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Abstract 20 

Background: Molecular ageing clocks estimate an individual’s biological age. Our aim was 21 

to compare multiple machine learning algorithms for developing ageing clocks from nuclear 22 

magnetic resonance (NMR) spectroscopy metabolomics data. To validate how well each 23 

ageing clock predicted age-related morbidity and lifespan, we assessed their associations with 24 

multiple health indicators (e.g., telomere length and frailty) and all-cause mortality. 25 

Methods: The UK Biobank is a multicentre observational health study of middle-aged and 26 

older adults. The Nightingale Health platform was used to quantify 168 circulating plasma 27 

metabolites at the baseline assessment from 2006 to 2010. We trained and internally 28 

validated 17 machine learning algorithms including regularised regression, kernel-based 29 

methods and ensembles. Metabolomic age (MileAge) delta was defined as the difference 30 

between predicted and chronological age. 31 

Results: The sample included 101,359 participants (mean age = 56.53 years, SD = 8.10). 32 

Most metabolite levels varied by chronological age. The nested cross-validation mean 33 

absolute error (MAE) ranged from 5.31 to 6.36 years. 31.76% of participants had an age-bias 34 

adjusted MileAge more than one standard deviation (3.75 years) above or below the mean. A 35 

Cubist rule-based regression model overall performed best at predicting health outcomes. The 36 

all-cause mortality hazard ratio (HR) comparing individuals with a MileAge delta more than 37 

one standard deviation above and below the mean was HR = 1.52 (95% CI 1.41-1.64, p < 38 

0.001) over a median follow-up of 13.87 years. Individuals with an older MileAge were 39 

frailer, had shorter telomeres, were more likely to have a chronic illness and rated their health 40 

worse. 41 

Conclusions: Metabolomic ageing clocks derived from multiple machine learning algorithms 42 

were robustly associated with health indicators and mortality. Our metabolomic ageing clock 43 

(MileAge) derived from a Cubist rule-based regression model can be incorporated in 44 

research, and may find applications in health assessments, risk stratification and proactive 45 

health tracking. 46 

 47 

Keywords: ageing clocks; biological age; biomarkers; machine learning; metabolomics 48 
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 3 

Introduction 49 

Chronological age, the time elapsed since birth, is a powerful predictor of health and disease 50 

(Mutz, Roscoe, & Lewis, 2021). However, there is considerable heterogeneity in health 51 

status, lifestyle and the physical signs of ageing between individuals of the same 52 

chronological age. This variability may partly reflect individual differences in biological 53 

ageing, which is the process of accumulating molecular and cellular damage that results in a 54 

progressive decline in physiological functioning (Moqri et al., 2023). While our 55 

chronological age cannot be altered, biological ageing trajectories in humans may be 56 

modifiable, or even reversible. Therefore, developing reliable measures of biological age is 57 

an important priority in biomedical research and population health. 58 

 59 

Although there is no single biological marker of biological ageing, several hallmarks such as 60 

telomere length shortening have been identified (López-Otín, Blasco, Partridge, Serrano, & 61 

Kroemer, 2023). Clinical and population studies of age-related biological changes have also 62 

examined physiological measures of grip strength and cardiovascular function (Mutz, 63 

Hoppen, Fabbri, & Lewis, 2022; Mutz & Lewis, 2021; Mutz, Young, & Lewis, 2022), blood-64 

based biomarkers (Nakamura, Miyao, & Ozeki, 1988), inflammatory markers (Franceschi, 65 

Garagnani, Parini, Giuliani, & Santoro, 2018) and frailty (Hoogendijk et al., 2019). 66 

 67 

Molecular “omics” and neuroimaging data such as DNA methylation (Hannum et al., 2013; 68 

Horvath & Raj, 2018; Lu et al., 2019) and structural magnetic resonance imaging (Cole & 69 

Franke, 2017) have facilitated the development of biological ageing clocks (Rutledge, Oh, & 70 

Wyss-Coray, 2022; Solovev, Shaposhnikov, & Moskalev, 2020). Ageing clocks are usually 71 

developed using machine learning algorithms that identify relationships between 72 

chronological age and molecular data. The difference between predicted age, which 73 

approximates biological age, and chronological age is associated with health outcomes 74 

(Macdonald-Dunlop et al., 2022). Ageing clocks provide a more holistic picture of a person’s 75 

health and are conceptually easier to understand than most individual molecular markers as 76 

they are expressed in unit of years. 77 

 78 

Population-scale metabolomics, the study of small molecules, i.e., metabolites, within cells, 79 

tissues or organisms, is increasingly incorporated into biological ageing research (Panyard, 80 

Yu, & Snyder, 2022). Metabolites are the products of metabolism, for example when food is 81 
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converted to energy. While many initial metabolomics studies were limited to few 82 

metabolites and small samples, technological advancements have enabled the population-83 

scale profiling of multiple molecular pathways (Soininen, Kangas, Würtz, Suna, & Ala-84 

Korpela, 2015). Simultaneously quantifying hundreds or thousands of metabolites can 85 

provide unprecedented snapshots of an individual’s physiological state. Metabolomic profiles 86 

predict many common incident diseases (Buergel et al., 2022) and mortality risk (Deelen et 87 

al., 2019). Over the past decade, studies have characterised associations between 88 

chronological age and metabolomic biomarkers (Lawton et al., 2008; Menni et al., 2013; Yu 89 

et al., 2012). The first study to develop a “metabolite-derived age variable” showed that a 90 

panel of 22 metabolites explained 59% of the variance in chronological age. A linear 91 

combination of these metabolites was correlated with age-related clinical measures 92 

independent of chronological age (Menni et al., 2013). The first study to develop a biological 93 

ageing clock from metabolomics data showed that the difference between predicted and 94 

chronological age, metabolomic age delta, was associated with a higher disease burden and 95 

higher mortality (Hertel et al., 2016). Analyses in other samples, for example the Airwave 96 

Health Monitoring Study in the UK (Robinson et al., 2020) and the Dutch BBMRI-NL 97 

consortium (van den Akker et al., 2020), have since replicated some of these findings. 98 

Metabolomics is amongst the most powerful omics data for biological age estimation 99 

(Solovev et al., 2020) and prediction of disease (Macdonald-Dunlop et al., 2022). 100 

 101 

The aim of this study was to compare multiple machine learning algorithms for developing 102 

ageing clocks from nuclear magnetic resonance (NMR) spectroscopy metabolomics data in 103 

more than 100,000 participants in the UK Biobank (Bycroft et al., 2018). These data provide 104 

an unprecedented resource to develop ageing clocks and represent one of the largest single 105 

NMR metabolomics databases to date. To validate how well each ageing clock predicted age-106 

related morbidity and lifespan, and captured biological signal beyond that approximated by 107 

chronological age (Hertel et al., 2019), we assessed their associations with multiple health 108 

indicators (e.g., telomere length and frailty) and all-cause mortality.  109 
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Methods 110 

Study population 111 

The UK Biobank is a prospective health study of over 500,000 UK residents aged 37–73 who 112 

were recruited between 2006 and 2010. Individuals registered with the UK National Health 113 

Service (NHS) and living within a 25-mile (~40 km) radius of one of 22 assessment centres 114 

were invited to participate (Bycroft et al., 2018). Participants provided data on their 115 

sociodemographic characteristics, health behaviours and medical history, underwent physical 116 

examination and had blood and urine samples taken. There is extensive record linkage, for 117 

example with national death registries, hospital inpatient records and primary care data. 118 

 119 

Metabolomic biomarker quantification 120 

Nuclear magnetic resonance (NMR) spectroscopy metabolomic biomarkers were quantified 121 

in non-fasting blood plasma samples taken at the baseline assessment. The Nightingale 122 

Health platform ascertains 168 circulating metabolites using a high-throughput standardized 123 

protocol for sample quality control, preparation, data storage and automated analyses (Würtz 124 

et al., 2017). The metabolites span multiple pathways, including lipoprotein lipids in 14 125 

subclasses, circulating fatty acids and fatty acid compositions, as well as low-molecular 126 

weight metabolites, such as amino acids, ketone bodies and glycolysis metabolites. Most 127 

measures are highly correlated (r > 0.9) with routine clinical chemistry assays (Würtz et al., 128 

2017). For further details on sample preparation and quality control procedures, see 129 

https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/nmrm_companion_doc.pdf. We used the first 130 

release of metabolomics data (March 2021) on a random subset of 118,019 participants. 131 

 132 

Machine learning 133 

We evaluated 17 machine learning algorithms, including regularised linear regression, latent 134 

variable modelling, instance-based learning, non-parametric regression, kernel-based 135 

methods, tree-based models, rule-based models and ensemble methods (Panel 1). To 136 

internally validate each algorithm in predicting chronological age from plasma metabolites, 137 

we implemented 10×5 nested cross-validation (Figure 1a). Nested cross-validation is 138 

preferred for internal validation over other existing approaches as it provides more accurate 139 

error estimation (Bates, Hastie, & Tibshirani). We split the data into 10 folds of equal size, to 140 

which individuals were allocated at random while preserving the chronological age 141 

distribution of the full analytical sample (Figure 1b).  142 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.10.24302617doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.10.24302617
http://creativecommons.org/licenses/by/4.0/


 6 

Panel 1. Overview of the machine learning algorithms used in this study. 143 

 144 

Ridge regression: linear regression model with a penalty term (L2 regularization) to shrink the 145 

magnitude of coefficient estimates towards zero (Hoerl & Kennard, 1970). 146 

 147 

Least Absolute Shrinkage and Selection Operator (LASSO): linear regression model with a 148 

penalty term (L1 regularization) to shrink the magnitude of coefficient estimates towards 149 

zero. This technique can result in sparse models as variable selection is performed by 150 

reducing some coefficient estimates exactly equal to zero (Tibshirani, 1996). 151 

 152 

Elastic net: linear regression model that combines the L1 and L2 penalty terms of LASSO and 153 

Ridge regression. This technique reduces the magnitude of some coefficient estimates 154 

towards zero and can perform variable selection by reducing some coefficient estimates 155 

exactly equal to zero (Zou & Hastie, 2005). 156 

 157 

Partial least squares regression (PLSR): latent variable model that extracts a set of latent 158 

factors that best explain the covariance between the predictors and outcome. These factors 159 

are then used as predictors in a linear regression model (Wold, Sjöström, & Eriksson, 2001). 160 

 161 

K-nearest neighbors (KNN): instance-based learning model which uses the weighted average 162 

outcome of the k nearest data points to make predictions. In this context, “nearest” is usually 163 

determined by a distance metric such as the Minkowski distance (Cover & Hart, 1967). 164 

 165 

Multivariate adaptive regression splines (MARS): non-parametric regression model that 166 

creates piecewise linear approximations of the relationship between the predictors and 167 

outcome. This technique can model non-linear associations and interactions between the 168 

predictors (J. Friedman, H., 1991). 169 

 170 

MARS ensemble: ensemble method that combines the predictions of multiple MARS models 171 

to improve the predictive accuracy and stability of the model (Kuhn & Johnson, 2013a). 172 

 173 

Support vector regression (SVR): kernel-based method that seeks to identify a hyperplane 174 

that best models the relationships between the predictors and outcome. This variation of the 175 

support vector machine algorithm (Boser, Guyon, & Vapnik, 1992) was adapted for 176 
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regression and can employ a range of kernels to transform the data to a higher-dimensional 177 

space, allowing for complex non-linear associations (Drucker, Burges, Kaufman, Smola, & 178 

Vapnik, 1996). We tested linear, polynomial and radial basis function kernels. 179 

 180 

Regression tree: technique that models the relationship between the predictors and outcome 181 

by creating a tree-like structure of decision rules based on values of the predictors. Decision 182 

trees are interpretable and can incorporate non-linear relationships and higher-order 183 

interactions in the data (Breiman, Friedman, Olshen, & Stone, 1984). 184 

 185 

Bagging: ensemble method that combines the predictions of multiple regression trees. 186 

Bootstrapped aggregating (“bagging”) involves training regression trees on multiple, 187 

randomly selected (“bootstrapped”) samples of the data. Bagging can improve the stability 188 

and accuracy of decision tree models (Breiman, 1996). 189 

 190 

Random forest: ensemble method that combines predictions of multiple regression trees. 191 

Each tree is trained on a random subset of the data and, at each split, a subset of predictors, 192 

reducing the correlation between decision trees in the ensemble (Breiman, 2001). 193 

 194 

Extreme gradient boosting (XGBoost): ensemble method that builds decision trees 195 

sequentially by implementing a gradient descent algorithm that seeks to minimize errors from 196 

previous models while increasing the influence (“boosting”) of highly predictive models. 197 

More complex models are penalised through L1 and L2 regularization to avoid overfitting (T. 198 

Chen & Guestrin, 2016). 199 

 200 

Bayesian additive regression trees (BART): ensemble method that uses Bayesian techniques 201 

to iteratively construct and update multiple decision trees. Regularization priors force each 202 

tree to explain only a subset of the relationship between the predictors and outcome, thereby 203 

preventing overfitting (Chipman, George, & McCulloch, 2010). 204 

 205 

Cubist rule-based regression: ensemble model that that derives rules from decision trees and 206 

fits linear regression models for the subset of the data defined by each rule. The model 207 

incorporates boosting techniques and may adjust predictions based on k-nearest neighbors 208 

(Kuhn & Johnson, 2013b; Quinlan, 1992). 209 

 210 
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RuleFit ensemble: ensemble method that uses a tree-based model (XGBoost) to predict an 211 

outcome and subsequently derives rules. LASSO is then used to select the most predictive 212 

rules, resulting in a sparse linear model (J. H. Friedman & Popescu, 2008). 213 

 214 

For each iteration of the outer loop of the nested cross-validation, 9/10 folds combined served 215 

as the training set and the tenth fold served as the test set. The 90% training sets were further 216 

divided into five equal size sets, and we performed 5-fold cross validation to empirically 217 

identify, for each algorithm, the hyperparameter combination that resulted in the lowest 218 

cross-validation mean absolute error (MAE). Tuning grids were set up using a maximum 219 

entropy space-filling design. The size of each tuning grid was determined by the number of 220 

available hyperparameters, type of hyperparameter (continuous, discrete or categorical) and 221 

computational constraints. We tested up to ten values for each hyperparameter, resulting in 222 

tuning grid sizes between ten (for Ridge regression) and 3125 (for XGBoost). Further details, 223 

including pre-processing requirements, are available in Table S1. The model specifications 224 

with the lowest 5-fold cross-validation MAE were subsequently fit in the 90% training sets, 225 

and performance was assessed by calculating the MAE, root-mean-square error (RMSE), 226 

Pearson correlation coefficient (r) and the coefficient of determination (R2) in the 10% test 227 

sets. We also examined the average magnitude of discrepancy in predictive performance 228 

between the training and test sets, extrapolation beyond the chronological age range in the 229 

data and the computing hours required for hyperparameter tuning for each model. 230 

 231 

Metabolomic ageing clocks 232 

Individual-level age predictions for all participants were obtained by aggregating the 233 

predictions of the ten test sets of the outer loop of the nested cross-validation. Metabolomic 234 

age delta (MileAge delta) was calculated as the difference between predicted and 235 

chronological age, with positive values representing an older predicted than chronological 236 

age and negative values representing a younger predicted than chronological age. Given that 237 

ageing clocks overestimate age in young individuals and underestimate age in older 238 

individuals, we regressed predicted age (MileAge) on chronological age and used the 239 

resulting intercept (β) and slope coefficient (α) estimates to apply a statistical correction to 240 

the age prediction: MileAge (age bias adjusted) = MileAge + [Age � �α × Age + β�� (de 241 

Lange & Cole, 2020).  242 
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Health indicators and mortality 243 

We tested associations between MileAge delta (adj.) and multiple health indicators: having a 244 

long-standing illness, disability or infirmity (yes/no), self-rated health (“poor”, “fair”, “good” 245 

or “excellent”) and overall health status (unhealthy/healthy) derived from 81 cancer and 443 246 

non-cancer illnesses (Mutz & Lewis, 2022; Mutz et al., 2021). Next we examined 247 

associations with the frailty phenotype and frailty index (Mutz, Choudhury, Zhao, & Dregan, 248 

2022). The frailty phenotype summarises data on weight loss, exhaustion, physical activity, 249 

walking speed and hand-grip strength. The frailty index was derived from 49 variables 250 

obtained at the baseline assessment, including cardiometabolic, cranial, immunological, 251 

musculoskeletal, respiratory and sensory traits, well-being, infirmity, cancer and pain. We 252 

also tested associations between MileAge delta (adj.) and telomere length, measured using a 253 

validated quantitative polymerase chain reaction assay that expresses telomere length as the 254 

ratio of the telomere repeat copy number (T) relative to a single-copy gene (S) that encodes 255 

haemoglobin subunit beta. T/S ratio is proportional to an individual’s average telomere length 256 

(Lai, Wright, & Shay, 2018). Finally, we examined prospective associations with all-cause 257 

mortality. The date of death was obtained through linkage with national death registries, NHS 258 

Digital (England and Wales) and the NHS Central Register (Scotland). The censoring date 259 

was 30 November 2022. 260 

 261 

Exclusion criteria 262 

Women who were pregnant or unsure that they were pregnant at the time of assessment were 263 

excluded from the analysis given that their metabolite profiles likely changed during 264 

pregnancy. Participants for whom their genetic and self-reported sex did not match were also 265 

excluded as this may indicate poor data quality. We also excluded individuals with missing 266 

metabolite data or potential outlier metabolite values, defined as values 4× the interquartile 267 

range (IQR) above or below the median. 268 

 269 

Statistical analyses 270 

All data processing and analyses were performed in R (version 4.2). 271 

 272 

Sample characteristics were summarised using means and standard deviations or counts and 273 

percentages. Generalised additive models were used to explore the relationship between 274 

chronological age and metabolite levels. We further conducted metabolome-wide association 275 

analyses of chronological age and all-cause mortality to identify metabolites that were 276 
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statistically significantly associated with chronological age and mortality (at P < 0.05/168). 277 

Correlations between the predicted age derived from each machine learning model were 278 

estimated using Pearson’s correlation coefficient. 279 

 280 

Cross-sectional associations between MileAge delta (adj.) and the frailty index and telomere 281 

length were estimated using ordinary least squares regression. Associations between MileAge 282 

delta and having a long-standing illness and overall health status were estimated using 283 

logistic regression. Association between MileAge delta and the frailty phenotype and self-284 

rated health were estimated using ordinal logistic regression. For each health indicator, higher 285 

values corresponded to worse health. For the health association analyses, we fitted minimally 286 

adjusted models that included chronological age and sex as covariates. For the prospective 287 

analyses of all-cause mortality, we calculated person-years of follow-up and the median 288 

duration of follow-up of censored individuals. Survival probabilities by MileAge delta were 289 

estimated using the Kaplan-Meier (KM) method (Kaplan & Meier, 1958) and we calculated 290 

log-rank p-values. Hazard ratios (HRs) and 95% confidence intervals were estimated using 291 

Cox proportional hazards models (Cox, 1972). Age in years was used as the underlying time 292 

axis, with age 40 as the start of follow-up. Across both cross-sectional and prospective 293 

analyses, we defined MileAge delta subgroups by standard deviation from the mean. 294 

Individuals with a MileAge delta equal to or smaller than one standard deviation below the 295 

mean were the reference group. To discern how this analytical decision might impact results, 296 

and to enable comparability with other studies, we also report associations with all-cause 297 

mortality for all models with subgroups defined by the bottom and top 10% of the 298 

distribution as well as negative and positive values. Finally, we used generalised additive 299 

models and spline functions to explore the relationship between MileAge delta as a 300 

continuous variable and health indicators and all-cause mortality, respectively. 301 

 302 

For the Cubist rule-based regression model, which across most analyses performed best at 303 

predicting health outcomes, we performed additional analyses. We calculated variable 304 

importance scores to identify metabolites that strongly contributed to MileAge. We explored 305 

associations between MileAge delta and all-cause mortality stratified by sex, self-rated health 306 

and chronological age group (39-49, 50-59 and 60-71 years). Finally, we assessed the 307 

performance of our ageing clock by benchmarking it against other ageing markers: (a) we 308 

estimated the hazard ratio for all-cause mortality by MileAge delta and other ageing marker 309 

(grip strength, telomere length and the frailty index) subgroups defined by standard deviation 310 
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from the mean, adjusted for chronological age and sex; (b) we calculated the C-index and 311 

95% confidence intervals for chronological age + sex (as the base model) and for each ageing 312 

marker added separately to the model, with time (in days) since the baseline assessment as 313 

the underlying time axis.  314 
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Results 315 

Sample characteristics 316 

Of the 118,019 participants with metabolomics data, 110,730 had complete information on all 317 

metabolites (Figure S1). After removing individuals with potential outlier metabolite values, 318 

inconsistencies between self-reported and genetic sex or possible pregnancies, the analytical 319 

sample included 101,359 participants (Table 1). The mean chronological age was 56.44 years 320 

(SD = 8.12), with the most common age being 61 years (Figure 1b). Most metabolite levels 321 

varied by chronological age (Figure 1c), showing considerable evidence of non-linear 322 

relationships (Figures S2-S33). 323 

 324 

Table 1. Sample characteristics 
  MileAge delta (adj.) 
 Full sample 

(N=101359) 

≤ 1SD below 
the mean 

(n=16204) 

Middle 
(n=69166) 

≥ 1SD above 
the mean 

(n=15989) 
Age; mean (SD) 56.44 (8.12) 55.85 (8.33) 56.75 (8.08) 55.69 (8.00) 
Sex     
Female 54484 (53.8%) 8062 (49.8%) 37002 (53.5%) 9420 (58.9%) 
Male 46875 (46.2%) 8142 (50.2%) 32164 (46.5%) 6569 (41.1%) 

Ethnicity     
White 95672 (94.4%) 15163 (93.6%) 65486 (94.7%) 15023 (94.0%) 
Mixed-race 574 (0.6%) 103 (0.6%) 386 (0.6%) 85 (0.5%) 
Black 1529 (1.5%) 233 (1.4%) 975 (1.4%) 321 (2.0%) 
Asian 1953 (1.9%) 375 (2.3%) 1265 (1.8%) 313 (2.0%) 
Chinese 291 (0.3%) 77 (0.5%) 184 (0.3%) 30 (0.2%) 
Other 880 (0.9%) 173 (1.1%) 564 (0.8%) 143 (0.9%) 
Missing1 460 (0.5%) 80 (0.5%) 306 (0.4%) 74 (0.5%) 

Highest qualification     
None 17084 (16.9%) 2551 (15.7%) 11868 (17.2%) 2665 (16.7%) 
O levels/GCSEs/CSEs 27008 (26.6%) 4237 (26.1%) 18435 (26.7%) 4336 (27.1%) 
A levels/NVQ/HND/HNC2 23235 (22.9%) 3637 (22.4%) 15961 (23.1%) 3637 (22.7%) 
Degree 32826 (32.4%) 5577 (34.4%) 22091 (31.9%) 5158 (32.3%) 
Missing1 1206 (1.2%) 202 (1.2%) 811 (1.2%) 193 (1.2%) 

Household income3     
Very low 19422 (19.2%) 2863 (17.7%) 13265 (19.2%) 3294 (20.6%) 
Low 22159 (21.9%) 3487 (21.5%) 15137 (21.9%) 3535 (22.1%) 
Medium 22634 (22.3%) 3831 (23.6%) 15417 (22.3%) 3386 (21.2%) 
High 17767 (17.5%) 3095 (19.1%) 12027 (17.4%) 2645 (16.5%) 
Very high 4725 (4.7%) 819 (5.1%) 3188 (4.6%) 718 (4.5%) 
Missing1 14652 (14.5%) 2109 (13.0%) 10132 (14.6%) 2411 (15.1%) 

Cohabitation     
With partner 73896 (72.9%) 12054 (74.4%) 50748 (73.4%) 11094 (69.4%) 
Single 8341 (8.2%) 1418 (8.8%) 5467 (7.9%) 1456 (9.1%) 
Missing1 19122 (18.9%) 2732 (16.9%) 12951 (18.7%) 3439 (21.5%) 
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Smoking status     
Never 55643 (54.9%) 9149 (56.5%) 37876 (54.8%) 8618 (53.9%) 
Former 34805 (34.3%) 5342 (33.0%) 23838 (34.5%) 5625 (35.2%) 
Current 10416 (10.3%) 1634 (10.1%) 7119 (10.3%) 1663 (10.4%) 
Missing1 495 (0.5%) 79 (0.5%) 333 (0.5%) 83 (0.5%) 

Menopause4     
No 12986 (12.8%) 2887 (17.8%) 8096 (11.7%) 2003 (12.5%) 
Yes 32745 (32.3%) 4046 (25.0%) 23034 (33.3%) 5665 (35.4%) 
Missing1 55628 (54.9%) 9271 (57.2%) 38036 (55.0%) 8321 (52.0%) 

Morbidity count     
None 23788 (23.5%) 4459 (27.5%) 16311 (23.6%) 3018 (18.9%) 
One 26923 (26.6%) 4581 (28.3%) 18615 (26.9%) 3727 (23.3%) 
Two 20535 (20.3%) 3195 (19.7%) 14011 (20.3%) 3329 (20.8%) 
Three 13157 (13.0%) 1857 (11.5%) 9001 (13.0%) 2299 (14.4%) 
Four 7553 (7.5%) 989 (6.1%) 5077 (7.3%) 1487 (9.3%) 
Five+ 9387 (9.3%) 1119 (6.9%) 6141 (8.9%) 2127 (13.3%) 
Missing1 16 (0.0%) 4 (0.0%) 10 (0.0%) 2 (0.0%) 

Fasting time5; mean (SD) 3.75 (2.40) 3.74 (2.47) 3.74 (2.39) 3.79 (2.38) 
Body mass index6; mean (SD) 27.43 (4.73) 26.17 (4.07) 27.41 (4.57) 28.80 (5.59) 
Note: GCSEs = general certificate of secondary education; CSE = certificate of secondary 
education; NVQ = national vocational qualification; HND = higher national diploma; HNC = 
higher national certificate. MileAge delta (adj.) derived from the Cubist rule-based regression 
model. 1Missing data may also include “do not know”, “prefer not to answer”, “not applicable” 
or related responses. 2Also includes 'other professional qualifications'. 3Annual household 
income groups: very low (<£18,000), low (£18,000–£30,999), middle (£31,000–£51,999), high 
(£52,000–£100,000) and very high (>£100,000). 4n = 59519 females. 5n = 3 missing. 6n = 345 
missing. 
 325 

Metabolite-wide associations 326 

165/168 metabolites were associated with chronological age (p < 0.05/168). While most 327 

metabolite levels were elevated in older individuals (e.g., Omega 3, citrate and glucose), 328 

seven, including albumin, glycine and histidine, were negatively associated with 329 

chronological age (Figure S34; Additional file 1). Amongst the 119 metabolites associated 330 

with all-cause mortality, GlycA was most strongly associated with a higher mortality hazard 331 

(HR = 1.22, 95% CI 1.20-1.25, p < 0.001), whereas the degree of unsaturation, 332 

docosahexaenoic acid (DHA) and Omega 3 were strongly associated with a lower mortality 333 

hazard (Figure S35; Additional file 2). Notably, 116 metabolites associated with 334 

chronological age also predicted mortality, with GlycA, Omega 3 and DHA amongst the 335 

most strongly associated metabolites of both age and mortality (Figure 1d). Between 87% 336 

and 95% of the metabolites that were statistically significantly associated with other health 337 

indicators (e.g., frailty and health status) were associated with chronological age (Figure 338 

S36). The exception was telomere length for which only 53% of statistically significant 339 

metabolites were shared with chronological age. 340 
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 341 

Predictive model performance 342 

Predictive performance estimates in the 90% training (n = 91,222 to 91,226) and 10% test 343 

sets are shown in Table S3. The nested cross-validation mean absolute error (MAE) in the 344 

test sets (n = 10,133 to 10,137) ranged from 5.31 to 6.36 years, with the support vector 345 

regression with a radial basis function (SVM radial) performing best and the MARS 346 

ensemble performing worst. The root-mean-square error (RMSE) ranged from 6.60 to 7.58 347 

years. Correlation coefficients between predicted and chronological age ranged from 0.36 to 348 

0.59, with R2 values between 0.13 and 0.35. The difference in predictive performance 349 

between the training and test sets, i.e., the model’s optimism which may indicate poor 350 

generalization to unseen data, was generally low (e.g., MAEdifference < 0.15 for 10/17 models). 351 

However, certain tree-based models (bagging, random forest and XGBoost) and the k-nearest 352 

neighbors model overfit the training data (MAEdifference = -1.51 to -5.83), with correlation 353 

coefficients between predicted and chronological age of r > 0.8 in the training sets (Figure 354 

S40). Figure 2a shows the nested cross-validation MAEs for all models. For comparison, 355 

drawing random samples from a uniform distribution between the sample’s minimum and 356 

maximum chronological age, i.e., a random prediction model, resulted in a MAE = 9.79. 357 

Predicting the sample mean, i.e., a null model, resulted in a MAE = 6.96. Additional plots 358 

showing other performance measures (MAE, RMSE, r and R2) in the training and test sets are 359 

presented in the supplement (Figures S37-S43). There were moderate to high correlations 360 

between the predicted age values of the various models (r = 0.48 to > 0.99) (Figure 2b). High 361 

correlations (r > 0.87) amongst the most accurate models suggest they capture similar 362 

patterns in the data. Omega 3, albumin and citrate were amongst the most important 363 

contributors to predictive accuracy (Figure S44). 364 

 365 

Age bias correction 366 

All models overestimated the age of young individuals and underestimated the age of older 367 

individuals (Figure S44). Applying a statistical correction (see Methods) to the predicted age 368 

values removed this bias (Figures 2c-e and S45). The predicted age values were originally 369 

within the chronological age range (39 to 70 years) of the sample for most individuals. 370 

Across all models, 0.23% (n = 238) and 0.96% (n = 976) of predictions were below or above 371 

the minimum and maximum age, respectively (Table S4). More predicted age values were 372 

outside the chronological age range (up to 8.27%, n = 8382 for a single model) after the age 373 

bias correction. Re-calculating the predictive performance estimates after the age bias 374 
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correction suggested higher accuracy (MAE = 2.12 to 3.40; Figure 2f). The overall 375 

performance rankings across the models inverted, with the models that originally predicted 376 

chronological age best showing reduced accuracy (Figures S46-S48). The age bias adjusted 377 

MileAge delta ranged from -18.94 years younger to 16.05 years older for the Cubist rule-378 

based regression model, with 15.99% (n = 16,204) and 15.77% (n = 15,989) of the sample 379 

having a MileAge delta (adj.) of at least 3.75 years below or above the mean (Figure 2g; 380 

Table S5). 381 

 382 

Associations with health indicators 383 

Descriptive statistics for the health indicators are shown in Table S6. Having an older 384 

predicted than chronological age was associated with higher frailty index scores across all 385 

models (Table S7). This extended to the frailty phenotype for all models when comparing 386 

individuals with a MileAge delta (adj.) more than one standard deviation above and below 387 

the mean, and for 12/17 models when comparing the middle of the distribution to individuals 388 

with MileAge delta (adj.) values more than one standard deviation below the mean (Table 389 

S8). For telomere length, we observed a group difference for 12/17 models when comparing 390 

the tails of the distribution, and for 9/17 models when comparing the middle of the 391 

distribution to the reference group (Table S9). Having an older predicted than chronological 392 

age was generally associated with chronic illness and poor self-rated health (Tables S10- 393 

S12). An exception to this pattern were the MARS models, for which an older predicted than 394 

chronological age was associated with longer telomeres, and for which there was little 395 

evidence of statistically significant differences in health between individuals with MileAge 396 

delta (adj.) values in the middle of the distribution and the reference group. 397 

 398 

MileAge delta (adj.) derived from the Cubist rule-based regression model was most strongly 399 

associated with most health indicators (Figure 3a). Individuals with a MileAge delta (adj.) 400 

greater than one standard deviation above the mean had higher frailty index scores than 401 

individuals with a MileAge delta (adj.) smaller than one standard deviation below the mean 402 

(β = 0.023, 95% CI 0.021–0.024, p < 0.001). This group difference was approximately 403 

equivalent to an 18.3-year chronological age difference in frailty index scores (β = 0.023 404 

divided by β = 0.001255 derived from a linear model, y frailty index ~ x chronological age). 405 

Individuals with an older predicted than chronological age were also more likely to be 406 

physically frail (OR = 1.29, 95% CI 1.23–1.35, p < 0.001) and had shorter telomeres (β = 407 

0.052, 95% CI 0.030 to 0.073, p < 0.001) equivalent to a 2.2-year chronological age 408 
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difference in telomere length. Such individuals were also more likely to have a long-standing 409 

illness (OR = 1.82, 95% CI 1.73–1.91, p < 0.001), poorer health status (OR = 1.85, 95% CI 410 

1.76–1.94, p < 0.001) and worse self-rated health (OR = 1.72, 95% CI 1.65–1.80, p < 0.001). 411 

Generalised additive models showed that positive MileAge delta (adj.) values, indicating 412 

accelerated biological ageing, were robustly associated with unfavourable health (Figure 3b), 413 

whereas negative MileAge delta (adj.) values were only weakly associated with favourable 414 

health, a pattern that was consistent across most models (Figures S49-S54). 415 

 416 

Predicting mortality 417 

The median duration of follow-up of censored individuals was 13.87 years (IQR = 1.37 418 

years), with 1,361,970 person-years of follow-up. There were 8113 deaths amongst 101,274 419 

participants (n = 85 missing). MileAge (adj.) was strongly associated with all-cause 420 

mortality, comparable to chronological age (Figures 4a-e). In the prospective analyses we 421 

examined the age bias adjusted MileAge delta and models were adjusted for chronological 422 

age and sex, with age (in years) as the underlying time axis (Figure S55 and Table S13). 423 

 424 

For the Cubist rule-based regression model, the hazard ratio (HR) comparing individuals with 425 

a MileAge delta (adj.) greater than one standard deviation above and below the mean was HR 426 

= 1.52 (95% CI 1.41-1.64, p < 0.001). Individuals with a MileAge delta (adj.) between one 427 

standard deviation above and below the mean had a statistically significantly higher mortality 428 

risk for 14/17 models (p between 0.03 and < 0.001) (Table S14). Comparing the bottom and 429 

top 10% of the MileAge delta (adj.) distribution, instead of one standard deviation above and 430 

below the mean, resulted in greater differences (e.g., HR = 1.63, 95% CI 1.48-1.79, p < 0.001 431 

for the Cubist model). Individuals in between the tails of the distribution had a higher 432 

mortality risk compared to the bottom 10% for 14/17 models (Figure S56 and Table S15). 433 

When comparing individuals with a positive and negative MileAge delta (adj.), we found that 434 

individuals with an older predicted than chronological age had a higher mortality risk for all 435 

models except the MARS models (Figure S57 and Table S16). Modelling the mortality 436 

hazard as a spline function of MileAge delta (adj.) suggested that positive values were 437 

strongly associated with a higher mortality hazard, while there was little evidence that 438 

negative values were associated with a lower mortality hazard (Figure S58). 439 

 440 

Females had slightly higher MileAge delta (adj.) values than males (Figure 4f), a pattern 441 

which we observed across all models (Figure S59). The mortality hazard of individuals with a 442 
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MileAge delta (adj.) greater than one standard deviation above the mean was elevated in both 443 

females (HR = 1.26, 95% CI 1.11-1.43, p < 0.001) and males (HR = 1.73, 95% CI 1.57-1.91, 444 

p < 0.001) (Figures S60-S61; Table S17). The difference in mortality between individuals 445 

with a MileAge delta (adj.) in the middle of the distribution and the reference group was only 446 

statistically significant in males (HR = 1.14, 95% CI 1.05-1.23, p = 0.002). Stratifying the 447 

sample by self-rated health, the mortality hazard of individuals with a MileAge delta (adj.) 448 

greater than one standard deviation above the mean was higher in all strata (e.g., HR = 1.41, 449 

95% CI 1.11-1.78, p < 0.001 for poor self-rated health) except for individuals with excellent 450 

health (Figure 4g and Table S17). The mortality hazard of individuals with a MileAge delta 451 

(adj.) greater than one standard deviation above the mean was higher in the age groups above 452 

50 years (Figures S62 and 4h; Table S17). 453 

 454 

Comparison with other ageing markers 455 

A comparison of the all-cause mortality hazard associated with MileAge delta (adj.) and 456 

other ageing marker subgroups defined by the standard deviation from the mean showed that 457 

the largest hazard ratio (HR = 2.90) was observed for the frailty index (Figure 5a). The 458 

smallest hazard ratio was observed for telomere length (HR = 1.31) (Table S18), with 459 

MileAge delta (adj.) (HR = 1.52) and grip strength (HR = 1.90) in-between. Adding each 460 

ageing marker individually as a continuous variable to a base model that included 461 

chronological age and sex improved prediction of all-cause mortality, with the best prediction 462 

observed for the frailty index (C-index 0.737, 95% CI 0.732 to 0.742 vs C-index 0.716, 95% 463 

CI 0.711 to 0.722 for the base model) (Figure 5b and Table S19). Modelling the mortality 464 

hazard as a spline function of the ageing markers, to identify potential non-linear effects, 465 

suggested that the all-cause mortality hazard was considerably higher in individuals with an 466 

older predicted than chronological age. For example, compared to the sample median 467 

MileAge delta (adj.), which was equivalent to no difference between predicted and 468 

chronological age, a MileAge delta (adj.) of 10 was associated with a HR of about 2.7, i.e., a 469 

170% higher morality hazard (Figure 5c).  470 
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Discussion 471 

In 101,359 UK Biobank participants with Nightingale Health metabolomics data, we 472 

observed that most metabolite levels varied by chronological age, with considerable evidence 473 

of non-linear associations. Across the machine learning algorithms employed to develop 474 

ageing clocks from circulating plasma metabolites, the nested cross-validation mean absolute 475 

error between predicted age (MileAge) and chronological age ranged from 5.31 to 6.36 years 476 

(R2 between 0.13 and 0.35). All models overestimated age in young individuals and 477 

underestimated age in older individuals. After applying a statistical correction to remove this 478 

age bias, 31.76% of participants had adjusted MileAge delta values of at least 3.75 years, 479 

highlighting the potential of metabolomic ageing clocks to differentiate between individuals 480 

of the same chronological age (Hertel et al., 2019). While there was a high degree of 481 

consistency across the top performing models such as support vector regression, tree-based 482 

and rule-based ensembles, the ageing clock derived from a Cubist rule-based regression 483 

model (MAE = 5.42) was most strongly associated with most health indicators. We observed 484 

across most models that individuals with an older predicted than chronological age, 485 

indicating accelerated biological ageing, were frailer, had shorter telomeres, were more likely 486 

to have a chronic illness, rated their health worse and had a higher mortality risk. 487 

 488 

Multiple studies have developed biological ageing clocks trained on chronological age from 489 

metabolomics data. The seminal study by Menni et al. (2013) derived a metabolite age score 490 

as a linear combination of 22 plasma metabolites that were correlated with chronological age 491 

in 6055 twins, achieving an R2 of 59% and a hazard ratio for all-cause mortality of HR = 1.08 492 

per year. Hertel et al. (2016) tested a multivariable linear regression and a fractional 493 

polynomial model in 3611 participants, with the latter achieving a correlation between 494 

predicted and chronological age of r = 0.53 (RMSE = 11.19) in men and r = 0.61 (RMSE = 495 

10.37) in women. Their metabolomic ageing clock included 59 urinary metabolites and was 496 

predictive of all-cause mortality (HR = 1.24 per SD). Robinson et al. (2020) developed 497 

several ageing clocks using elastic net models in 2238 participants, with correlations between 498 

predicted and chronological age of r = 0.45 (MAE = 4.17) to r = 0.83 (MAE = 6.49). Akker 499 

et al. (2020) developed an ageing clock, MetaboAge, from 56 metabolites in 18,716 500 

participants from 24 community and hospital-based cohorts using a linear regression model, 501 

achieving a correlation of r = 0.65 and a median absolute error of 7.3. An independent 502 

external validation of this clock observed a notably lower correlation of r = 0.21 (Macdonald-503 
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Dunlop et al., 2022). The same study also developed a clock from NMR metabolomics data 504 

(81/86 metabolites selected) in 1643 individuals, which achieved a correlation of r = 0.74 but 505 

failed to replicate in a validation cohort, and another clock from mass spectrometry 506 

metabolomics (181/682 metabolites selected) in 861 individuals, which achieved a 507 

correlation of r = 0.81 (Macdonald-Dunlop et al., 2022). An updated ageing clock, 508 

MetaboAge 2.0, in the BBMRI-nl data that included 65 metabolites achieved an R2 of 0.451 509 

and 0.449 for a linear regression and elastic net model, respectively (Bizzarri et al., 2023). 510 

 511 

Metabolomic ageing clocks trained on chronological age are generally less accurate than 512 

ageing clocks derived from other types of omics data (Rutledge et al., 2022). Nevertheless, 513 

our most predictive model (MAE = 5.31 years) had a similar accuracy as a deep learning 514 

ageing clock (MAE = 5.68) derived from blood markers, biometrics and sex in the China 515 

Health and Retirement Longitudinal Study. An elastic net model in the same data achieved a 516 

MAE = 6.19 years (Galkin et al., 2022), while the elastic net model in our study had a lower 517 

MAE = 5.70, likely due to the larger sample size. While a discussion of how well different 518 

ageing clocks predict health outcomes is beyond the scope of this study, the most widely 519 

tested epigenetic ageing clocks that were trained on chronological age are weak predictors of 520 

mortality (B. H. Chen et al., 2016; Fransquet, Wrigglesworth, Woods, Ernst, & Ryan, 2019). 521 

Second-generation ageing clocks are more predictive of mortality. For example, a one-year 522 

increase in PhenoAge, which was trained on physiological dysregulation, was associated with 523 

a 9% increase in mortality risk. Its epigenetic derivation, DNAm PhenoAge, was associated 524 

with a 4.5% increase in all-cause mortality (Levine et al., 2018). GrimAge, another popular 525 

mortality risk predictor that incorporates chronological age, sex and eight DNA methylation 526 

surrogate markers (seven for plasma proteins and one for smoking pack-years) strongly 527 

predicts mortality and age-related diseases (Lu et al., 2019). A recent clock developed from 528 

circulating biomarkers and trained to predict mortality in the UK Biobank (n = 307,000) 529 

using an elastic net Cox model (Bortz et al., 2023) yielded a 9.2% relative increase in 530 

prediction compared to the PhenoAge model. However, the improvement in prediction over a 531 

model that included chronological age and sex was modest (C-index 0.715 vs 0.762, 532 

compared to 0.716 vs 0.719 in our study; though note that our clock was not trained to predict 533 

mortality). These findings suggest that certain omics clocks capture physiologically relevant 534 

signals more, while first-generation epigenetic clocks are specifically good at predicting 535 

chronological time (Rutledge et al., 2022). 536 

 537 
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Although chronological age prediction is valuable in fields such as forensics (Vidaki et al., 538 

2017), it is of limited use in population health and geroscience, given that chronological age 539 

is non-modifiable (Robinson & Lau, 2020). A perfect prediction model would merely tell us 540 

about chronological, not biological, age (Nakamura et al., 1988). It is the difference between 541 

predicted and chronological age (MileAge delta) that serves as an indicator of accelerated or 542 

decelerated ageing. A less accurate chronological age prediction does not necessarily indicate 543 

a worse biological age model (Hertel et al., 2019), hence we also tested algorithms that were 544 

expected to perform less well at predicting chronological age (e.g., bagging). Prior studies 545 

suggested that biological age estimates derived from physical activity (Pyrkov et al., 2018) or 546 

epigenetic data (Zhang et al., 2019) with higher predictive accuracy of chronological age 547 

were less predictive of all-cause mortality. Our study showed that the models that were most 548 

predictive of chronological age were generally also more strongly associated with health and 549 

mortality, though we note that the pattern of predictive accuracy largely inverted after we 550 

applied the age bias correction. 551 

 552 

We report several additional analyses, including variable importance scores and 553 

benchmarking against other ageing markers, for the ageing clock derived from the Cubist 554 

rule-based regression model, which was most strongly associated with most health indicators. 555 

There are, however, several conclusions that can be drawn across most of the machine 556 

learning algorithms tested. First, the wide range of the MileAge delta values quantifies the 557 

latent patterns in the metabolomics data not captured by chronological age and suggests that 558 

our ageing clocks approximate (past) rate of biological ageing for people of the same 559 

chronological age. Second, the associations between most ageing clocks, health and mortality 560 

demonstrate that these clocks capture biologically relevant information, which may find 561 

applications in health tracking, nutrition or in clinical trials (e.g., sample stratification). A key 562 

finding across most ageing clock models tested here was that associations with health and 563 

mortality were stronger in individuals with an older predicted than chronological age and less 564 

so in individuals with a younger predicted than chronological age. 565 

 566 

Several of the algorithms included in our comparison, including those that were most 567 

predictive of chronological age, mortality and health, allowed for non-linear relationships in 568 

the data, which were often not considered in previous studies (Panyard et al., 2022). A recent 569 

review found that most molecular ageing clocks were developed using linear models with 570 

regularization, whereas few used non-linear models (Xia, Wang, Yu, Chen, & Han, 2021). 571 
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Although it has been asserted that age-related physiological markers are linearly associated 572 

with age (Pyrkov et al., 2018), we have shown here and in previous studies (Mutz, Hoppen, et 573 

al., 2022; Mutz & Lewis, 2021; Mutz, Young, et al., 2022) that this does not apply to many 574 

biological markers. To enable comparability between studies, we provide a comprehensive 575 

set of statistical estimates and developed our ageing clock using metabolites measured in 576 

absolute concentrations instead of relative to other measures. Although it may be argued that 577 

quantification of a smaller number of metabolites would in principle be more feasible and 578 

convenient in clinical practice, all metabolites included in our model can be quantified from a 579 

single assay with minimal sample preparation required (Würtz et al., 2017). 580 

 581 

Limitations and future directions 582 

Our study had certain limitations. Some algorithms that have previously been used to develop 583 

biological ageing clocks, for example deep learning (Zhavoronkov, Li, Ma, & Mamoshina, 584 

2019), or approaches combining HSIC LASSO feature selection with non-linear support 585 

vector regression (Takahashi et al., 2020) were not tested, and could be explored in future 586 

studies. Our ageing clock provides a “systems level” indicator of age-related changes in 587 

metabolites; future clocks may be developed at the tissue or cellular level. Plasma samples 588 

may differ from other body fluids, e.g., serum, urine or cerebrospinal fluid. The metabolite 589 

coverage of the Nightingale Health platform is lipid focussed and mostly covers larger 590 

molecules, while there are potentially over 217,000 endogenous and exogenous molecules 591 

(Wishart et al., 2021). Nevertheless, this platform enables robust assessment of these 592 

metabolites in a single experiment (Würtz et al., 2017). Although more complex ageing 593 

clocks could be developed using technologies with wider metabolite coverage, prior analyses 594 

suggested that a majority of metabolites associated with age were related to lipid and amino 595 

acid pathways, both of which were included here (Menni et al., 2013). As in previous studies, 596 

we observed a systematic overestimation of age in young individuals and underestimation of 597 

age in older individuals (Nakamura et al., 1988). This bias is neither data nor method specific 598 

and may be explained by regression to the mean (Liang, Zhang, & Niu, 2019) of the training 599 

data (Jones, Lee, & Topol, 2022). To account for this bias, we have adjusted the predicted 600 

age and included chronological age as a covariate in the health association analyses (Xia et 601 

al., 2021). Longitudinal ageing metrics may be more robustly associated with certain health 602 

outcomes than cross-sectional ageing metrics, e.g., with physical and cognitive decline but 603 

not, for example, multimorbidity (Kuo et al., 2022). Future research should develop 604 
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metabolomic ageing clocks from longitudinal data. Finally, the lack of independent data for 605 

external validation is a limitation. 606 

 607 

Conclusions 608 

Metabolomic ageing clocks derived from multiple machine learning algorithms were robustly 609 

associated with health indicators and mortality. We found that our ageing clock (MileAge) 610 

derived from a Cubist rule-based regression model was overall most strongly associated with 611 

health indicators. Individuals with MileAge values greater than their chronological age, 612 

indicating accelerated biological ageing, were frailer, had shorter telomeres, were more likely 613 

to have a chronic illness, rated their health worse and had a higher mortality risk. 614 

Metabolomic ageing clocks hold significant promise for research on lifespan and healthspan 615 

extension, as they provide a proxy of biological ageing that is potentially modifiable. These 616 

clocks may also help identify health risks before clinical symptoms emerge. As such, 617 

biological ageing clocks may contribute to health risk assessments, complementing clinical 618 

biomarkers. However, the utility of ageing clocks is not limited to risk stratification, but also 619 

in providing an intuitive, year-based metric for health tracking that may help individuals 620 

proactively engage with their health.  621 
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Figure 2. a, Nested cross-validation mean absolute error (MAE) for all models with tuned hyperparameter 
values in the 10% hold-out test sets. CV = cross-validation. b, Heatmap of Pearson’s correlation coefficient 
(r) between the predicted age values for all models. Estimates shown were multiplied by 100. c, Line plot 
showing the correlation between predicted age and chronological age for all models before (solid lines) and 
after (dotted lines) applying a statistical correction to the predicted age to remove the age bias (i.e., the 
systematic overestimation of age in young individuals and underestimation of age in older individuals). d, e, 
2D density plots showing the correlation between predicted age derived from the Cubist rule-based 
regression model and chronological age before and after age bias correction. Observations beyond y-axis 
limits of 30 to 80 not shown. f, Mean absolute error for all models with tuned hyperparameter values 
calculated in the full sample after age bias correction. g, Density plot showing the distribution of MileAge 
delta (adj.) for all models. See Panel 1 for model abbreviations.



Figure 3. a, Associations between MileAge delta (adj.) and health indicators for all models. Models were 
adjusted for chronological age and sex. Reference group: individuals with a MileAge delta (adj.) smaller 
than one standard deviation below the mean. See Panel 1 for model abbreviations. b, Partial effect plots of 
generalised additive models of the association between health indicators and MileAge delta (adj.). Models 
were adjusted for chronological age and sex. The shaded areas correspond to 95% confidence intervals.
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Figure 4. a, Kaplan-Meier plot showing survival probabilities for all-cause mortality by MileAge delta 
(adj.) derived from the Cubist rule-based regression model. Log-rank test p-value < 0.001. b, Hazard ratios 
and 95% confidence intervals from Cox proportional hazards models by MileAge delta (adj.) for all models. 
Models were adjusted for chronological age and sex. Age (in years) was used as the underlying time axis. 
Reference group: individuals with a MileAge delta (adj.) smaller than one standard deviation below the 
mean. See Panel 1 for model abbreviations. c, Density plot showing the distribution of MileAge delta (adj.) 
derived from the Cubist rule-based regression model. d, e, All-cause mortality rate by percentile of 
chronological age, MileAge (adj.) and MileAge delta (adj.) derived from the Cubist rule-based regression 
model. f, Histogram showing the distribution of MileAge delta (adj.) derived from the Cubist rule-based 
regression model, stratified by sex. g, h, Hazard ratios and 95% confidence intervals from Cox proportional 
hazards models for all-cause mortality by MileAge delta (adj.) derived from the Cubist rule-based 
regression model, stratified by self-rated health and chronological age group.
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Figure 5. a, Hazard ratios (HR) and 95% confidence intervals from Cox proportional hazards models for 
all-cause mortality by MileAge delta (adj.), the frailty index, grip strength and telomere length. Models 
were adjusted for chronological age and sex. Age (in years) was used as the underlying time axis. Reference 
group: individuals with a score smaller than one standard deviation below the mean. b, C-index and 95% 
confidence intervals from Cox proportional hazards models for all-cause mortality for chronological age + 
sex (the base model) and for each ageing marker added separately to the base model. Time (in days) was 
used as the underlying time axis. c, Log(HRs) and 95% confidence intervals from Cox proportional hazards 
models for all-cause mortality. Models were adjusted for chronological age and sex. Age (in years) was 
used as the underlying time axis. Vertical lines indicate the median of the distribution which represents the 
reference for interpreting the estimates shown.


