1	Title Page
2	Title:
3	Multi-omics Characterization of Epigenetic and Genetic Risk of Alzheimer Disease in Autopsied
4	Brains from two Ethnic Groups
5	
6	Authors:
7	Yiyi Ma ¹⁻³ , Dolly Reyes-Dumeyer ¹⁻³ , Angel Piriz ¹ , Patricia Recio ⁴ , Diones Rivera Mejia ^{4,5} , Martin
8	Medrano ⁶ , Rafael A. Lantigua ^{1,7} , Jean Paul G. Vonsattel ^{1,8} , Giuseppe Tosto ^{1,2} , Andrew F. Teich ^{1,3,8} ,
9	Benjamin Ciener ^{1,3,8} , Sandra Leskinen ^{1,3,8} , Sharanya Sivakumar ^{1,3,8} , Michael DeTure ⁹ , Duara Ranjan ⁹ ,
10	Dennis Dickson ⁹ , Melissa Murray ⁹ , Edward Lee ¹⁰ , David A. Wolk ¹⁰ , Lee-Way Jin ¹¹ , Brittany N.
11	Dugger ¹¹ , Annie Hiniker ¹² , Robert A. Rissman ¹² , Richard Mayeux*, ¹⁻³ Badri N. Vardarajan.* ¹⁻³
12	
13	Affiliations:
14	1. Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of
15	Physicians and Surgeons, Columbia University, New York, NY
16	2. G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New
17	York, NY
18	3. Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the
19	New York Presbyterian Hospital, New York, NY
20	4. CEDIMAT, Santo Domingo, Dominican Republic
21	5. Universidad Pedro Henríquez Urena, Santo Domingo, Dominican Republic
22	6. Pontíficia Universidad Católica Madre y Maestra (PUCMM), Santiago, Dominican Republic.
23	7. Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the
24	New York Presbyterian Hospital, New York, NY

25	0	D ()	CD (1 1		X 7 1	C 11 C D1	• •	10	C 1 1 ·
23	ð.	Department	of Pathology and	l Cell Blology,	vagelos	College of Phy	ysicians	and Surgeons,	Columbia

- 26 University, New York, NY
- 27 9. Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
- 28 10. Department of Neurology and Penn Alzheimer's Disease Research Center, Perelman School of
- 29 Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- 30 11. Department of Pathology and Laboratory Medicine, School of Medicine, University of California
- 31 Davis, Sacramento, CA 95817, USA
- 32 12. Keck School of Medicine of the University of Southern California, Los Angeles, CA
- 33
- 34 * Contributed equally to this work.

35 * **Correspondence:**

- 36 Richard Mayeux, MD, MSc,
- 37 Chair of the Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia
- 38 University, and the New York Presbyterian Hospital, 630 West 168th street, New York, NY 10032,
- 39 USA; Tel: 212-305-2391; Email: rpm2@cumc.columbia.edu
- 40

41 Badri N. Vardarajan, Ph.D. MS

- 42 Assistant Professor of Neurological Science of the Department of Neurology, Vagelos College of
- 43 Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 630 West
- 44 168th street, New York, NY 10032, USA; Tel: 212-342-5449; Email: <u>bnv2103@cumc.columbia.edu</u>
- 45

46 Abstract: 334 words; Text: 2,918 words

- 48 49
- 50
- 51

52 Abstract

53

54 Background:

Both genetic variants and epigenetic features contribute to the risk of Alzheimer's disease (AD).
We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which
act as the hub of both the genetic and epigenetic effects, in Hispanics decedents and generalized
the findings to Non-Hispanic Whites (NHW) decedents.

59

60 Methods:

61 First, we derived the dosage of the CpG site-creating allele of multiple CGSes in each 1 KB 62 window across the genome and we conducted a sliding window association test with clinical diagnosis of AD in 7,155 Hispanics (3,194 cases and 3,961 controls) using generalized linear 63 64 mixed models with the adjustment of age, sex, population structure, genomic relationship matrix, and genotyping batches. Next, using methylation and bulk RNA-sequencing data from the 65 dorsolateral pre-frontal cortex in 150 Hispanics brains, we tested the cis- and trans-effects of AD 66 67 associated CGS on brain DNA methylation to mRNA expression. For the genes with significant 68 cis- and trans-effects, we checked their enriched pathways.

69

70 **Results:**

- 71 We identified six genetic loci in Hispanics with CGS dosage associated with AD at genome-wide
- significance levels: ADAM20 (Score=55.2, $P=4.06 \times 10^{-8}$), between VRTN (Score=-19.6,

73 $P=1.47 \times 10^{-8}$) and SYNDIG1L (Score=-37.7, $P=2.25 \times 10^{-9}$), SPG7 (16q24.3) (Score=40.5,

- 74 $P=2.23 \times 10^{-8}$), PVRL2 (Score=125.86, $P=1.64 \times 10^{-9}$), TOMM40 (Score=-18.58, $P=4.61 \times 10^{-8}$),
- and APOE (Score=75.12, $P=7.26 \times 10^{-26}$). CGSes in *PVRL2* and *APOE* were also genome-wide

76	significant in NHW. Except for ADAM20, CGSes in all the other five loci were associated with
77	Hispanic brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also
78	mQTLs in NHW. Except for SYNDIG1L (P=0.08), brain methylation levels in all the other five
79	loci affected downstream RNA expression in the Hispanics (P <0.05), and methylation at VRTN
80	and TOMM40 were also associated with RNA expression in NHW. Gene expression in these six
81	loci were also regulated by CpG sites in genes that were enriched in the neuron projection and
82	synapse (FDR<0.05).
83	
84	Conclusions:
85	We identified six CpG associated genetic loci associated with AD in Hispanics, harboring both
86	genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe
87	ethnic specific and different from NHW.
88	
89	
90	Keywords: Alzheimer's disease; Genetics; Epigenetics; Hispanics; Non-Hispanic Whites; CpG-
91	related single nucleotide polymorphism
92	

93 Introduction:

94	Alzheimer disease (AD) is a chronic and progressive neurodegenerative disorder accompanied
95	by cognitive decline that gradually worsen over years. The etiology of AD is complex involving
96	different molecular mechanisms, which may be the result of not only heritable genetic risks but
97	also by factors that act on the epigenome. The advancement in identifying genetic contributions
98	to AD has also piqued interest in epigenetic contributions. The most recent genome-wide
99	association study (GWAS) of AD reported over 70 genetic loci for AD risk[1]. Candidate gene
100	and genome-wide DNA methylation studies have implicated approximately 21 genetic loci with
101	differential methylation levels associated with AD[2].
102	
103	Loci identified in both genetic and epigenetic studies[3] suggest a common molecular hub that
104	captures causal risk factors for AD. APOE E4 is most consistently confirmed genetic risk factor
105	for AD and the methylation levels of the CpG island within APOE were found to be lower in AD
106	brains compared to brains from healthy participants[4]. The study of CpG-related single
107	nucleotide polymorphism (CGS) may identify alleles disrupting the CpG dinucleotides leading to
108	the removal of the DNA methylation targeted site. We previously found CGSes in the MS4A
109	region have a dose-dependent effect on AD in persons who identify as non-Hispanic White
110	(NHW) [3]. We identified a statistical association between MS4A CGSes and DNA methylation
111	levels using blood samples and clinical AD but we and others were limited in the downstream
112	functional validation for the top loci.
113	
114	In this study, we conducted a systematic analysis based on CGS in persons who identified as

115 Hispanics who enrolled Washington Heights-Inwood Columbia Aging Project (WHICAP) or the

116	Estudio Familiar de Influencia Genética en Alzheimer (EFIGA)[5]. We have studied AD in
117	numerous cohorts of persons who have identified as Hispanics and understand their complex
118	ancestry. We began by using a genome-wide sliding window approach to prioritize genetic loci
119	comprised of CGSes associated with the risk of clinical diagnosis of AD in 7,155 Hispanics
120	decedents. The prioritized loci from the genome-wide analyses were followed by detailed
121	functional studies. We analyzed both the cis- and trans-effects of the molecular mechanisms
122	from genetics to DNA methylation and mRNA gene expression in postmortem brain tissue from
123	Hispanics decedents.
124	
125	Methods:
126	Study description:
127	Cohorts included for genetic studies
128	We included 7,155 Hispanics decedents from the Washington Heights-Inwood Columbia Aging
129	Project (WHICAP)[6] and the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA)[7].
130	The WHICAP study is an ongoing prospective, community-based, multiethnic longitudinal study
131	of Medicare beneficiaries 65 years and older residing in northern Manhattan (Washington
132	Heights, Hamilton Heights, and Inwood). All the participants underwent a comprehensive
133	examination including the assessment of general health and function, standardized physical and
134	neurological examination, and a neuropsychological battery of tests. Follow-up visits were
135	performed every 1.5-2 years, repeating similar examinations. Initiated in 1998, the EFIGA
136	recruited individuals of Caribbean Hispanic ancestry including familial and sporadic AD. The
137	individuals were recruited in New York City using local newspapers, the local Caribbean
138	Hispanic radio station, and postings throughout the Washington Heights-Inwood neighborhood.

139	AD was defined as any individual meeting NINCDS-ADRDA criteria for probable or possible
140	AD[8]. The severity of dementia was rated according to the Clinical Dementia Rating[9].
141	
142	We also included 1,283 NHW from the Religious Order Study and the Memory & Aging Project
143	(ROSMAP) study to analyze whether the top loci identified in the Hispanics can be generalized
144	to NHW. ROSMAP recruit older individuals without known dementia and their detailed
145	information of both ante-mortem and post-mortem phenotyping were collected[10]. For this
146	study, we have included in total 1,283 NHW with whole genome sequencing data and clinical
147	diagnosis of AD.
148	
149	Cohorts with brain DNA methylation and RNA sequencing (RNA-seq):
150	New York Brain Bank (NYBB): Brain tissue came from The NIA Alzheimer's disease Family
151	Based Study (NIA-AD FBS), WHICAP, EFIGA, and NCRAD. The NIA-AD FBS included
152	9,682 family members, and 1,096 unrelated, nondemented elderly from different race/ethnicity
153	groups from 1,756 families with suspected AD. NCRAD included unaffected individuals from
154	families with a history of AD. A description of the families has been previously detailed in a
155	report [5].
156	
157	University of California, Davis Alzheimer's Disease Center (UCD ADC): With the aim to
158	conduct a research on diversity and risk of AD dementia, UCD applied an active community
159	outreach approach to recruit the individuals from the communities of Alameda, Contra Costa,
160	Sacramento, San Joaquin, Solano, and Yolo County. The overall percentage of Hispanic
161	individual 60 years of age and older residing in these counties ranged from 7.1% to 14.3% [11].

163	Florida Autopsied Multi-Ethnic (FLAME) cohort: The FLAME cohort is derived from the State
164	of Florida brain bank housed at the Mayo Clinic Florida [12]. The FLAME cohort consists of a
165	total of 2,809 autopsied individuals with a wide range of neurodegenerative diseases, who were
166	self-identified as Hispanic/Latino, black/African, and non-Hispanic white/European. The fixed
167	hemi-brain (typically left hemisphere) was weighed and the frontal cortex was cut and then
168	placed in 10% formalin solution.
169	
170	The University of Pennsylvania Integrated Neurodegenerative Disease Biobank: Patients with
171	neurodegenerative disease are recruited into the autopsy program by the different clinical cores.
172	The subjects selected for the autopsy were followed in the clinical centers with detailed clinical
173	information and most of them were also collected with biofluid, neuroimaging, and genetic
174	data/samples. The left hemisphere and brain stem were immersed in 10% neutral buffered
175	formalin for 2 weeks whereas the right hemisphere was sliced coronally and frozen.
176	
177	University of California, San Diego Alzheimer's Disease Research Center (UCSD ADC):
178	Postmortem tissue from the center's longitudinally followed cohort was used for this study.
179	Blocks of tissue were provided from autopsy verified cases after fixation in 10% formalin for 4
180	weeks. Cases were selected by using detailed clinical, biomarker and demographics information
181	collected at visits.
182	
183	The Religious Order Study and the Memory & Aging Project (ROSMAP): We have included
184	516 NHW who have measurements of both postmortem brain DNA methylation and RNA

185	sequencing (RNA-seq) from their postmortem brain tissues. The details of both datasets were
186	described previously [10]. In brief, the grey matter from the dorsolateral prefrontal cortex
187	(DLPFC) were dissected while still frozen. RNA was extracted for transcriptome library
188	construction following the dUTP protocol and Illumina sequencing. The extracted DNA were
189	processed on the Illumina Infinium HumanMethylation450 BeadChip.
190	
191	An informed consent was signed by the participant and/or legal guardian of the individuals
192	included into this study. IRB approval was approved by each institution.
193	
194	Genotype data and annotations of CpG-related SNPs (CGS):
195	We annotated the CpG-related single nucleotide polymorphisms (CGS) by checking the three
196	base pairs flanking each single nucleotide polymorphism (SNP) and derived the dosage of the
197	CpG site-creating allele of multiple CGSes in each 1 Kb window across the genome. We
198	imputed the genotype according to Haplotype Reference Consortium (HRC) reference panels in
199	7,155 Caribbean Hispanics. We used the whole genome sequencing data of 1,283 NHW.
200	
201	Brain DNA methylation data:
202	The genome-wide DNA methylation profile was measured by the Infinium MethylationEPIC Kit
203	(Illumina). For each sample we checked the control probes, sex mismatches, contamination, and
204	genotype outliers calling to identify and remove those samples failed quality control (QC). We
205	kept those CpG sites with detection P value < 0.01 across all the qualified samples and masked
206	those sample-specific CpG site with new detection $P > 0.01$ [13]. We further removed those CpG

sites reported to have cross-hybridization problems [14, 15] and those polymorphic CpG sites

208	[15, 16]. We further corrected the dye bias for all the qualified CpG probes. Finally, there were
209	179 samples from person of Hispanic descent with 675,583 autosomal probes passed the QC
210	which were included into the current study.
211	
212	Brain RNA-seq data: Total RNA was extracted using Qiagen's RNeasy Mini Kit and then was
213	sent to the New York Genome Center for transcriptome library construction, which was
214	sequenced on a NovaSeq 6000 flow cell using 2x100bp cycles, targeting 60 million reads per sample.
215	All the samples included into the analysis passed QC metrics using FastQC. Gene counts were calculated
216	using the function featureCounts. We applied ComBat-seq to correct batch effects. As a result, a total of
217	58,942 genes passed QC metrics and exhibiting non-zero expression across all participants.
218	
219	Statistical analysis:
220	We scaled the dosage of each window to fit into the value from zero to 2 and then tested the
221	scaled dosage of each window for association with AD using generalized linear mixed models
222	(GLMMs) implemented in the generalized linear mixed model association tests (GMMAT) [17]
223	with the adjustments for age, sex, population substructure, genomic relationship matrix (GRM),
224	and genotyping batches. Genome-wide significance threshold was $p < 5.0 \times 10^{-8}$. For the mQTL
225	analysis, there were 112 samples from persons of Hispanic decent and 571 from persons of
226	NHW decent with both genotype and brain DNA methylation data. We conducted the
227	generalized linear model adjusting for the age at death, sex, and technical covariates of
228	genotyping and methylation batches, and methylation chip and position. We analyzed both the
229	cis- and trans-effect of the DNA methylation on gene expression. For the cis-effect of DNA
230	methylation on gene expression, we conducted a highly adaptive sum of powered score-weighted
231	test (aSPUw) to collapse all the available CpG sites within 100 Kb distance to the gene (from 50

232	Kb upstream of the transcription start site and 50 Kb downstream of the end site of the gene
233	according to GENCODE v44 (GRCh37) annotation) with the adjustment of age, sex, and
234	technical covariates of methylation chip ID and chip position. For the trans-effect of DNA
235	methylation on gene expression, we used the linear mixed model to control for the random effect
236	of methylation array, the fixed covariates of chip position on the methylation array, the batch
237	effects, age at death, and sex.
238	
239	Protein-protein interactive network and pathway analysis:
240	There were 69 CpG sites annotated to 65 genes associated with the mRNA expression level in
241	human brains. We searched their network enrichment and pathway analysis through STRING
242	(<u>https://string-db.org</u>).
243	
244	Results:
245	Characteristics of the individuals providing brain samples: There were brain samples from
246	179 Hispanics and 571 NHW individuals included in the study, and their demographics are
247	shown in Table 1 . The mean age at death for Hispanics is 80 years while it is 88 years for NHW
248	individuals. 57.54% of Hispanics and 62.9% of NHW were women.
249	
250	CpG identification: Within the 7,155 Hispanic participants, 1,857,611 windows of 1 Kb
251	genome-wide, with at least two CpG sites, were tested for association with AD. Using the
252	Bonferroni corrected genome-wide significance p-value of $<5.0 \times 10^{-8}$, we identified six genome-
253	wide significant regions: ADAM20 (Score=55.2, P =4.06x10 ⁻⁸), between VRTN (Score=-19.6,
254	$P=1.47 \times 10^{-8}$) and SYNDIG1L (Score=-37.7, $P=2.25 \times 10^{-9}$), SPG7 (16q24.3) (Score=40.5,

 $P=2.23 \times 10^{-8}$), PVRL2 (Score=125.86, $P=1.64 \times 10^{-9}$), TOMM40 (Score=-18.58, $P=4.61 \times 10^{-8}$), 255 and APOE (Score=75.12, $P=7.26 \times 10^{-26}$). (Figure 1 & Table 2). The CGS windows in PVRL2 256 (Score=11.25, $P=2.4 \times 10^{-6}$) and APOE (Score=14.46, $P=1.53 \times 10^{-11}$) were also significant in the 257 258 1,283 NHW participants from ROSMAP. 259 Cis-effects of CGS on DNA methylation: We tested the cis-effects of CGS on molecular 260 phenotypes within 50 Kb flanking the gene. The cis-effects on DNA methylation of the CpG 261 262 dosage of several CGSes in the windows of AD are presented in **Table 3**. Except for ADAM20, all the other five loci have significant associations between the CGSes dosage and the DNA 263 methylation level of the CpG sites within the cis-regions: the intergenic region between VRTN 264 and SYNDIG1L (cg16837088, b=-0.04, $P=2.94 \times 10^{-3}$), SPG7 (cg26536240, b=0.02, $P=5.78 \times 10^{-7}$), 265 *PVRL2* (cg04406254, b=0.02, *P*=2.49x10⁻³), *TOMM40* (cg20051876, b=-0.04, *P*=0.02), and 266 267 APOE (cg20090143, b=-0.01, P=0.02). In NHW, different CpG sites showed statistical significance at SPG7 (cg02244288, b=-0.01, P=2.76x10⁻⁶³), PVRL2 (cg02613937, b=-0.01, 268 P=2.27x10⁻⁶), and APOE (cg02613937, b=-0.01, P=2.36x10⁻⁶). The cis-mQTLs at ADAM20 269 (cg04910453, b=-0.02, P=0.05) reached nominal significance $(P \le 0.05)$ in NHW but not in 270 271 Hispanics.

272

273 **DNA methylation levels altering downstream cis-mRNA expression**: Next, we tested the 274 methylation sites cis-regulated by AD-associated CGSes (identified above), to determine 275 whether these sites altered downstream mRNA expression in the brain. Because our findings 276 revealed different methylation sites for the same gene in Hispanics and NHW for several AD 277 associated loci, we conducted an aggregate analysis by collapsing all the CpG sites within the

278	cis-region of the targeted gene (Table 4). We found that except for SYNDIG1L, methylation
279	levels in all the other genes significantly altered the brain RNA expression in Hispanics ($P \le 0.05$).
280	The significance was replicated for <i>VRTN</i> and <i>TOMM40</i> in NHW ($P \le 0.05$).
281	
282	Trans-effects of DNA methylation levels on gene expression. We tested whether the
283	expression of the genes that harbor AD associated CGS were influenced by genome wide CpG
284	sites in trans. We identified 69 CpG sites across the genome that regulated gene expression of
285	ADAM20, SYNDIG1L, SPG7, PVRL2, TOMM40, and APOE in Hispanics at genome-wide
286	significant levels after Bonferroni correction of the number of CpG sites included into the
287	analysis (Supplementary Table 2). At PVRL2 and TOMM40, the same CpG sites regulating the
288	gene expression in Hispanics also regulated the gene expression in NHW (P<0.05).
289	
290	These 69 CpG sites which have the trans-effects on the gene expressions were annotated to 65
291	genes. We combined these 65 genes with the target genes of ADAM20, SYNDIG1L, SPG7,
292	PVRL2, TOMM40, and APOE, to be upload to STRINGdb to query the significant biological
293	pathways. The significant pathways (FDR<0.05) were presented in Table 5, which involved
294	neuron projection and glutamatergic synapse (FDR=0.0189).
295	
296	Discussion
297	We have conducted a first multi-omics investigation of CpG related SNPs (CGS) in brain tissue
298	from a group of individuals of Hispanic descent, which confer both genetic and epigenetic

299 effects among individuals. Our study is one of the largest genome-wide association studies with

the focus on the special type of genetic variants of CGS in Hispanics. We then assessed the effect
cascade from the AD-associated CGSes to brain methylation levels to brain expression levels.
This study was unique in terms of its use of Hispanic human brain tissues for AD. Also, the
current study provided robust results which survived the most stringent Bonferroni corrections
on the multiple testing.

305

306 We identified six genome-wide significant windows in or near ADAM20, VRTN, SYNDIG1L,

307 SPG7, PVRL2, TOMM40, and APOE, where the dosage of the CpG dinucleotides (created by the

including CGSes) were associated with the risk of clinical diagnosis of AD. In SPG7, the AD

309 associated CGS window is associated with increased cis-DNA methylation levels in the frontal

310 cortex, which in turn reduced downstream mRNA expression. We validated the SPG7 genetic

and epigenetic alterations in NHW, but there is no effect on mRNA expression. Similarly, for

312 SYNDIG1L and APOE, we identified AD-associated CGSes which in turn regulated methylation

313 levels in both Hispanics and NHW brains. However, but the epigenetic modifications had muted

314 effect on downstream gene expression. At *PVRL2*, both the cis effects and trans-effects were

315 statistically significant.

316

SPG7 gene encodes paraplegin, a component of the m-AAA protease, an ATP-dependent proteolytic complex of the mitochondrial inner membrane that degrades misfolded proteins and regulates ribosome assembly. Our finding of its significant effects of its association with AD was consistent with the previous report that the DNA methylation level at SPG7 was associated with Braak neurofibraillary stages[18]. The *PVRL2* (a.k.a. *NECTIN2*) gene encodes a gene within the nectin subfamily of immunoglobulin-like adhesion molecules that participate in Ca²⁺-

323	independent cell-cell adhesion. It is upstream of TOMM40 and APOE and located within the
324	highly linked genetic cluster of TOMM40-APOE-APOC2. PVRL2 had both cis- and trans-effects
325	between DNA methylation and mRNA gene expression. The CpG island within APOE was
326	reported to have lower DNA methylation level in AD patients compared to controls in human
327	postmortem brains[19, 20], which is more profound in glial cells[19]. Lee[21] reported a
328	negative correlation between APOE total RNA levels and DNA methylation at the CpG island
329	within APOE in human postmortem frontal lobes, and this negative correlation is more obvious
330	in controls compared to AD patients. SYNDIG1L (also known as TMEM90A or CAPUCIN)
331	encodes synapse differentiation-induced gene 1 like. In rodents, memory and motor deficits
332	caused by 1,2-Diacetylbenzene via alteration of the mRNA expression of Syndig11 [22] can be
333	improved by prolactin.
334	

Although this project is currently the largest one with Hispanic brain DNA methylation data, it does have limitations of potential bias by grey vs. white matter composition driven by different protocol used by different sites. Also, the fact that multiple sites contribute to the brain samples may also bring variations into the findings. Since the brain samples from different sites were measured by different methylation batches, we only adjust for the experiment batches not the sites in the regression model to remove the colinear bias.

341

This is the first report of robust six genetic loci covering seven genes that act as the hub for both the genetic and epigenetic effects on clinical diagnosis of AD in Hispanic: *ADAM20*, between *VRTN* and *SYNDIG1L*, *SPG7*, *PVRL2*, *TOMM40*, and *APOE*. *PVRL2* and *APOE* were also genetically significant in NHW. Except *ADAM20*, all the other loci have significant mQTL

346	effects in Hispanics, and SPG7, PVRL2, APOE also have significant mQTL in NHW. The DNA
347	methylation levels of all seven genes except for SYNDIG1L have significant associations with its
348	mRNA gene expression levels in Hispanic brains, while only VRTN and TOMM40 also showed
349	significant associations on mRNA expression levels in NHW brains. Except for VRTN, the
350	mRNA gene expression levels of all the other six genes have significant trans-effects from DNA
351	methylation levels of the CpG sites in Hispanics, while only PVRL2 and TOMM40 also showed
352	trans-effects in NHW.
353	
354	
355	We have identified in total six genetic loci <i>PVRL2</i> had both significant cis- and trans-effects from
356	the genetics to epigenetics and then to the mRNA gene expression and the genes for the trans-
357	effects are enriched in the pathways of neuron projection and glutamatergic synapse. Except for
358	SYNDIG1L SPG7 and APOE had significant cis-effects while SYNDIG1L has significant trans-
359	effects.
360	
361	
362	Acknowledgements
363	We thank all the investigators for this study. We thank Dr. David Bennett for releasing
364	ROSMAP datasets publicly. Data collection and sharing for this project was supported by
365	(WHICAP, R01 AG072474, RF1 AG066107) funded by the National Institute on Aging (NIA)
366	and by the National Center for Advancing Translational Sciences, National Institutes of Health,
367	through Grant Number UL1TR001873. Data collection for this project was supported by the
368	Genetic Studies of Alzheimer disease in Caribbean Hispanics (EFIGA) funded by the National
369	Institute on Aging (NIA) and by the National Institutes of Health (NIH) (R01 AG067501). The
370	project was partially funded by the National Institute on Aging (NIA) of the National Institutes
371	of Health (NIH) under Award Numbers R01AG062517, and P30AG072972, P30AG062429,
372	NIA (P30 AG062677, P01 AG003949), Florida Department of Health, Ed and Ethel Moore
373	Alzheimer Disease Research Program (20A22, 8AZ06), NIH P30AG072979, P01AG066597 and
374	U19AG062418.
375	

Tables

Table 1 Characteristics of donors of brain tissues

			Non-Hispanic		
		All (N=179)	With GWAS (N=112)	With RNA-seq (N=150)	Whites (N=571)
	Age at death (y)*	80.29 (11.33)	78.52 (11.24)	81.08 (10.34)	88.32 (6.52)
	Female (N) [#]	103 (57.54%)	64 (57.14%)	83 (55.33%)	359 (62.9%)
8	*The mean and standard	deviation of the age at d	eath are shown.		

*The mean and standard deviation of the age at death are shown. *The number and percentage of female are shown.

Table 2. Top CGS windows associated with Alzheimer's disease.

			His	panics in WHICAP (I	N=7155)	Wł	nites in ROSMAP (N=1283)
Chr	Window Position	Gene	SCORE	VAR	Р	SCORE	VAR	Р
	chr14:70994207-							
14	70995206	ADAM20	55.19	101.12	4.06E-08	1.06	1.66	0.41
	chr14:74867207-	VRTN and						
14	74868206	SYNDIG1L	-37.67	39.70	2.25E-09	-0.20	0.11	0.56
	chr16:89588052-							
16	89589051	SPG7	40.51	52.45	2.23E-08	-3.06	3.51	0.10
	chr19:45387308-							
19	45388307	PVRL2	125.86	435.69	1.64E-09	11.25	5.69	2.40E-06
	chr19:45402808-							
19	45403807	TOMM40	-18.58	11.56	4.61E-08	-0.13	0.009	0.17
	chr19:45411308-							
19	45412307	APOE	75.12	51.03	7.26E-26	14.46	4.60	1.5 3E-11

The dosage of CpG dinucleotides created by multiple CpG-related single nucleotide polymorphisms (CGSs) of each window were scaled into the value from 0 to

2, which was analyzed for its association with Alzheimer's disease using generalized linear mixed models (GLMMs) implemented in the generalized linear

mixed model association tests (GMMAT) with the adjustment of age, sex, and genotyping batches with the random effects of both kinship and genomic

relationship matrix (GRM).

					His pa nic	s in WHICAP (N	I=112)				Whites in ROSMAP (N=571)							Correlation between White top and Hispanic top CpG sites	
			CpG sites	Р						Same	CpG site in His	pa nics		CpG site with	minimum	P in Whites		His pa nics	Whites
Chr	Window Position	Gene	(N)	threshold	CpG	Position	BETA	STDERR	Р	BETA	STDERR	Ρ	CpG	Position	BETA	STDERR	Ρ	R	R
14	chr14:70994207- 70995206	ADAM 20	7	7.14E-03	cg04910453	71051130	0.01	0.01	0.37	-0.02	0.01	0.05	cg04910453	71051130	-0.02	0.01	0.05	1	1
	chr14:74867207-	VRTN and																	
14	74868206	SYNDIG1L	95	5.26E-04	cg16837088	74742111	-0.04	0.01	2.94E-03	NA	NA	NA	cg13074788	74720261	-0.01	6.42E-03	0.06	0.17	NA
16	89589051	SPG7	186	2.69E-04	cg26536240	89509760	0.02	0.004	5.78E-07	1.75E-02	9.74E-04	6.37E-56	cg02244288	89573955	-0.01	7.49 E-04	2.76E-63	-0.48	-0.3
10	chr19:45387308-	01/012	67	7.465.04	04406254	45407045	0.02	0.007	2 405 02	0.005.02	2.245.02	1.695.04	02612027	45205207	0.01	2.075.02	2.275.06	0.1.2	0.14
19	45588507 chr19:45402808-	PVKLZ	07	7.40E-04	Cg04406254	45407945	0.02	0.007	2.49E-05	0.00E-U3	2.54E-U5	1.082-04	Cg0261 5957	40090297	-0.01	2.07E-U5	2.27E-06	-0.12	-0.14
19	45403807	TOMM40	61	8.20E-04	cg20051876	45407860	-0.04	0.02	0.02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	chr19:45411308-																		
19	45412307	APOE	69	7.25E-04	cg20090143	45452003	-0.01	0.004	0.02	-9.05E-04	1.23E-03	0.46	cg0261 39 37	45395297	-0.01	2.42E-03	2.36E-06	-0.31	0.1

392 BETA, STDERR, and *P* represent the regression coefficient and its corresponding standard error, and P values of the generalized linear mixed regression model

393 where the dosage of CpG dinucleotides created by multiple CpG-related single nucleotide polymorphisms (CGSs) of each window were exposure variables and

394 DNA methylation level of each included CpG sites were outcome variable with the adjustment of age, sex, batches of genotyping and methylation, methylation 395 array position with the random effect of methylation array.

393 array position with the random effect of methylation

396 Abbreviations: AD, Alzheimer's disease.

397 *R* represent the correlation coefficient between two CpG sites.

398

399

Table 4. Cis-effects of DNA methylation on gene expression 401

		Hispanics in WHICAP (N=112)						Whites in ROSMAP (N=516)						
		SPU	w1	aS	SPUw		SPUw1		aSI	PUw				
Chr	Gene	Т	Р	Т	Р	P values range	T	Р	Т	Р	<i>P</i> values range			
14	ADAM20	-7.25	0.09	0.01	0.03	[0.012, 0.09]	4.04E-16	0.16	0.10	0.25	[0.1, 0.55]			
14	VRTN	-63.76	0.05	0.003	8.00E-03	[0.003, 0.046]	9.99E-16	0	0	9.99E-04	[0, 0.000999]			
14	SYNDIG1L	-26.52	0.40	0.03	0.08	[0.03, 0.40]	1.09E-14	0.25	0.03	0.08	[0.03, 0.25]			
16	SPG7	-129.93	0.002	0	9.99E-04	[0, 0.005]	5.01E-12	0.47	0.27	0.61	[0.27, 0.62]			
19	PVRL2	-75.43	0.002	0	9.99E-04	[0, 0.002]	-4.57E-13	0.19	0.12	0.25	[0.12, 0.25]			
19	ТОММ40	17.37	0.38	0.003	0.01	[0.003, 0.38]	8.57E-13	0.02	0.02	0.03	[0.02, 0.03]			
19	APOE	-83.13	0.001	0	9.99E-04	[0, 0.001]	-2.07E-11	0.96	0.04	0.12	[0.04, 0.97]			

402

403 #We have conducted a highly adaptive sum of powered score-weighted test to collapse all the available CpG sites within 100Kb distance to the gene and analyze

their associations on the gene expression and Braak stages. SPUw1 provides the direction of the score, indicating the effect direction of DNA methylation on 404

405 gene expression, where aSPUw test simply combines the results of multiple SPUw tests by taking the minimum P values. The model is gaussian for the

406 continuous gene expression values and the model is binomial for the binary variable of Braak stage, where score 5 and 6 are coded as 1 and scores from 1 to 4 are 407

coded as 0.

408 *T and P represent the statistic and its corresponding P values.

Abbreviations: SPUw1, sum of powered score-weighted 1 test; aSPUw, adaptive sum of powered score-weighted tests. 409

410

Category	Term ID	Term Description	Observed Gene Count	Background Gene Count	Strength	False Discovery Bate
GO Component	GO:0030054	Cell junction	19	2115	0.43	0.0189
GO Component	GO:0030424	Axon	11	651	0.13	0.0189
GO Component	GO:0043005		16	1391	0.54	0.0189
GO Component	GO:0098978	Glutamatergic synapse	8	334	0.86	0.0189
Monarch	EFO:0004612	measurement	14	740	0.76	0.0015
Monarch	EFO:0004732	Lipoprotein measurement	17	1426	0.56	0.017
Monarch	EFO:0004614	Apolipoprotein A 1 measurement	9	396	0.84	0.0275
Monarch	EFO:0005105	Lipid or lipoprotein measurement	22	25 26	0.42	0.0345
Monarch	EFO:0004529	Lipid measurement	21	2400	0.42	0.0365
Monarch	EFO:0004582	Liver enzyme measurement	14	1124	0.58	0.0365
Monarch	EFO:0004747	Protein measurement	36	5856	0.27	0.0365
TISSUES	BTO:0001484	Nervous system	42	6016	0.33	4.03e-05
TISSUES	BTO:0000227	Central nervous system	39	5825	0.31	0.00044
TISSUES	BTO:0000142	Brain	38	5733	0.3	0.00067
TISSUES	BTO:0000282	Head	39	6642	0.25	0.0081
COMPARTMENTS	GOCC:0030054	Cell junction	15	1053	0.64	0.0033
COMPARTMENTS	GOCC:0045202	Synapse	9	493	0.74	0.0426
UniProt Keywords	KW-0025	Alternative splicing	52	10313	0.18	0.0024

412 Table 5. Pathway analysis of the trans-effects of DNA methylation on gene expression.

414 **Figure 1. Manhattan plot of sliding window search across the genome for the risk loci of clinical diagnosis of Alzheimer disease.** Each dot 415 represents one 1-Kb window, and X and Y axis shows its genomic coordinate and -log10 transformed *P* value. The horizontal black line shows the 416 Bonferroni-corrected genome-wide significance threshold ($P \le 5 \times 10^{-8}$). The density of the windows across the genome were shown as color coded 417 bars with the color coding is shown on the right.

422 **References:**

423 Holstege H, Hulsman M, Charbonnier C, Grenier-Boley B, Quenez O, Grozeva D, et al. Exome 1. sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer's 424 425 disease. Nat Genet. 2022;54(12):1786-94. Epub 2022/11/22. doi: 10.1038/s41588-022-01208-7. PubMed 426 PMID: 36411364; PubMed Central PMCID: PMCPMC9729101. 427 Nikolac Perkovic M, Videtic Paska A, Konjevod M, Kouter K, Svob Strac D, Nedic Erjavec G, et 2. 428 al. Epigenetics of Alzheimer's Disease. Biomolecules. 2021;11(2). Epub 2021/02/13. doi: 429 10.3390/biom11020195. PubMed PMID: 33573255; PubMed Central PMCID: PMCPMC7911414. 430 Ma Y, Jun GR, Chung J, Zhang X, Kunkle BW, Naj AC, et al. CpG-related SNPs in the MS4A 3. 431 region have a dose-dependent effect on risk of late-onset Alzheimer disease. Aging Cell. 432 2019;18(4):e12964. Epub 2019/05/31. doi: 10.1111/acel.12964. PubMed PMID: 31144443; PubMed 433 Central PMCID: PMCPMC6612647. 434 Shao Y, Shaw M, Todd K, Khrestian M, D'Aleo G, Barnard PJ, et al. DNA methylation of 4. 435 TOMM40-APOE-APOC2 in Alzheimer's disease. J Hum Genet. 2018;63(4):459-71. Epub 2018/01/27. 436 doi: 10.1038/s10038-017-0393-8. PubMed PMID: 29371683; PubMed Central PMCID: 437 PMCPMC6466631. 438 5. Reves-Dumeyer D, Faber K, Vardarajan B, Goate A, Renton A, Chao M, et al. The National 439 Institute on Aging Late-Onset Alzheimer's Disease Family Based Study: A resource for genetic discovery. 440 Alzheimers Dement. 2022;18(10):1889-97. Epub 2022/01/04. doi: 10.1002/alz.12514. PubMed PMID: 441 34978149; PubMed Central PMCID: PMCPMC9250549. 442 Gu Y, Honig LS, Kang MS, Bahl A, Sanchez D, Reyes-Dumeyer D, et al. Risk of Alzheimer's 6. 443 disease is associated with longitudinal changes in plasma biomarkers in the multi-ethnic Washington 444 Heights-Hamilton Heights-Inwood Columbia Aging Project (WHICAP) cohort. Alzheimers Dement. 445 2024. Epub 2024/01/07. doi: 10.1002/alz.13652. PubMed PMID: 38183363. 446 7. Vardarajan BN, Faber KM, Bird TD, Bennett DA, Rosenberg R, Boeve BF, et al. Age-specific 447 incidence rates for dementia and Alzheimer disease in NIA-LOAD/NCRAD and EFIGA families: 448 National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell 449 Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en 450 Alzheimer (EFIGA). JAMA Neurol. 2014;71(3):315-23. Epub 2014/01/16. doi: 10.1001/jamaneurol.2013.5570. PubMed PMID: 24425039; PubMed Central PMCID: PMCPMC4000602. 451 452 8. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of 453 Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of 454 Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939-44. doi: 455 10.1212/wnl.34.7.939. PubMed PMID: 6610841. 456 9. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of 457 dementia. Br J Psychiatry. 1982;140:566-72. Epub 1982/06/01. doi: 10.1192/bjp.140.6.566. PubMed 458 PMID: 7104545. 459 De Jager PL, Ma Y, McCabe C, Xu J, Vardarajan BN, Felsky D, et al. A multi-omic atlas of the 10. 460 human frontal cortex for aging and Alzheimer's disease research. Sci Data. 2018;5:180142. doi: 461 10.1038/sdata.2018.142. PubMed PMID: 30084846; PubMed Central PMCID: PMCPMC6080491. 462 11. Hinton L, Carter K, Reed BR, Beckett L, Lara E, DeCarli C, et al. Recruitment of a community-463 based cohort for research on diversity and risk of dementia. Alzheimer Dis Assoc Disord. 464 2010;24(3):234-41. Epub 2010/07/14. doi: 10.1097/WAD.0b013e3181c1ee01. PubMed PMID: 20625273; 465 PubMed Central PMCID: PMCPMC2946798. Santos OA, Pedraza O, Lucas JA, Duara R, Greig-Custo MT, Hanna Al-Shaikh FS, et al. 466 12. 467 Ethnoracial differences in Alzheimer's disease from the FLorida Autopsied Multi-Ethnic (FLAME) cohort. 468 Alzheimers Dement. 2019;15(5):635-43. Epub 2019/02/23. doi: 10.1016/j.jalz.2018.12.013. PubMed PMID: 30792090; PubMed Central PMCID: PMCPMC6511501. 469

Heiss JA, Just AC. Improved filtering of DNA methylation microarray data by detection p values
and its impact on downstream analyses. Clin Epigenetics. 2019;11(1):15. doi: 10.1186/s13148-019-0615PubMed PMID: 30678737; PubMed Central PMCID: PMCPMC6346546.

- 473 14. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of
- 474 cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray.
- 475 Epigenetics. 2013;8(2):203-9. doi: 10.4161/epi.23470. PubMed PMID: 23314698; PubMed Central
 476 PMCID: PMCPMC3592906.
- 15. McCartney DL, Walker RM, Morris SW, McIntosh AM, Porteous DJ, Evans KL. Identification
- 478 of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip.
- 479 Genom Data. 2016;9:22-4. doi: 10.1016/j.gdata.2016.05.012. PubMed PMID: 27330998; PubMed Central
 480 PMCID: PMCPMC4909830.
- 481 16. Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of
 482 Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45(4):e22. doi:
- 483 10.1093/nar/gkw967. PubMed PMID: 27924034; PubMed Central PMCID: PMCPMC5389466.
- 484 17. Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, et al. Control for Population Structure
- and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models. Am J Hum
 Genet. 2016;98(4):653-66. doi: 10.1016/j.ajhg.2016.02.012. PubMed PMID: 27018471; PubMed Central
- 487 PMCID: PMCPMC4833218.
- Li QS, Sun Y, Wang T. Epigenome-wide association study of Alzheimer's disease replicates 22
 differentially methylated positions and 30 differentially methylated regions. Clin Epigenetics.
- 490 2020;12(1):149. Epub 2020/10/19. doi: 10.1186/s13148-020-00944-z. PubMed PMID: 33069246;
- 491 PubMed Central PMCID: PMCPMC7568396.
- 19. Tulloch J, Leong L, Thomson Z, Chen S, Lee EG, Keene CD, et al. Glia-specific APOE
- 493 epigenetic changes in the Alzheimer's disease brain. Brain Res. 2018;1698:179-86. Epub 2018/08/07. doi:
 494 10.1016/j.brainres.2018.08.006. PubMed PMID: 30081037; PubMed Central PMCID: PMCPMC6388639.
- 494 10.1010/J.oranies.2018.00.000. Fublication Find. 50081057, Fublication Finder MCD. Finder MC0388059 495 20. Foraker J, Millard SP, Leong L, Thomson Z, Chen S, Keene CD, et al. The APOE Gene is
- Differentially Methylated in Alzheimer's Disease. J Alzheimers Dis. 2015;48(3):745-55. Epub 2015/09/25.
- 497 doi: 10.3233/JAD-143060. PubMed PMID: 26402071; PubMed Central PMCID: PMCPMC6469491.
- Lee EG, Tulloch J, Chen S, Leong L, Saxton AD, Kraemer B, et al. Redefining transcriptional
 regulation of the APOE gene and its association with Alzheimer's disease. PLoS One.

500 2020;15(1):e0227667. Epub 2020/01/25. doi: 10.1371/journal.pone.0227667. PubMed PMID: 31978088;
 501 PubMed Central PMCID: PMCPMC6980611.

- 502 22. Nguyen HD, Jo WH, Hoang NHM, Kim MS. In silico identification of the potential molecular
- 503 mechanisms involved in protective effects of prolactin on motor and memory deficits induced by 1,2-
- 504 Diacetylbenzene in young and old rats. Neurotoxicology. 2022;93:45-59. Epub 2022/09/14. doi:
- 505 10.1016/j.neuro.2022.09.002. PubMed PMID: 36100143.

