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Abstract

Retinal fundus imaging is a powerful tool for disease screening and diagnosis in
opthalmology. With the advent of machine learning and artificial intelligence,
in particular modern computer vision classification algorithms, there is broad
scope for technology to improve accuracy, increase accessibility and reduce cost
in these processes. In this paper we present the first deep learning model trained
on the first Brazilian multi-label opthalmological datatset. We train a multi-label
classifier using over 16,000 clinically-labelled fundus images. Across a range of 13
retinal diseases, we obtain frequency-weighted AUC and F1 scores of 0.92 and
0.70 respectively. Our work establishes a baseline model on this new dataset and
furthermore demonstrates the applicability and power of artificial intelligence
approaches to retinal fundus disease diagnosis in under-represented populations.
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1 Introduction

The field of medical imaging is growing at an exponential rate, resulting in a vast
amount data that necessitates the expertise of medical professionals for interpreta-
tion and triaging. Across various clinical specialties, there exists a shortage of such
expertise, leading to delays in diagnosis and referrals. Machine learning (ML) and
artificial intelligence (AI) algorithms offer the potential to deliver healthcare solutions
that are innovative, efficient, cost-effective, and readily accessible: ultimately improv-
ing the diagnosis and treatment of medical conditions on a global level. In the field of
ophthalmology, AI holds substantial promise, particularly in the domain of computer
vision (CV) classification algorithms [1]. This promise is exemplified by the existence
of FDA-approved devices designed for diabetic retinopathy screening [2, 3].

In ophthalmology additional imaging procedures like retinal fundus images, optical
coherence tomography, corneal topography, visual field tests, and anterior segment
photos of the eye are crucial for screening, diagnosing, and continuously monitoring
diseases. However, the widespread availability of these images has not been matched by
an equal availability of clinical experts capable of interpreting the scans and referring
patients to appropriate care pathways [2, 4]. This problem is further compounded
by the increasing incidence of sight-threatening diseases, where retinal imaging is the
primary means of assessment.

Although middle to high-income countries (MHICs) often have the resources to
manage extensive image datasets and embrace cutting-edge AI technologies, imple-
menting healthcare AI in hospitals within low- and middle-income countries (LMICs)
can pose significant obstacles. In the field of ophthalmology, LMICs are confronted
with a growing disparity between the quantity of ophthalmologists and the size of
their populations [5]. This inequality is accentuated by the fact that two-thirds of the
global ophthalmologist workforce is concentrated in only seventeen countries [4].

The availability of data is a crucial factor in AI model development. Currently,
the majority of retinal datasets originate from MHICs. Thus, these datasets lack
comprehensive representation of demographic diversity and comorbidities, with many
predominantly focusing on diabetic retinopathy patients. This existing data imbalance
can lead to biased and potentially harmful outcomes when these models are applied
to populations in LMICs [5, 6].

Retinal fundus imaging provides a relatively cheap and acccessible tool for disease
diagnosis [7]. The exploration of integrating artificial intelligence tools into this pro-
cedure has shown encouraging outcomes [8], with many existing works focusing on
binary or small-number multi-label disease classification [9–12]. Furthermore, there
have been various works extending this to more comprehensive multi-label disease
classification [13–17].

In this study, we aim to develop a multi-label classifier to automatically label a
range of retinal fundus diseases, using a dataset collected from a region so-far not
represented in the literature (Latin America, and in particular Brazil).

In section 2 we discuss our methods, including details of the dataset used, our
model and details of its training. In section 3 we present our results, and in sections
4 and 5 we have a discussion and conclusions.
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2 Methods

2.1 Dataset

In this study, we use the Brazilian Multilabel Ophthalmological Dataset (BRSET)
[18], which has been made available on PhysioNet [19]. See section 5 for information on
accessibility. This dataset consists of 16,266 images from 8,524 Brazilian patients. This
project was approved by the São Paulo Federal University - UNIFESP institutional
review board (CAAE 33842220.7.0000.5505). The 8,524 patients represented in this
dataset were collected from three ophthalmological centers. For each patient, only one
paired exam focused on the macula is included.

The retinal photographs were taken using a Nikon NF505 camera (Tokyo, Japan),
and a Canon CR-2 camera (Canon Inc., Melville, NY, USA). These were captured
by non-medical professionals who had received prior training in pharmacological
mydriasis.

The final dataset includes only fovea-centered images with both temporal retinal
vascular arcades visible, as well as at least one disc diameter of retina visible on the
nasal side of the optic disc. Furthermore, non-retinal images and fluorescein angiogram
photos were excluded. These images were captured at a 45-degree angle and were
centered on the optic disc. See Figure 1 for an example image.

Fig. 1 An example of a retinal fundus image in the dataset.

Dataset Preparation. In all color fundus images, all file identification, sensi-
tive information (such as patient identity and examination date), and headers were
removed. No preprocessing procedures were applied to the images after they were
exported directly to JPEG format. It’s important to note that all images were captured
with a focus on the macula, ensuring a consistent viewpoint.

Supplementary Features. Supplementary information related to retinal labeling
includes details about the type of retinal camera device used, patients’ nationality,
age (in years), gender, medical history, insulin usage, and the duration of diabetes.
These demographic and medical characteristics were extracted from electronic medical
records, which were based on self-reported medical history. 16% of the patients have
diabetes, and the average age of the patient group is 57 years old.
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With a focus on establishing the widest possible applicability of our model, we do
not incorporate these features in the training of our deep learning model: we instead
only use the images themselves.

Image Quality. The dataset contains various features describing image quality. A
label of “satisfactory/ unsatisfactory” is assigned in each of the following areas: image
focus, illumination, image field and artefacts. An image is assigned a quality score of
“Inadequate” if any of these are unsatisfactory. In the entire dataset there are 1987
images (12%) of this type.

Since we are interested in building a model with optimal generalizability to real-
world data, we include these images in our training and testing datasets. However, in
section 3.2.4 we run an experiment where we remove all “Inadequate” images from
the dataset for comparison.

2.1.1 Clinical Labeling

Every image underwent labeling by an ophthalmologist with specialization in retinal
conditions, and the BREST research team formulated the criteria for the labeling
process. Under the anatomical classification, the retinal optic disc, retinal vessel, and
macula features were categorized as either “Normal” or “abnormal”.

Each image was evaluated for a list of pathological conditions which we summa-
rize, along with their respective number of occurences, in Table 1. Note that “Other”
describes a collection of retinal diseases not included in the initial list, whilst “Nor-
mal” is for any images not falling into these categories. For completeness, we also

Table 1 Number of occurences of pathological conditions in dataset

Condition Number of Occurences

Diabetic Retinopathy 1046
Macular Edema 402
Scar (resulting from toxoplasmosis) 290
Nevus 134
Age-Related Macular Degeneration (AMD) 366
Vascular Occlusion 103
Hypertensive Retinopathy 283
Drusens 2807
Nondiabetic Retinal Hemorrhage 96
Retinal Detachment 7
Myopic Fundus 268
Increased Cup-to-Disc Ratio 3202
Other 758
Normal 8460

summarize the number of occurences of eyes labelled with more than one condition in
Table 2. For the classification of diabetic retinopathy, both the International Clinic
Diabetic Retinopathy (ICDR) grading system and the Scottish Diabetic Retinopathy
Grading (SDRG) system were utilized.
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Table 2 Number of images with multiple conditions

Number of Unique Conditions Number of Occurences

0 8460
1 6017
2 1622
3 167

The dataset encompasses the entire spectrum of medical retina patients who sought
care and underwent treatment at the three ophthalmological centers. While the spe-
cific pathological labels were selected by the specialist othalmologist and the BREST
research team, the framework introduced in this study can be adapted to suit the needs
of other healthcare systems, including those with distinct classification requirements.

2.2 Model Development

2.2.1 Preprocessing

The dataset contains 16,266 images in JPEG format. In the pre-processing stage,
these image inputs were standardized to be of consistent size. During training, various
augmentation procedures were employed to increase dataset diversity. These include
a random choice of the following: rotation by angle θ ∈ [−30◦, 30◦], re-scaling by a
parameter C ∈ [1.0, 1.25], image warping, and horizontal flipping. These steps were not
applied to the validation or test sets. Furthermore, all pixels values were normalized
to have zero mean and unit variance.

Addressing Class Imbalance. The distribution of the 13 classes in the dataset
is highly imbalanced (see Table 1). There are various approaches to dealing with
imbalanced data including under/over-sampling and ensemble methods. In this work
we experiment with various strategies to account for this effect, see Section 3.2.2.

2.2.2 Training Architecture

Deep Learning in Image Classification. Deep learning for image classification
involves training neural networks, most often convolutional neural networks (CNNs),
to extract key features from input pixels relevant for a classification problem. CNNs are
special neural networks containing so-called convolutional layers. These layers allow
the network to learn spatial features and correlations of an input image.

ResNet-50. Residual Network 50 (ResNet-50)[20] is a powerful deep learning model
using for computer vision tasks. Concretely, it is a convolutional neural network with
50 layers. In this project we begin our experiments with the pre-trained ResNet-50
model, the weights of which are obtained after training on the ImageNet [21] database.

The fundamental element of the ResNet-50 model is the residual learning block.
This is a block of several layers which, for a given input x, produces a standard
non-linear output F(x) plus the input x:

x → F(x) + x . (1)
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This is implemented by the addition of so-called “shortcut connections”, decorated
with the identity map, which connect the input and output without passing through
the non-linear layers. Adding these components to a CNN provides a way to address
existing issues with training error increasing with network depth.

Full Architecture. Our full model architecture includes the ResNet-50 model and a
dense final layer constructed with sigmoid activiation function and Nclasses (= number
of classes) outputs1.

Parameters. For our purposes, we remove the pre-trained fully-connected layer of
the baseline ResNet model and replace it with our own. We use an Adam optimizer
and binary cross entropy loss function when training our models. For all experiments
we use a 60− 20− 20 split between training, validation and testing sets respectively.

Implementation Details. Throughout this project we used TensorFlow 2.12.1 [22]
with Python 3.9.

Optimizing Thresholds. A crucial point to note is that the output of our model
is Nclasses continuous predictions (probabilities ranging from 0 to 1). In order to turn
these continuous variables into disease predictions we must place thresholds on these
outputs. In other words, we have the freedom to select Nclasses thresholds which will
convert the continuous outputs to binary predictions for each disease. The default
choice for these thresholds is always 0.5.

For a class i, we denote the threshold for the corresponding sigmoid activiation
function τi. One way of choosing a tentative set {τ∗i } of “optimal” values for these,
which we employ in various experiments in this work, is the following. The set {τ∗i }
can be dynamically chosen via grid search to be those which maximise the individual
F1 scores:

τ∗i = arg maxτ∈SF1i(τi) , (2)

where S is some set of values between 0 and 1. In this work, we chose S =
{0, 0.04, 0.08, . . . , 1}.

Sensitivity Analysis. As explained above, the dataset contains images taken on
two different types of camera, Nikon NF505 and Canon CR-2. We will refer to these
as “Nikon” and “Canon” respectively from now on for notational convenience. We

Table 3 Dataset split by
camera type

Camera Number of Images

Canon 10592
Nikon 5674

performed two experiments, where in each we trained our model on images taken
with only one type of camera. We then tested the power of these models to generalize

1This number is most often 13, the number of disease classes in Table 1. However, occasionally this will
be less than 13 when we experiment with methods to account for class imbalance.
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by testing on the images taken with the other type. The results of this analysis are
contained in Section 3.2.3.

3 Results

In this section we analyze various models in terms of their classification performance
on the 13 retinal conditions.

3.1 Metrics

Using the abbreviations TP/FP/TN/FN for true positive, false positive, true neg-
ative and false negative rates respectively, the fundamental metrics we will use for
performance within each class, are

• Accuracy: This is computed as the percentage of correct predictions.
• Sensitivity/ Recall: This is computed as TP

TP+FN .

• Specificity: This is computed as TN
TN+FP .

• PPV/ Precision: This is computed as TP
TP+FP .

• NPV: This is computed as TN
TN+FN .

• F1-score: This is the harmonic mean of Precision and Recall:

F1 = 2
Precision× Recall

Precision + Recall
. (3)

• Area under the ROC curve score (AUC): This is the area under the curve of true-
positive rate against false-positive rate plotted at various thresholds. The AUC is
a threshold-independent metric and is particularly useful in the case of imbalanced
datasets like ours.

For class-wide performance, we will use the frequency-weighted f1-score, computed via

F1 =

Nclasses∑
i=0

ωiF1i , (4)

where ωi is the fraction of the test set which belongs to class i. We will also denote
by AUC the frequency-weighted average AUC metric.

3.2 Performance

3.2.1 Baseline Model

After experimenting with various numbers of epochs and batch sizes, the best per-
forming model was with parameters: 6 epochs and batch size 8. We explain this
experimentation procedure in more detail in Section 4. Having established these base-
line parameters, we then incorporated the validation set into the training set to
allow the model to learn from more data. The performance of this model is given
in Table 4. In this Table, we have dynamically chosen optimal threshold parameters,

7

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302676doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302676
http://creativecommons.org/licenses/by/4.0/


via the method described around (2). See Table A2 for the same model with the
default threshold values (0.5) and Table A1 for the model without the validation set
incorporated.

Table 4 Performance metrics for various eye conditions. Trained for 6 epochs on the training and

validation sets. This model has F1 = 0.68 and AUC = 0.93. For clarity we have highlighted the row
with the best accuracy, AUC and F1 score with boldface in each table.

Condition Accuracy Sensitivity Specificity PPV NPV AUC F1

diabetic retinopathy 0.974 0.781 0.989 0.837 0.984 0.976 0.808
macular edema 0.988 0.802 0.992 0.73 0.995 0.989 0.765
scar 0.991 0.769 0.995 0.702 0.996 0.94 0.734
nevus 0.008 1.0 0.0 0.008 0.66 0.015
amd 0.979 0.523 0.989 0.486 0.99 0.951 0.504
vascular occlusion 0.995 0.562 0.997 0.5 0.998 0.943 0.529
hypertensive retinopathy 0.948 0.268 0.96 0.105 0.987 0.759 0.08
drusens 0.903 0.78 0.928 0.692 0.953 0.933 0.733
hemorrhage 0.991 0.412 0.994 0.259 0.997 0.902 0.318
retinal detachment 0.001 1.0 0.0 0.001 0.88 0.002
myopic fundus 0.991 0.627 0.997 0.762 0.994 0.992 0.688
increased cup disc 0.904 0.8 0.93 0.734 0.95 0.951 0.765
other 0.922 0.459 0.942 0.256 0.976 0.843 0.329

3.2.2 Class Imbalance

We performed under-sampling on the majority class (“Normal”) by removing 5000
of these images from the dataset to address the imbalance between this class and all
others. The results of this training are in Table 5. The performance of this model is
marginally better than the baseline in Table A2.

Table 5 Performance metrics for various eye conditions. 5000 random “Normal” images removed
from dataset before training. Frequency-weighted F1 and AUC scores are 0.70 and 0.92 respectively.

Condition Accuracy Sensitivity Specificity PPV NPV AUC F1

diabetic retinopathy 0.971 0.784 0.988 0.861 0.98 0.972 0.821
macular edema 0.983 0.738 0.992 0.776 0.99 0.959 0.756
scar 0.985 0.769 0.992 0.735 0.993 0.933 0.752
nevus 0.987 0.043 0.996 0.111 0.99 0.671 0.062
amd 0.954 0.541 0.968 0.364 0.984 0.937 0.435
vascular occlusion 0.984 0.652 0.987 0.349 0.996 0.971 0.455
hypertensive retinopathy 0.973 0.278 0.99 0.405 0.982 0.84 0.33
drusens 0.871 0.803 0.895 0.727 0.928 0.92 0.763
hemorrhage 0.991 0.211 0.997 0.4 0.993 0.88 0.276
retinal detachment 0.001 1.0 0.0 0.001 0.276 0.002
myopic fundus 0.986 0.709 0.993 0.722 0.993 0.984 0.716
increased cup disc 0.874 0.811 0.9 0.77 0.92 0.94 0.79
other 0.889 0.45 0.919 0.268 0.962 0.795 0.336

We also tried amalgamating some of the poorer performing classes within the
“Other” column. For the experiment in Table 6 we combined the diseases retinal
detachment, hemorrhage, nevus and hypertensive retinopathy in this way.
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Table 6 Performance metrics for various eye conditions. Four minor diseases with smaller
representation (retinal detachment, hemorrhage, nevus and hypertensive retinopathy) are
incorporated into the “Other” class.

Condition Accuracy Sensitivity Specificity PPV NPV AUC F1

diabetic retinopathy 0.974 0.746 0.99 0.846 0.982 0.981 0.793
macular edema 0.986 0.648 0.995 0.792 0.99 0.981 0.712
scar 0.99 0.786 0.994 0.688 0.996 0.969 0.733
amd 0.974 0.671 0.981 0.482 0.991 0.96 0.561
vascular occlusion 0.989 0.636 0.992 0.341 0.998 0.906 0.444
drusens 0.895 0.748 0.926 0.678 0.946 0.929 0.711
myopic fundus 0.993 0.63 0.998 0.829 0.995 0.993 0.716
increased cup disc 0.891 0.734 0.929 0.713 0.936 0.936 0.724
other 0.931 0.358 0.956 0.263 0.971 0.78 0.303

Note that at the level of these scores, the effect of this manipulation is negligible.
We experimented with a weighted loss function where the penalty assigned to a

class is inversely proportional its frequency in the training set. We also ran this same
experiment on the reduced number of classes. These additions did not improve the
performance of the model.

Another common approach to dealing with class imbalance is to use ensemble
methods, whereby the outputs of various trained models are combined. The down-
side to such approaches is the additional computational cost (in both training and
clinical application in healthcare institutions). We train three models, one with over-
sampling in the “Other” class, and another with over-sampling in three classes (nevus,
hypertensive retinopathy and hemorrhage), and one without any sampling effects. To
explore the benefits of an ensemble approach, we search a 3-dimensional parameter
space of weights with which we combine the outputs of these three models. In Table
7 we present the results of the best-performing ensemble model, whose weights are

n = (0.122, 0.497, 0.381) , (5)

respectively.

3.2.3 Sensitivity Analysis

We also ran the simple baseline models on two different training sets (one entirely
Canon, and the other entirely Nikon). These models were then tested on images solely
of the other camera type. These results are collated in Tables 8 and 9 respectively. It
is clear that the model trained on Canon images performs substantially better than
its Nikon counterpart.

3.2.4 Image Quality Analysis

To study the effects of image quality, we ran an experiment using on images classified as
“Adequate” based on the metrics described in Section 2.1. The results of this baseline
are in Table 10.
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Table 7 Performance metrics for various eye conditions for an ensemble method combining three
separate models.

Condition Accuracy Sensitivity Specificity PPV NPV AUC F1

diabetic retinopathy 0.975 0.77 0.989 0.837 0.984 0.985 0.802
macular edema 0.986 0.67 0.995 0.787 0.991 0.99 0.724
scar 0.99 0.554 0.997 0.795 0.992 0.956 0.653
nevus 0.876 0.207 0.882 0.016 0.992 0.662 0.029
amd 0.97 0.707 0.976 0.436 0.992 0.956 0.54
vascular occlusion 0.993 0.727 0.994 0.471 0.998 0.96 0.571
hypertensive retinopathy 0.978 0.186 0.993 0.324 0.985 0.821 0.237
drusens 0.904 0.734 0.939 0.715 0.944 0.93 0.724
hemorrhage 0.99 0.647 0.991 0.282 0.998 0.912 0.393
retinal detachment 0.0 1.0 0.0 0.0 0.0 0.969 0.001
myopic fundus 0.994 0.674 0.998 0.838 0.995 0.994 0.747
increased cup disc 0.903 0.789 0.93 0.729 0.948 0.949 0.758
other 0.936 0.547 0.953 0.338 0.98 0.875 0.418

Table 8 Performance metrics for various eye conditions. Trained on Canon images, tested on
Nikon images.

Condition Accuracy Sensitivity Specificity PPV NPV F1

diabetic retinopathy 0.977 0.779 0.991 0.858 0.984 0.817
macular edema 0.989 0.843 0.993 0.713 0.997 0.773
scar 0.986 0.766 0.989 0.545 0.996 0.637
nevus 0.007 1.0 0.0 0.007 0.013
amd 0.968 0.656 0.973 0.285 0.994 0.397
vascular occlusion 0.997 0.423 0.999 0.786 0.997 0.55
hypertensive retinopathy 0.979 0.093 0.994 0.22 0.984 0.13
drusens 0.901 0.611 0.956 0.723 0.929 0.662
hemorrhage 0.995 0.25 0.999 0.429 0.997 0.316
retinal detachment 0.0 1.0 0.0 0.0 0.0
myopic fundus 0.992 0.617 0.996 0.627 0.996 0.622
increased cup disc 0.906 0.695 0.938 0.628 0.953 0.66
other 0.92 0.375 0.945 0.242 0.97 0.295

4 Discussion

The goal of this work was to provide a proof-of-principle model on a new dataset
of retinal fundus images. We demonstrate that a ResNet-50 model, with appropriate
augmentation and class imbalance strategies, offers strong classification performance
across a large number of diseases. We propose that this model could be used as a
first-order diagnosing tool, in tandem with clinical specialists. This is of particular
importance in LMICs where the ability to reduce the work-load of a limited number
of ophthalmologists is essential.

In this work we have performed a considerable number of experiments to determine
the best performing model. These included experimenting with number of epochs,
batch size, regularization methods, class imbalance techniques, image quality, and data
augmentation.
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Table 9 Performance metrics for various eye conditions. Model trained on Nikon images, tested on
Canon images.

Condition Accuracy Sensitivity Specificity PPV NPV F1

diabetic retinopathy 0.963 0.682 0.981 0.71 0.979 0.696
macular edema 0.983 0.605 0.993 0.702 0.989 0.65
scar 0.984 0.495 0.993 0.577 0.991 0.533
nevus 0.849 0.229 0.855 0.014 0.992 0.027
amd 0.96 0.351 0.976 0.283 0.983 0.313
vascular occlusion 0.992 0.338 0.996 0.4 0.995 0.366
hypertensive retinopathy 0.972 0.161 0.986 0.175 0.985 0.168
drusens 0.882 0.63 0.937 0.686 0.92 0.657
hemorrhage 0.989 0.097 0.995 0.127 0.994 0.11
retinal detachment 0.001 1.0 0.0 0.001 0.001 0.001
myopic fundus 0.976 0.678 0.982 0.423 0.993 0.521
increased cup disc 0.867 0.722 0.912 0.712 0.915 0.717
other 0.838 0.446 0.858 0.135 0.969 0.208

Table 10 Performance metrics for various eye conditions, trained and tested on “Adequate”
quality images only.

Condition Accuracy Sensitivity Specificity PPV NPV AUC F1

diabetic retinopathy 0.977 0.754 0.992 0.862 0.983 0.98 0.805
macular edema 0.989 0.719 0.995 0.767 0.994 0.994 0.742
scar 0.987 0.772 0.992 0.657 0.995 0.965 0.71
nevus 0.778 0.381 0.781 0.013 0.994 0.623 0.025
amd 0.971 0.657 0.978 0.419 0.992 0.965 0.512
vascular occlusion 0.993 0.579 0.996 0.478 0.997 0.91 0.524
hypertensive retinopathy 0.975 0.218 0.99 0.3 0.985 0.788 0.253
drusens 0.889 0.748 0.919 0.666 0.944 0.91 0.704
hemorrhage 0.984 0.333 0.987 0.098 0.997 0.724 0.151
retinal detachment 0.0 1.0 0.0 0.0 0.0 0.66 0.001
myopic fundus 0.993 0.744 0.997 0.78 0.996 0.995 0.762
increased cup disc 0.897 0.825 0.915 0.702 0.955 0.945 0.759
other 0.939 0.342 0.965 0.301 0.971 0.819 0.32

We experimented with batch sizes 2, 4, 8, 16, 32 and found that a batch size of 8
consistently out-performed the others. With our choice of model and relatively small
dataset size, after trying various epochs we observed that 6 epochs was optimal. We
attempted various regularization schemes, including dropout and L2-regularization
to probe a higher number epochs but did not observe meaningful improvement. The
outcome of this experimentation is the model whose performance is detailed in Table
4.

Notice that there is considerable variation in the model’s performance with respect
to each individual disease. Broadly speaking, those classes with larger representation
in the training set are more easily identified by our model. In particular, the baseline
model performs well on diabetic retinopathy, macular edema, scar, drusens, myopic
fundus and increased cup disc ratio in particular.

Expectedly, diseases such as nondiabetic retinal hemorrhage, retinal detachment
and nevus have poor performance: each of these represent less than 1% of the dataset.
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In particular, there are only 7 instances of retinal detachment in the dataset. Inter-
estingly, the model also struggles to identify hypertensive retinopathy despite the fact
that it is represented in the dataset more frequently than some better performing
classes.

The class “Other” is also not easily identified by our baseline model. We specu-
late that this is because this class contains a variety of different diseases which may
present in highly unique ways. This diversity of features within one class could present
difficulties for a model to generalize. In future work it would be interesting to obtain
finer-grained clinical labelling of these images in order to train a specialized model on
these smaller classes.

Class Imbalance. To try to address the class imbalance, we performed various
experiments. In Table 5 we present the results for an experiment where 5000 “Normal”
labelled images were removed - thus addressing the imbalance between images with
disease and without. This model presents a marginal improvement on our original
baseline in 4, with F1 improving from 0.68 to 0.70.

In Table 6 we reduce the size of the search space by consolidating four of the under-
represented diseases within the “Other” class. As above, this only generates a minor
improvement upon the baseline.

In Table 7 we experimented with an ensemble approach. We observe small improve-
ment in performance in some poorer-performing classes (for example, there is small
improvement in the “Other” F1-score). However, we conclude that these small gains
do not justify the increased computational cost and complexity of this model.

Image Quality. We chose to include images of all quality in the training phase to
make our model more robust. However, in Table 10 we demonstrate that restricting
training/testing to “Adequate” images clearly leads to improved performance. This
of-course comes with a reduction in generalizability to real-world, potentially lower
quality, images. We choose to prioritise robustness to a variety of image qualities in
real-world applications, rather than improved performance on a subset of images. With
this in mind, we also chose not to do any further image pre-processing with regards to
blurriness, blemishes, exposure etc. In effect, we kept the natural noise of the training
set to improve the model’s ability to be useful in real-world scenarios.

Comparison with Literature. There are several works in the literature on retinal
disease classification using computer vision techniques. To our knowledge, our work is
the first model trained on the BREST dataset. Our work provides an example of using
these techniques on images obtained from patients from a part of the world which is
under-represented in the literature. It is our contention that this work could be used
in tandem with others to provide a more robust and generally applicable diagnosis
tool. Our work is a model trained on a unique set of labels: existing models in the
literature are trained to detect different sets of retinal diseases.

Here we collect a small number of works in this area to demonstrate where our
work sits in the body of literature. In [14] the authors classify five increasing gradings
of diabetic retinopathy by training a model based on a highly imbalanced dataset. In
[16] the authors classified 39 retinal fundus diseases by training on a dataset with over
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250,000 labels collected from across the United States, India and China. In [17] the
authors detect 8 different types of fundus legions using a Chinese dataset.

The power of our work is two-fold. Firstly, we train our model on an entirely new
dataset, widening the access of this type of work to a new demographic. Secondly, our
model is trained to identify a unique set of retinal diseases. We propose that in future
work an ensemble approach involving various multi-label classifiers could provide a
powerful general diagnosis tool.

Comments. While we have demonstrated the efficacy of our model in managing
multilabel classification, it remains essential to contemplate whether a disease-specific
model is more fitting for certain diseases or each disease individually. For instance,
if the model’s objective is to provide support to patients with a particular disease
or a combination of diseases, predict the risk of a specific disease, or recommend a
particular treatment pathway, then employing personalized models trained separately
for each class might be the optimal choice. Nevertheless, employing multiple models
can be computationally intensive, presenting challenges for healthcare institutions. In
such scenarios, opting for a more generalized model, such as the multilabel framework
presented here, would be advantageous. This approach provides an efficient initial
classification, which could facilitate rapid triaging and screening.

Multi-label classification involves predicting multiple labels for each instance, mak-
ing the task inherently more complex than binary or multi-class classification. As the
number of labels increases, the feature space grows exponentially, leading to the “curse
of dimensionality”. This can affect model training efficiency and performance. Thus,
models trained on one multi-label dataset may not generalize well to other datasets
due to differences in label semantics, distributions, or dependencies. As we discussed
above, some labels may have significantly fewer instances than others, leading to
imbalances that can affect model training and performance.

5 Conclusions

In this work we have demonstrated the applicability of computer vision techniques to
the problem of retinal disease diagnosis. To the best of our knowledge, this work is
the first baseline model trained on the BREST dataset [18].

In our work we have proven the efficacy of the ResNet-50 model in a multi-label
retinal disease classification. We experimented with hyperparameters, augmentation
and class imbalance methods to arrive at the best performing model.

In future works it would be interesting to build upon this baseline with more
complicated architectures. It would also be instructive to combine this model with
other retinal fundus multi-label models (trained on a variety of datasets to identify
different sets of diseases) to construct a model with even greater applicability.
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Appendix A Supplementary Results

In Table A1 we collect the results for a baseline test with batch size 8, where the
thresholds are not optimized:

Supplementary Table A1 Performance metrics for various eye conditions. 6 epochs, batch size

8. This model has F1 = 0.61 and AUC = 0.93.

Condition Accuracy Sensitivity Specificity PPV NPV AUC F1

diabetic retinopathy 0.976 0.784 0.989 0.839 0.985 0.979 0.811
macular edema 0.983 0.705 0.991 0.689 0.992 0.985 0.697
scar 0.984 0.732 0.988 0.526 0.995 0.976 0.612
nevus 0.991 0.0 1.0 0.991 0.711 0.0
amd 0.977 0.512 0.989 0.538 0.987 0.962 0.525
vascular occlusion 0.991 0.455 0.994 0.357 0.996 0.907 0.4
hypertensive retinopathy 0.978 0.186 0.993 0.324 0.985 0.827 0.237
drusens 0.895 0.462 0.986 0.869 0.898 0.919 0.604
hemorrhage 0.993 0.118 0.998 0.222 0.995 0.78 0.154
retinal detachment 1.0 0.0 1.0 1.0 0.112 0.0
myopic fundus 0.992 0.609 0.997 0.757 0.994 0.992 0.675
increased cup disc 0.895 0.757 0.928 0.715 0.941 0.945 0.735
other 0.947 0.197 0.979 0.297 0.965 0.832 0.237

In Table A2 we collect the results for a baseline test with batch size 8, with
threshold values chosen to maximise individual F1 scores.
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Supplementary Table A2 Performance metrics for various eye conditions. 6 epochs, batch size

8. This model has F1 = 0.66 and AUC = 0.93.

Condition Accuracy Sensitivity Specificity PPV NPV AUC F1

diabetic retinopathy 0.976 0.817 0.987 0.817 0.987 0.979 0.817
macular edema 0.987 0.602 0.998 0.883 0.989 0.985 0.716
scar 0.988 0.643 0.994 0.655 0.994 0.976 0.649
nevus 0.974 0.103 0.982 0.05 0.992 0.711 0.067
amd 0.976 0.512 0.988 0.532 0.987 0.962 0.522
vascular occlusion 0.989 0.591 0.992 0.325 0.997 0.907 0.419
hypertensive retinopathy 0.976 0.237 0.989 0.292 0.986 0.827 0.262
drusens 0.901 0.657 0.952 0.74 0.93 0.919 0.696
hemorrhage 0.992 0.176 0.997 0.214 0.996 0.78 0.194
retinal detachment 0.0 1.0 0.0 0.0 0.999 0.112 0.0
myopic fundus 0.992 0.717 0.996 0.702 0.996 0.992 0.71
increased cup disc 0.899 0.744 0.936 0.736 0.938 0.945 0.74
other 0.91 0.526 0.927 0.241 0.978 0.832 0.33

18

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 13, 2024. ; https://doi.org/10.1101/2024.02.12.24302676doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.12.24302676
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Dataset
	Dataset Preparation
	Supplementary Features
	Image Quality


	Clinical Labeling

	Model Development
	Preprocessing
	Addressing Class Imbalance

	Training Architecture
	Deep Learning in Image Classification
	ResNet-50
	Full Architecture
	Parameters
	Implementation Details
	Optimizing Thresholds
	Sensitivity Analysis




	Results
	Metrics
	Performance
	Baseline Model
	Class Imbalance
	Sensitivity Analysis
	Image Quality Analysis


	Discussion
	Class Imbalance
	Image Quality
	Comparison with Literature
	Comments




	Conclusions
	Supplementary Results

