021.47053 

15. PCORnet. Common Data Model (CDM) Specification, Version 6.0. Published online January 
2022. https://pcornet.org/wp-content/uploads/2022/01/PCORnet-Common-Data-Model-v60-
2020_10_221.pdf 

16. Wiese AD, Roumie CL, Buse JB, et al. Performance of a computable phenotype for 
identification of patients with diabetes within PCORnet: The Patient�Centered Clinical 
Research Network. Pharmacoepidemiol Drug Saf. 2019;28(5):632-639. doi:10.1002/pds.4718 

17. Benchimol EI, Smeeth L, Guttmann A, et al. The REporting of studies Conducted using 
Observational Routinely-collected health Data (RECORD) Statement. PLoS Med. 
2015;12(10):e1001885. doi:10.1371/journal.pmed.1001885 

18. Rassen JA, Blin P, Kloss S, et al. High�dimensional propensity scores for empirical 
covariate selection in secondary database studies: Planning, implementation, and reporting. 
Pharmacoepidemiology and Drug. 2023;32(2):93-106. doi:10.1002/pds.5566 

19. Tian Y, Schuemie MJ, Suchard MA. Evaluating large-scale propensity score performance 
through real-world and synthetic data experiments. International Journal of Epidemiology. 
2018;47(6):2005-2014. doi:10.1093/ije/dyy120 

20. Simon N, Friedman J, Hastie T. A Blockwise Descent Algorithm for Group-penalized 
Multiresponse and Multinomial Regression. Published online 2013. 
doi:10.48550/ARXIV.1311.6529 

21. McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF. A tutorial 
on propensity score estimation for multiple treatments using generalized boosted models. 
Statist Med. 2013;32(19):3388-3414. doi:10.1002/sim.5753 

22. Weuve J, Tchetgen Tchetgen EJ, Glymour MM, et al. Accounting for Bias Due to Selective 
Attrition: The Example of Smoking and Cognitive Decline. Epidemiology. 2012;23(1):119-
128. doi:10.1097/EDE.0b013e318230e861 

23. Robins JM, Hernán MÁ, Brumback B. Marginal Structural Models and Causal Inference in 
Epidemiology: Epidemiology. 2000;11(5):550-560. doi:10.1097/00001648-200009000-00011 

24. Gao M, Piernas C, Astbury NM, et al. Associations between body-mass index and COVID-
19 severity in 6·9 million people in England: a prospective, community-based, cohort study. 
The Lancet Diabetes & Endocrinology. 2021;9(6):350-359. doi:10.1016/S2213-
8587(21)00089-9 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302697doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302697
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

25. Kompaniyets L, Goodman AB, Belay B, et al. Body Mass Index and Risk for COVID-19–
Related Hospitalization, Intensive Care Unit Admission, Invasive Mechanical Ventilation, and 
Death — United States, March–December 2020. MMWR Morb Mortal Wkly Rep. 
2021;70(10):355-361. doi:10.15585/mmwr.mm7010e4 

26. Anderson LN, Yoshida�Montezuma Y, Dewart N, et al. Obesity and weight change during 
the COVID�19 pandemic in children and adults: A systematic review and meta�analysis. 
Obesity Reviews. 2023;24(5):e13550. doi:10.1111/obr.13550 

27. Lin AL, Vittinghoff E, Olgin JE, Pletcher MJ, Marcus GM. Body Weight Changes During 
Pandemic-Related Shelter-in-Place in a Longitudinal Cohort Study. JAMA Netw Open. 
2021;4(3):e212536. doi:10.1001/jamanetworkopen.2021.2536 

28. Perakakis N, Harb H, Hale BG, et al. Mechanisms and clinical relevance of the bidirectional 
relationship of viral infections with metabolic diseases. The Lancet Diabetes & 
Endocrinology. 2023;11(9):675-693. doi:10.1016/S2213-8587(23)00154-7 

29. Harding JL, Oviedo SA, Ali MK, et al. The bidirectional association between diabetes and 
long-COVID-19 - A systematic review. Diabetes Res Clin Pract. 2023;195:110202. 
doi:10.1016/j.diabres.2022.110202 

30. Haneuse S, Arterburn D, Daniels MJ. Assessing Missing Data Assumptions in EHR-Based 
Studies: A Complex and Underappreciated Task. JAMA Netw Open. 2021;4(2):e210184. 
doi:10.1001/jamanetworkopen.2021.0184 

31. Naimi AI, Mishler AE, Kennedy EH. Challenges in Obtaining Valid Causal Effect Estimates 
With Machine Learning Algorithms. American Journal of Epidemiology. 2023;192(9):1536-
1544. doi:10.1093/aje/kwab201 

 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302697doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302697
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Table 1. Socio-demographic, clinical and community characteristics of exposure cohorts before weighting and population 
standardized bias after weighting.  
 
  Unweighted  
 Overall 

(n = 249,743) 
Exposed  
(n = 44,436) 

Unexposed 
(n = 164,118) 

Historical  
(n = 41,189) 

Population 
Standardized 
Bias 

Female (%) 155,223 (62%) 29,028 (65%) 99,949 (61%) 26,246 (64%) 0.051 
Age (years) 51.9 (18.9) 48.8 (18.4) 53.6 (19.0) 48.7 (18.4) 0.186 
Race/ethnicity      
NH White 128,613 (51.5%) 19,554 (44.0%) 88,129 (53.7%) 20,930 (50.8%)  
NH Black 53,702 (21.5%) 11,919 (26.8%) 32,591 (19.9%) 9,192 (22.3%) 0.108 
Hispanic 53,354 (21.4%) 10,581 (23.8%) 34,038 (20.7%) 8,735 (21.2%) 0.059 
NH Other 14,023 (5.6%) 2,352 (5.3%) 9,340 (5.7%) 2,331 (5.7%) 0.01 
Smoking 117,593 (47%) 18,818 (42%) 78,470 (48%) 20,305 (49%) 0.162 
Health System      
Source 1 92,403 (42%) 15,492 (36%) 61,533 (46%) 15,378 (37%) 0.127 
Source 2 51,650 (24%) 8,225 (19%) 32,151 (24%) 11,274 (27%) 0.168 
Source 3 24,524 (11%) 5,429 (12%) 15,432 (12%) 3,663 (8.9%) 0.02 
Source 4 19,041 (8.7%) 6,148 (14%) 8,960 (6.7%) 3,933 (9.5%) 0.057 
Source 5 12,263 (5.6%) 2,811 (6.5%) 4,718 (3.6%) 4,734 (11%) 0.062 
Source 6 988 (0.5%) 187 (0.4%) 539 (0.4%) 262 (0.6%) 0.01 
Source 7 16,775 (7.7%) 5,265 (12%) 9,565 (7.2%) 1,945 (4.7%) 0.087 
Missing 32,099 879 31,220 0  
Primary Insurance      
Medicare 38,768 (18%) 5,809 (13%) 25,135 (19%) 7,824 (19%) 0.014 
Medicaid 18,154 (8.3%) 3,365 (7.7%) 11,196 (8.4%) 3,593 (8.7%) 0.007 
Other Government 5,299 (2.4%) 1,257 (2.9%) 3,314 (2.5%) 728 (1.8%) 0.016 
Private 99,648 (46%) 23,248 (53%) 54,879 (41%) 21,521 (52%) 0.02 
No Insurance 4,210 (1.9%) 568 (1.3%) 1,895 (1.4%) 1,747 (4.2%) 0.022 
No Information 51,565 (24%) 9,310 (21%) 36,479 (27%) 5,776 (14%) 0.025 
Missing 32,099 879 31,220 0  
Hospitalization within 
30 days of index date 

66,386 (27%) 12,506 (28%) 50,830 (31%) 3,050 (7.4%) 0.36 
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Diagnosis codes for 
comorbidities within 
last 2 years 

    
 

Obesity 10,234 (4.1%) 2,277 (5.1%) 6,060 (3.7%) 1,897 (4.6%) 0.038 
Cardiovascular 12,533 (5.0%) 2,179 (4.9%) 7,915 (4.8%) 2,439 (5.9%) 0.019 
Cerebrovascular 549 (0.2%) 106 (0.2%) 306 (0.2%) 137 (0.3%) 0.007 
Hypertension 23,882 (9.6%) 4,259 (9.6%) 14,545 (8.9%) 5,078 (12%) 0.027 
Pulmonary disease 7,518 (3.0%) 1,520 (3.4%) 4,771 (2.9%) 1,227 (3.0%) 0.038 
Hyperlipidemia 18,607 (7.5%) 3,669 (8.3%) 11,108 (6.8%) 3,830 (9.3%) 0.025 
Medication (any 
within last 1 year) 

     

Antidepressants 32,214 (13%) 5,988 (13%) 21,003 (13%) 5,223 (13%) 0.027 
Antipsychotics 11,011 (4.4%) 2,240 (5.0%) 7,199 (4.4%) 1,572 (3.8%) 0.035 
Antihypertensives 68,912 (28%) 12,560 (28%) 46,792 (29%) 9,560 (23%) 0.093 
Statins 32,296 (13%) 5,776 (13%) 22,422 (14%) 4,098 (9.9%) 0.098 
Immunosuppressants 22,481 (9.0%) 4,762 (11%) 14,734 (9.0%) 2,985 (7.2%) 0.049 
Anthropometry  
within last 1 year 

     

Height 66.2 (4.0) 66.1 (4.0) 66.2 (4.1) 66.1 (4.0) 0.015 
Missing 1,442 362 971 109  
BMI 29.5 (7.4) 30.5 (7.7) 29.3 (7.3) 29.0 (7.2) 0.117 

Normal  
(18.5-24.9 kg/m2) 

67,955 (27%) 10,467 (24%) 45,316 (28%) 12,172 (30%)  

Overweight  
(25.0-29.9 kg/m2) 

75,092 (30%) 12,516 (28%) 50,059 (31%) 12,517 (30%)  

Obesity (≥ 30 kg/m2) 100,560 (40%) 20,572 (46%) 64,419 (39%) 15,569 (38%)  
Systolic BP 125.8 (18.6) 125.1 (17.9) 126.0 (19.0) 125.7 (17.9) 0.017 
Missing 30,502 7,846 19,530 3,126  
Labs within last 1 year      
HbA1c (%) 6.3 (1.7) 6.4 (1.8) 6.2 (1.6) 6.2 (1.6) 0.141 
Missing 201,296 33,909 131,239 36,148  
Glucose (mg/dL) 113.6 (47.3) 114.7 (49.7) 113.9 (47.2) 110.4 (43.4) 0.094 
Missing 108,989 17,165 68,056 23,768  
ALT 17.0 (12.0, 26.0) 17.0 (12.0, 26.0) 17.0 (12.0, 26.0) 17.0 (12.0, 26.0) 0.032 
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Missing 130,240 20,512 82,511 27,217  
AST 20.0 (16.0, 26.0) 19.0 (15.0, 25.0) 20.0 (16.0, 26.0) 19.0 (16.0, 25.0) 0.057 
Missing 128,790 20,166 81,843 26,781  
Serum Creatinine 0.8 (0.7, 1.1) 0.8 (0.7, 1.0) 0.9 (0.7, 1.1) 0.8 (0.7, 1.0) 0.109 
Missing 111,019 17,398 69,416 24,205  
HDL 50.8 (16.9) 50.1 (15.8) 50.9 (16.8) 51.7 (19.2) 0.103 
Missing 194,042 32,716 127,000 34,326  
LDL 83.1 (49.9) 80.4 (53.5) 81.6 (49.7) 95.9 (42.0) 0.393 
Missing 191,750 31,939 125,748 34,063  
 
Medication and Comorbidities were imputed as ‘No’ if data were not found in PRESCRIBING and DIAGNOSIS datasets. 
Hospitalization within 30 days of index date was ‘Yes’ if any encounter of type emergency department to inpatient (ED), inpatient 
(IP), non-acute institutional stay (IS) and observation stay (OS). All others were coded as ‘No’.  
 
Values were Mean (standard deviation) or median (25th percentile, 75th percentile) or frequency (percentage%) 
 
a   Population standardized bias was computed after inverse probability weighting. Descriptive statistics after weighting is provided in 
Supplementary Table 2. Population standardized bias less than 0.1 after weighting is considered as indicative of covariate balance. 
Values greater than or equal to 0.1 are bolded.
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Table 2. Marginal estimates at origin date and change at 100 days of follow-up for body 
mass index 
 

 Exposed Unexposed Historical 

Time0,Cohort - 
Time0,Exposed Ref -0.07 (-0.12, -0.01) -0.27 (-0.34, -0.20) 
Δ0
�

100days, Cohort 0 (-0.03, 0.03) -0.04 (-0.05, -0.02) 0.03 (0.01, 0.04) 
Δ0
�

100days, Cohort –

Δ0
�

100days, Exposed  Ref -0.04 (-0.06, -0.01) 0.03 (0, 0.06) 
 
All estimates are from the marginal structural model with statistical interaction of exposure 
group, socio-demographic characteristic (i.e., sex, age, race-ethnicity) and time, after inverse 
probability weighting for confounding and loss to follow-up. Associations are adjusted for BMI 
within last 1 year of lookback period and imbalanced covariates.  
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Figure 1 Legend 

Our historical cohort corresponds with the blue lines. Our unexposed cohort corresponds with the 

green lines. Our exposed cohort corresponds with the red lines. 
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Figure 1. Difference from Exposed cohort in body mass index at start of post-acute period 
and change per 100 days of follow-up for Unexposed and Historical cohorts. 

 

All estimates are from the marginal structural model with statistical interaction of exposure 
group, effect modifier (i.e., sex, age, race-ethnicity, hospitalization status) and time. Associations 
are adjusted for BMI closest to index date during lookback period and any imbalanced 
covariates. Associations reported above are also available in Supplementary Table 5.  

Panel A: Difference relative to Exposed cohort at start of follow-up. Panel B: Difference relative 
to Exposed cohort per 100 days of follow-up. 
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