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ABSTRACT 

Background 

The international flight network creates multiple routes by which pathogens can quickly 

spread across the globe. In the early stages of infectious disease outbreaks, analyses using 

flight passenger data to identify countries at risk of importing the pathogen are common and 

can help inform disease control efforts. A challenge faced in this modelling is that the latest 

aviation statistics (referred to as contemporary data) are typically not immediately available. 

Therefore, flight patterns from a previous year are often used (referred to as historical data). 

We explored the suitability of historical data for predicting the spatial spread of emerging 

epidemics.  

Methods 

We analysed monthly flight passenger data from the International Air Transport Association 

to assess how baseline air travel patterns were affected in outbreaks of MERS, Zika, and 

SARS-CoV-2 over the past decade. We then used a stochastic discrete time SEIR 

metapopulation model to simulate global spread of different pathogens, comparing how 

epidemic dynamics differed in simulations based on historical and contemporary data. 

Results 

We observed local, short-term disruptions to air travel from South Korea and Brazil for the 

MERS and Zika outbreaks we studied, whereas global and longer-term flight disruption 

occurred during the SARS-CoV-2 pandemic. 

For outbreak events that were accompanied by local, small, and short-term changes in air 

travel, epidemic models using historical flight data gave similar projections of timing and 

locations of disease spread as when using contemporary flight data. However, historical data 

were less reliable to model the spread of an atypical outbreak such as SARS-CoV-2 in which 

there were durable and extensive levels of global travel disruption. 
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Conclusions 

The use of historical flight data as a proxy in epidemic models is an acceptable practice 

except in rare, large epidemics that lead to substantial disruptions to international travel. 
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INTRODUCTION 

Localised outbreaks of emerging and re-emerging pathogens are often followed by 

international spread to multiple countries and continents (1, 2), with human population 

movement one of the key factors facilitating this spread. The international flight network 

plays a part in this, connecting populations separated by large distances with short travel 

times. Understanding the volume and spatiotemporal patterns of flight passengers can 

therefore provide insights into the routes by which a pathogen can spread (1, 2). 

Analyses using flight passenger volumes have answered critical questions in the early 

phases of previous infectious disease epidemics. Early in the severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2) pandemic, passenger data helped to identify the 

likely locations where the virus could be exported, assess the potential for travel restrictions 

to control spread, and estimate the true epidemic size in Wuhan based on cases identified 

among travellers to other countries (3-5). Similar studies were conducted for Ebola in West 

Africa (6, 7), and Zika (8, 9) and Yellow Fever (10) in the Americas. 

Such studies can help control the spread of emerging epidemics through rapid 

communication of conclusions, increasing international awareness and aiding preparedness, 

surveillance, and response planning (5, 11, 12). As an outbreak unfolds in real-time, one 

challenge for spatiotemporal epidemic modelling is that current aviation statistics (referred to 

as ‘contemporary’ data throughout) are typically not immediately available. However, waiting 

for the data is not feasible in a rapidly growing epidemic. In addition, flight datasets are 

typically expensive to purchase. Consequently, the movement data used in models are often 

selected based on what is available, i.e. typically flight data from previous years.  

For example, many of the studies evaluating the potential international spread of SARS-

CoV-2 from China in early 2020 used passenger numbers from the corresponding months in 

2019 (3, 4, 13-17), or occasionally 2018 (11, 18, 19). In a brief literature search of spatial 

epidemic models for SARS-CoV-2 including flight data, we found that only one of 10 studies 
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attempted to characterise the actual 2020 flight patterns. That study scaled 2019 passenger 

data according to more up-to-date information on the numbers of planes departing from 

China (relative to the equivalent period in the year before) (14). The lack of up-to-date 

movement data is not unique to SARS-CoV-2 modelling analyses. Historical flight data were 

also used to model the international spread of Ebola, Zika, and Yellow Fever outbreaks 

because of data availability issues (6-10). 

However, to our knowledge, no study has assessed whether historical datasets are a 

suitable proxy for contemporary flight patterns when modelling epidemic spatial spread. This 

is important given that epidemics can affect volumes and spatiotemporal patterns of travel 

due to public perception of risks or travel bans. In this paper, we explore the suitability of 

historical datasets for predicting the spatial spread of emerging epidemics. We assess 

whether implicit assumptions of consistent travel patterns over time are valid and their 

impact on key outputs of spatial models of infectious disease spread. We aim to: i) identify 

the extent to which flight volumes were disrupted by previous epidemics; ii) assess whether 

the most popular destinations for travellers from a given country changed over time and 

during epidemics; iii) simulate epidemics to compare epidemic model outputs when using 

historical versus contemporary movement data. 

 

METHODS 

An overview of the methods is provided below; further details of the methodology are 

available in Supplementary Section 1. 

We focus on three past epidemics to explore our aims: a Middle East respiratory syndrome 

(MERS) outbreak in South Korea from May to July 2015 involving 186 reported cases with 

38 deaths (20); the Zika epidemic in Brazil that was declared a Public Health Emergency of 

International Concern (PHEIC) in February 2016 (21); and the SARS-CoV-2 pandemic which 

emerged in China at the end of 2019 (22). 
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Flight passenger data 

We used flight passenger data purchased from the International Air Transport Association 

(IATA) (23). The dataset contained the numbers of passengers that travelled between pairs 

of international airports each month from January 2012 to December 2020, which we 

aggregated to a country level. 

To identify differences in passenger volumes during epidemics, we examined the monthly 

number of passengers departing from South Korea, Brazil, and China, and calculated 

changes in passenger numbers during the relevant epidemic period (defined in 

Supplementary Section 1.i) relative to the same month in the previous year. We also 

analysed the temporal variation in the flight destinations from each of these three countries, 

considered as the epidemic centres. We compared how the top 10 destinations (by monthly 

passenger volume) from the epidemic centres varied for a specified calendar month across 

the years 2012-2020 (we analysed the months at the beginning of the contemporary periods, 

see Table S1).  

 

Epidemics simulation study 

We conducted a simulation study to compare the characteristics of epidemics modelled 

using “historical” flight passenger data from the year before the disease emerged with 

models that used “contemporary” flight data from the epidemic period.  

Epidemic model 

We used a stochastic discrete time SEIR metapopulation model to simulate the global 

spread of a pathogen emerging in a single country, with the probability of movement 

between countries being informed by the IATA passenger data.  

Simulation scenarios  
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We simulated epidemics for three flight scenarios that used data corresponding to the 

MERS, Zika, and SARS-CoV-2 epidemic periods. The models used either contemporary or 

historical passenger data. The contemporary and historical periods for each flight scenario 

are defined in Table S1. 

Across all flight scenarios, we simulated epidemics of pathogens with natural history 

parameter values similar to MERS, Zika, and SARS-CoV-2 (Table S2). These examples 

explored different basic reproduction numbers (R0, the average number of secondary cases 

generate by a primary case in a susceptible population) and generation times (time between 

infection of a case and their infector). Simulations were initiated with 100 infectious cases in 

the epidemic centre (South Korea, Brazil, and China for MERS, Zika, and SARS-CoV-2 flight 

scenarios respectively), ran for one year, and assumed that the global population was 

initially fully susceptible to infection. For each natural history, we simulated 100 epidemics 

with contemporary flight data and 100 epidemics with historical data. Combining the flight 

and natural history scenarios gave nine overall scenarios in which we compared historical 

and contemporary flight data. 

For each simulated epidemic we computed the following metrics: 

- Number of invaded countries over time: the number of countries with at least 10 

cumulative infections at each day. 

- Invasion time in i: the time to country i experiencing its 10th cumulative infection. 

For the historical and contemporary simulations in each scenario, we summarised the 

distributions of each metric across all 100 simulations using the median, 2.5% and 97.5% 

quantiles. We ordered countries by their median invasion times to obtain the average 

invasion ranking. We identified the first n countries that were invaded with the 

contemporary flight data, and then calculated the percentage of those countries that were 

also invaded first when using historical data. 
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For the simulations using SARS-CoV-2 flight data and natural history, we used the invasion 

rankings to validate the performance of our model against independent case data from the 

World Health Organisation for the SARS-CoV-2 pandemic (24). We compared the first 10 

countries to report 10 SARS-COV-2 cases (24) with the top 10 invasion rankings from our 

simulations. Simulations in this validation step were seeded in China in January 2020. 

 

RESULTS 

The number of flight passengers departing South Korea and Brazil showed an increasing 

trend over time (especially pronounced in South Korea), with some within-year seasonal 

variation (Figure 1A-B). However, epidemic events in those countries were accompanied by 

deviations from long-term passenger trends. The numbers of people flying from South Korea 

in the months after the MERS epidemic started (June-August 2015) were between 6.5% and 

16.2% lower than the equivalent months in 2014 (Figure 1A). Similarly, passenger 

departures from Brazil in the months after the declaration of Zika virus as a PHEIC (March-

July 2016) were between 3.3% and 10.2% lower than the previous year (Figure 1B). June 

2016 had the fourth lowest monthly passenger departures between January 2012 and 

February 2020, with the months with fewer departures all occurring in 2012. South Korea 

and Brazil, as well as China (Figure 1C), experienced very large reductions in air travel 

during the SARS-CoV-2 pandemic. The largest reduction in monthly departures was in April 

2020 when passenger numbers decreased by 98.6%, 97.9%, and 98.6% for South Korea, 

Brazil, and China respectively. 

The most popular destinations for flights from the three countries were generally consistent 

across years prior to the SARS-CoV-2 pandemic (Figure 2). Among these top 10s, there 

was some variation in the order, but in general the shifts in ordering were small. In South 

Korea and China, nine countries appeared consistently in the top 10 flight destinations for 

each year from 2012-2019. Brazil experienced more variability, with only six countries 
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consistently in the top 10 destinations over 2012-2019. However, there was very little 

change in top destinations during the Zika PHEIC: of the 10 top destinations in March 2015, 

nine remained in the list for March 2016 (when Zika was a PHEIC). In all three epidemic 

centres, the year-to-year changes in destination lists were greatest between 2019 and 2020, 

but still modest: each country had 2/10 new countries in the 2020 lists.  

In simulated epidemics comparing historical and contemporary flight data from the MERS or 

Zika flight scenarios, we found very little difference in the rate the epidemics spread globally 

(Figure 3, second and third rows), irrespective of the pathogen natural histories. In contrast, 

in the SARS-CoV-2 flight scenario with extensive disruption to the global flight network, use 

of the historical flight data resulted in much earlier predicted spread than when using the 

contemporary flight data (Figure 3, first row). The differences were amplified by increasing 

the generation time or decreasing R0. In these SARS-CoV-2 flight scenario results, the 

difference in the median time to 50 countries being invaded was 25, 95, and 84 days for the 

SARS-CoV-2, MERS, and Zika natural history scenarios respectively. In all simulations, the 

SARS-CoV-2-like pathogen eventually spread to all countries, even with the extensive 

disruptions in the contemporary SARS-CoV-2 flight data. This was not the case when 

contemporary SARS-CoV-2 flight data was used for other natural history scenarios, which 

spread more slowly due to either longer generation times or smaller R0.  

We explored how the differing invasion dynamics were influenced by the relative changes to 

the number of departing passengers in the contemporary versus historical data (Figure 3, 

circles). In the MERS and Zika flight scenarios, we found relatively small, short-term 

reductions to flight departures from the epidemic centre. This contrasted with a small 

increase in overall global flight departures, which reflected the trend of increasing flight 

volumes over time (Figure S1). The magnitude of the local changes seemed to have little 

impact on the initial spread from the epidemic centre and the subsequent rate of global 

epidemic spread. On the other hand, the SARS-CoV-2 flight scenario showed concurrent, 

large and durable reductions in both Chinese and total global flight departures. 
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Consequently, for the slower-growing MERS and Zika natural history scenarios, the 

epidemics remained localised at the epidemic centre until flight volumes from China 

recovered. 

We found similar country invasion times when using contemporary and historical flight data 

for the MERS and Zika flight scenarios (Figure 4), across all three natural history scenarios. 

Differences in predicted invasion times were similar across countries invaded early and 

those invaded later in the epidemic (Figure 4). However, in the SARS-CoV-2 flight scenario, 

we found that using historical passenger data substantially underestimated the invasion 

times. Again, the invasion delay was amplified with larger generation times, with the median 

underestimation in invasion time ranging from 28 days (2.5% and 97.5% quantiles: 9, 55 

days) to 93 days (54, 135 days) for the SARS-CoV-2 and Zika natural history scenarios. For 

the SARS-CoV-2 natural history scenario, the delays were more marked for countries 

invaded later, likely reflecting that early invasions occurred when there was less disruption to 

global travel, while the later countries to be invaded were in a period when there was 

increased disruption to passenger volumes (Figure 2, first row). Conversely, for the slower 

growing MERS and Zika natural history scenarios, differences in invasion were smaller for 

countries invaded later because their invasion occurred at times when there was relatively 

less disruption (compared to the period when the early countries were invaded) (Figure 2, 

first row). 

Despite some underestimation of invasion times, there was generally good agreement in the 

first n invaded countries predicted using historical and contemporary flight data across all 

natural history scenarios (Figure 5). Across simulation scenarios, 60-100% of the first 10 

countries invaded using historical flight data also featured in the first 10 countries invaded 

using contemporary data. This increased to 80-100% for the first 20 invaded countries.  

Since our findings are based on simulations, we assessed the extent to which predicted 

invasion orders reflected reality by comparing our model predictions to independent data on 

the early spatial spread of COVID-19. Our model performed well in predicting the early 
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countries to report SARS-CoV-2 cases (Table S3). Seven of the first eight countries invaded 

in the model matched the first eight countries to report cases. 

 

DISCUSSION 

Mathematical models of infectious disease spread relying on global flight data are often used 

in real-time to inform epidemic control efforts. Delayed publication of the latest flight 

passenger statistics means that models are often constrained to using historical data, 

typically from the previous year, and therefore do not capture changes to travel patterns and 

volumes that are caused by the outbreak. In this work, we showed that the standard practice 

of using historical data generally leads to similar projections of the timing and order of 

epidemic spread to other countries, compared to using contemporary flight data, for 

epidemic events with localized, relatively small, short-term mobility changes (such as those 

experienced during the MERS and Zika outbreaks). The consistency in the predicted order in 

which the epidemic reached countries is not surprising given our findings that the most 

common flight destinations were relatively stable over time. 

Historical flight data were less suitable for modelling an atypical epidemic such as SARS-

CoV-2 with durable, extensive levels of global travel disruption. Although the locations 

projected to be invaded early were consistent between historical and contemporary flight 

data, the projected invasion times were vastly underestimated when using historical data. 

This could lead to the dismissal of preventative interventions that are perceived as too slow 

for the projected speed of invasion (e.g. building emergency healthcare facilities). It may also 

reduce public trust in model outputs which could have implications such as decreasing 

compliance with interventions. 

Our work suggests that correcting historical data to predict the contemporary spread of a 

pathogen would only be necessary for rare events with extensive travel disruptions. In such 

situations, a correction factor could be applied to historical flight data, as in the approach by 
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Menkir et al (14). However, accurately predicting complex changes to travel in real-time is 

likely to be challenging. 

While our study focused on the robustness of using historical flight data in real-time epidemic 

models, our findings also provide insights on the potential impact of travel restrictions. Our 

simulations suggest that large, widespread mobility reductions are needed to substantially 

impact disease spread. In the MERS and Zika flight scenarios, local, small, and short-term 

changes in mobility had little impact on the global spread of a pathogen. In the SARS-CoV-2 

flight scenario, a rapid decrease in the number of departing passengers from the epidemic 

centre was soon followed by similar decreases globally. Although this substantially delayed 

the international spread of the epidemic in our simulations, ultimately all countries were still 

infected as international travel recovered, and eventually experienced similar epidemic sizes 

and peak sizes (Figure S2).  

Therefore, travel restrictions seem to be insufficient to interrupt transmission sustainably but 

could provide an opportunity to prepare for the arrival of a pathogen. However, the 

substantial economic and political costs of introducing travel restrictions (25-28) mean that 

restrictions will only be worthwhile if the delay they generate is used sensibly, such as for the 

development of diagnostic, pharmaceutical, and non-pharmaceutical tools, and the logistics 

of their delivery. 

The reductions in air travel in the contemporary SARS-CoV-2 flight data resulted in median 

delays to invasion of 25 days across the first 50 countries for the SARS-CoV-2 natural 

history scenario, rising to 95 days for the MERS natural history simulations. For context, over 

1.3 million people were vaccinated by day 26 of the UK COVID-19 vaccination rollout, 

increasing to over 23.3 million by day 95 (29). Although these statistics do not account for 

the time to develop, manufacture, and distribute vaccines, they provide an example of the 

speed at which response measures can be implemented. 
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Our work is limited as our model has not been extensively validated against epidemiological 

data. However, validation of our SARS-CoV-2 scenarios found that the first countries 

invaded in our model generally matched the first countries to report cases in early 2020 (24). 

Further validation is challenging due to variability in the reporting of early cases across 

countries, with reporting potentially reflecting a country’s capacity to detect and report cases 

effectively, rather than their true burden.  

Future research could investigate whether predictions of epidemic dynamics are improved 

by combining flight data with real-time movement indicators, e.g. changes in movement 

around airports from platforms such as Google or Meta (30, 31). However, overall, we 

showed that using historical instead of contemporary flight data had limited impact on 

simulated epidemic dynamics for two flight scenarios (MERS and Zika) and a range of 

pathogen natural histories. Only for the extreme SARS-CoV-2 flight scenario, with an almost 

complete shutdown of international travel, were projections of invasion times significantly 

underestimated. We note that the ability to use historical flight passenger data depends on 

scientists having access to these data; it is essential that those involved in epidemic 

response have timely access to data and access is not prevented by financial barriers.  
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FIGURES 

 

  

Figure 1. Changes in departing flight passenger volumes over time in A) South Korea, 

B) Brazil, and C) China. The black lines show the monthly numbers of flight passengers 

(right-hand axis) departing from South Korea, Brazil, and China from January 2012 to 

December 2020. The coloured bars denote the monthly percentage change in flight 

passenger numbers (left-hand axis) relative to the same calendar month in the previous 

year. Blue bars represent an increase in passenger numbers, red bars represent a 

A) 

B) 

C) 
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decrease. Background coloured rectangles denote infectious disease outbreak periods (see 

Supplementary Section 1.i): Red = MERS; Yellow = Zika; Green = SARS-CoV-2. 
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Figure 2. Top flight destinations over time in specific months for passengers 

departing from A) South Korea in June, B) Brazil in March, and C) China in February. 

The ranking is assigned using the total number of passengers departing by air in the 

specified month. The calendar month presented corresponds to the start of the periods 

shown in Table S1 (i.e. early in the outbreak). Solid dots and lines are used for countries 

that feature in the top 10 destinations for a given country all years (2012 to 2020). Hollow 

circles and dotted lines represent countries that were in the top 10 destinations every year 

except 2020 (when there were extensive disruptions due to the SARS-CoV-2 pandemic). 

Crosses and dashed lines represent countries that were only in the top 10 for some years of 

the analysis period. Background coloured rectangles highlight the year in which epidemics 

occurred (red: MERS; yellow: Zika; green: SARS-CoV-2). Country codes: ARE: United Arab 

A) 

B) 

C) 
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Emirates; ARG: Argentina; AUS: Australia; CHL: Chile; CHN: China; DEU: Germany; ESP: 

Spain; FRA: France; GBR: United Kingdom; HKG: Hong Kong; IDN: Indonesia; ITA: Italy; 

JPN: Japan; KHM: Cambodia; KOR: South Korea; LAO: Laos; MAC: Macau; MEX: Mexico; 

MYS: Malaysia; PER: Peru; PHL: Philippines; PRT: Portugal; RUS: Russia; SGP: Singapore; 

THA: Thailand; TWN: Taiwan; URY: Uruguay; USA: United States of America; VNM: 

Vietnam. 
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Figure 3. Number of countries invaded over time in epidemic simulations (lines) and 

relative percentage changes in departing passenger numbers (points). Rows 

correspond to different flight scenarios (Table S1) and columns to different natural history 

scenarios (Table S2). In each panel, the lines show the median number of countries with at 

least 10 cumulative infections across all 100 simulations for that flight data and natural 

history scenario combination. The coloured shading represents the 2.5% and 97.5% 

quantiles. Blue denotes simulation results using historical flight data, while red shows the 

simulations using contemporary flight data. Hollow and solid points display the percentage 

difference in the number of departing passengers from the epidemic centre or the difference 

from all countries respectively in each month of the contemporary period relative to the same 

month in the historical period (where a value of 100 corresponds to no change, 200 

corresponds to a doubling, and 50 corresponds to a halving). The epidemic centre for the 

SARS-CoV-2, MERS and Zika flight scenarios are China, South Korea, and Brazil 

respectively. The travel volumes indicated by hollow circles influence how quickly the 

epidemic initially spreads out of the epidemic centre, while travel volumes shown by solid 

circles influence the rate of onward spread once the epidemic becomes established in a 

handful of other countries.  
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Figure 4. Difference in mean invasion times for simulations using contemporary 

versus historical flight data. The three panels correspond to different pathogen natural 

history scenarios. Within each panel, the x axis represents the three flight scenarios. Within 

each scenario combination, each dot represents a single country. The y-axis shows the 

mean invasion time using contemporary data minus the mean invasion time using historical 

data. Values above the dashed line means invasion was slower with the contemporary data. 

The colour of the dots shows the grouping of countries by the average rank in which they 

were invaded in the simulations using contemporary flight data. For example, the red 

invasion rank labelled ‘20’ corresponds to the first 20 countries to be invaded on average 

across simulations for that combination of natural history and flight scenarios. The black dots 

summarise the median difference in invasion time across the 100 countries shown, with the 

error bar showing the 2.5% and 97.5% quantiles. 
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Figure 5. Similarity in invasion order for simulations using contemporary versus 

historical flight data. Rows correspond to different flight scenarios and columns to different 

natural histories. For each scenario, countries were ordered based on their median invasion 

times (defined as the time to a country experiencing the 10th cumulative infection), to 

generate an average invasion ranking for both historical and contemporary simulations. The 

x-axis indicates the first n countries that were projected to be invaded in the contemporary 

flight data simulations. The y-axis shows the percentage of those countries that were also 

predicted by simulations based on historical data. 
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