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Abstract 

Cognitive abilities are often associated with mental health across different disorders, beginning in childhood. 
However, the extent to which the relationship between cognitive abilities and mental health is represented in part by 
different neurobiological units of analysis, such as multimodal neuroimaging and polygenic scores (PGS), remains 
unclear. Using large-scale data from the Adolescent Brain Cognitive Development (ABCD) Study, we first quantified the 
relationship between cognitive abilities and mental health in children aged 9-10. Our multivariate models revealed 
that mental health variables could predict cognitive abilities with an out-of-sample correlation of approximately .4. In 
a series of separate commonality analyses, we found that this relationship between cognitive abilities and mental 
health was primarily represented by multimodal neuroimaging (66%) and, to a lesser extent, by polygenic scores (PGS) 
(21%). This multimodal neuroimaging was based on multivariate models predicting cognitive abilities from 45 types of 
brain MRI (such as, task fMRI contrasts, resting-state fMRI, structural MRI, and diffusion tensor imaging), while the 
PGS was based on previous genome-wide association studies on cognitive abilities. Additionally, we also found that 
environmental factors accounted for 63% of the variance in the relationship between cognitive abilities and mental 
health. These environmental factors included socio-demographics (e.g., parent’s income and education), lifestyles 
(e.g., extracurricular activities, sleep) and developmental adverse events (e.g., parental use of alcohol/tobacco, 
pregnancy complications). The multimodal neuroimaging and PGS then explained 58% and 21% of the variance due to 
environmental factors, respectively. Notably, these patterns remained stable over two years. Accordingly, our findings 
underscore the significance of neurobiological units of analysis for cognitive abilities, as measured by multimodal 
neuroimaging and PGS, in understanding a) the relationship between cognitive abilities and mental health and b) the 
variance in this relationship that was shared with environmental factors. 
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Introduction 

Cognitive abilities across various domains, such as attention, working memory, declarative memory, verbal fluency, 
and cognitive control, are often altered in several psychiatric disorders (Millan et al., 2012). This is evident in recent 
meta-analyses of case-control studies involving patients with mood and anxiety disorders, obsessive-compulsive 
disorder, posttraumatic stress disorder, and attention-deficit/hyperactivity disorder (ADHD), among others 
(Abramovitch et al., 2021; East-Richard et al., 2020). Beyond typical case-control studies, the association between 
cognitive abilities and mental health is also observed when mental health varies from normal to abnormal in 
normative samples (Morris et al., 2022). For instance, our study (Pat, Riglin, et al., 2022) found an association between 
cognitive abilities and mental health in a relatively large, non-referred sample of 9-10-year-old children from the 
Adolescent Brain Cognitive Development (ABCD) study (Casey et al., 2018). In this study, we measured cognitive 
abilities using behavioural performance across cognitive tasks  (Luciana et al., 2018) while measuring mental health 
using a broad range of emotional and behavioural problems (Achenbach et al., 2017). Thus, cognitive abilities are 
frequently considered crucial for understanding mental health issues throughout life, beginning in childhood 
(Abramovitch et al., 2021; Hankin et al., 2016; Morris & Cuthbert, 2012).  

According to the National Institute of Mental Health’s Research Domain Criteria (RDoC) framework (Insel et al., 2010), 
cognitive abilities should be investigated not only behaviourally but also neurobiologically, from the brain to genes. It 
remains unclear to what extent the relationship between cognitive abilities and mental health is represented in part 
by different neurobiological units of analysis -- such as neural and genetic levels measured by multimodal 
neuroimaging and polygenic scores (PGS). Understanding this neurobiology will be a milestone toward completing the 
transdiagnostic aetiology of mental health (Insel et al., 2010). To fully comprehend the role of neurobiology in the 
relationship between cognitive abilities and mental health, we must also consider how these neurobiological units 
capture variations due to environmental factors, such as socio-demographics, lifestyles, and childhood developmental 
adverse events (Morris et al., 2022). Our study investigated the extent to which a) environmental factors explain the 
relationship between cognitive abilities and mental health, and b) cognitive abilities at the neural and genetic levels 
capture these associations due to environmental factors. Specifically, we conducted these investigations in a large 
normative group of children from the ABCD study (Casey et al., 2018). We chose to examine children because, while 
their emotional and behavioural problems might not meet full diagnostic criteria (Kessler et al., 2007), issues at a 
young age often forecast adult psychopathology (Reef et al., 2010; Roza et al., 2003). Moreover, the associations 
among different emotional and behavioural problems in children reflect transdiagnostic dimensions of 
psychopathology (Michelini et al., 2019; Pat, Riglin, et al., 2022), making children an appropriate population to study 
the transdiagnostic aetiology of mental health, especially within a framework that emphasises normative variation 
from normal to abnormal, such as the RDoC (Morris et al., 2022). 

Recently, several neuroscientists have developed predictive models using neuroimaging data from brain magnetic 
resonance imaging (MRI) of various modalities in the so-called Brain-Wide Association Studies (BWAS)  (Marek et al., 
2022; Sui et al., 2020). BWAS aims to create models from MRI data that can accurately predict behavioural 
phenotypes in participants not included in the model-building process (Dadi et al., 2021). In one of the most extensive 
BWAS benchmarks to date, Marek and colleagues (2022) concluded, “More robust BWAS effects were detected for 
functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods 
(versus univariate).” This benchmark has significant implications for using neuroimaging as a neural unit of analysis for 
cognitive abilities. First, while current BWAS may not be robust enough to predict mental health directly, it is more 
suitable for predicting cognitive abilities (see Zhi et al., 2024 for a similar conclusion). This aligns with the 
Research Domain Criteria (RDoC) framework, which emphasises neurobiological units of analysis for functional 

domains, such as cognitive abilities, rather than mental health itself (Cuthbert & Insel, 2013). RDoC’s functional 
domains capture basic human functioning and include cognitive abilities along with negative/positive valence, arousal 
and regulation, and social and sensory processes (Morris et al., 2022). Accordingly, the current study conducted BWAS 
to capture cognitive abilities rather than mental health. 

The second implication of Marek and colleagues’ (2022) benchmark is the support it provides for using multivariate 
algorithms, which draw MRI information simultaneously across regions/voxels, over massively univariate algorithms 
that draw data from one area/voxel at a time. Similar to Marek and colleagues’ (2022) study, which focused on 
resting-state functional MRI (rs-fMRI), our recent study on task-fMRI also found that multivariate algorithms 
performed superiorly, up to several folds, in predicting cognitive abilities compared to massively univariate algorithms 
(Pat et al., 2023). The third implication is that the performance of neuroimaging in predicting cognitive abilities 
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depends on MRI modalities. Previous research has used brain MRI data of different modalities to predict cognitive 
abilities (Vieira et al., 2022). For instance, many studies have used rs-fMRI, which reflects functional connectivity 
between regions during rest (Dubois et al., 2018; Keller et al., 2023; Rasero et al., 2021; Sripada et al., 2020, 2021). 
Others have utilised structural MRI (sMRI), which reflects anatomical morphology based on thickness, area, and 
volume in cortical/subcortical areas, and diffusion tensor imaging (DTI), which reflects diffusion distribution within 
white matter tracts (Mihalik et al., 2019; Rasero et al., 2021). While less common, task-fMRI, which reflects blood-
oxygen-level-dependent (BOLD) activity relevant to each task condition, shows relatively good predictive 
performance, especially from specific contrasts, such as the 2-Back vs 0-Back from the N-Back working-memory task 
(Barch et al., 2013) (Makowski et al., 2023; Pat et al., 2023; Pat, Wang, et al., 2022; Sripada et al., 2020; Tetereva et al., 
2022; Zhao et al., 2023). A recent meta-analysis estimated the performance of multivariate methods in predicting 
cognitive abilities from MRI of different modalities at around an out-of-sample r of 0.42 (Vieira et al., 2022).  However, 
we and others found that this predictive performance could be further boosted by drawing information across 
different MRI modalities, rather than relying on only one modality (Pat, Wang, et al., 2022; Rasero et al., 2021; 
Tetereva et al., 2022; Tetereva & Pat, 2024). Therefore, the current study used opportunistic stacking (Engemann et 
al., 2020; Pat, Wang, et al., 2022). This multivariate modelling technique allowed us to combine information across 
MRI modalities with the added benefit of handling missing values. With opportunistic stacking, we created a ‘proxy’ 
measure of cognitive abilities (i.e., predicted value from the model) at the neural unit of analysis using multimodal 
neuroimaging. Note that using the word ‘proxy measure’ does not necessarily mean that the predictive model for a 
particular measure has a high predictive performance – some proxy measures have better predictive performance 
than others. 

Geneticists, like neuroscientists, have conducted Genome-Wide Association Studies (GWAS) to explore the links 
between single nucleotide polymorphisms (SNPs) and various behavioural phenotypes (Bogdan et al., 2018). Similar to 
BWAS, GWAS can develop predictive models from genetic profiles, resulting in polygenic scores (PGS) that predict 
behavioural phenotypes in participants not included in the model-building process (Choi et al., 2020). Several large-
scale GWAS on cognitive abilities have been conducted, with some studies involving over 250,000 participants (Davies 
et al., 2018; Lee et al., 2018; Savage et al., 2018). Recently, researchers have used these large-scale GWAS to compute 
PGS for cognitive abilities and applied these scores to predict cognitive abilities in children (Allegrini et al., 2019; Pat, 
Wang, et al., 2022). For example, Allegrini et al. (2019) found that PGS based on Savage et al.'s (2018) GWAS 
accounted for approximately 5.3% of the variance in cognitive abilities among 12-year-old children. The current study 
adopted this approach with children of a similar age in the ABCD study, creating a proxy measure of cognitive abilities 
at the genetic unit of analysis using PGS. 

Environmental factors, broadly defined, significantly influence cognitive abilities (Duyme et al., 1999; Pietschnig & 
Voracek, 2015). A classic example is the Flynn Effect (Flynn, 1984, 2009; Rundquist, 1936; Williams, 2013), which 
describes the observed rise in cognitive abilities, as measured by various cognitive tasks, across generations in the 
general population over time, particularly in high-income countries during the 20th century (Pietschnig & Voracek, 
2015; Trahan et al., 2014; Wongupparaj et al., 2017). Experts attribute the Flynn Effect to environmental factors such 
as improved living standards and better education (Baker et al., 2015; Rindermann et al., 2017). Recently, researchers 
have used multivariate algorithms to create proxy measures of cognitive abilities in children based on environmental 
factors, similar to approaches used in neuroimaging and polygenic scores (PGS) (Kirlic et al., 2021; Pat, Wang, et al., 
2022). These environmental factors often include socio-demographic variables (e.g., parental income/education, area 
deprivation index, parental marital status), lifestyle factors (e.g., screen/video game use, extracurricular activities), 
and developmental adverse events (e.g., parental use of alcohol/tobacco before and after pregnancy, birth 
complications). Studies, including ours,(Kirlic et al., 2021; Pat, Wang, et al., 2022) have applied multivariate algorithms 
to predict cognitive abilities from various environmental factors in the ABCD study (Casey et al., 2018). In these 
predictive models, parental income/education, area deprivation index, and extracurricular activities are particularly 
important predictors of cognitive abilities (Kirlic et al., 2021; Pat, Wang, et al., 2022). Following this approach, the 
current study created another proxy measure of cognitive abilities based on socio-demographics, lifestyles, and 
developmental adverse events. 

In this study, we operationalised cognitive abilities as a latent variable representing behavioural performance across 
various cognitive tasks, commonly referred to as general cognitive ability or the g-factor (Deary, 2012). The g-factor in 
children is longitudinally stable and can forecast future health outcomes (Calvin et al., 2017; Deary et al., 2013). 
Notably, our previous research found that neuroimaging predicts the g-factor more accurately than predicting 
performances from separate individual cognitive tasks (Pat et al., 2023). However, using the g-factor to operationalise 
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cognitive abilities caused this study to diverge from the Research Domain Criteria (RDoC) framework, which 
emphasises studying separate constructs within cognitive abilities (e.g., attention and working memory) (Morris et al., 
2022; Morris & Cuthbert, 2012). Still, to maintain relevance to the RDoC framework, we included most cognitive tasks 
pertinent to RDoC constructs, such as attention, working memory, declarative memory, language, and cognitive 
control, in our modelling of the g-factor. 

Using the ABCD study  (Casey et al., 2018), we first developed predictive models to estimate the cognitive abilities of 
unseen children based on their mental health. These models enabled us to quantify the relationship between 
cognitive abilities and mental health, thereby creating a proxy measure of cognitive abilities derived from mental 
health data. The mental health variables included children’s emotional and behavioural problems (Achenbach et al., 
2017) and temperaments, such as behavioural inhibition/activation (Carver & White, 1994) and impulsivity (Zapolski 
et al., 2010). These temperaments are linked to externalising and internalising aspects of mental health and are 
associated with disorders like depression, anxiety, and substance use (Carver & Johnson, 2018; S. L. Johnson et al., 
2003). Next, we built predictive models of cognitive abilities using neuroimaging, polygenic scores (PGS), and socio-
demographic, lifestyle, and developmental adverse event data, resulting in various proxy measures of cognitive 
abilities. For neuroimaging, we included 45 types of brain MRI data from task-fMRI, rs-fMRI, sMRI, and DTI. For PGS, 
we used three definitions of cognitive abilities based on previous large-scale GWAS (Davies et al., 2018; Lee et al., 
2018; Savage et al., 2018). For socio-demographic, lifestyle, and developmental adverse events, we included 44 
features, covering variables such as parental income/education, screen use, and birth/pregnancy complications. 
Finally, we conducted a series of commonality analyses (Nimon et al., 2008) using these proxy measures of cognitive 
abilities to address three specific questions. First, we examined the extent to which the relationship between cognitive 
abilities and mental health was represented in part by cognitive abilities at the neural and genetic levels, as measured 
by multimodal neuroimaging and PGS, respectively. Second, we assessed the extent to which this relationship was 
partly explained by environmental factors, as measured by socio-demographic, lifestyle, and developmental adverse 
events. Third, we tested whether the two neurobiological units of analysis for cognitive abilities, measured by 
multimodal neuroimaging and PGS, could account for the variance due to environmental factors. To ensure the 
stability of our results, we repeated the analyses at two time points (ages 9-10 and 11-12). 

Results 

Predictive modelling 

Predicting cognitive abilities from mental health 

Figure 1a and Supplementary Table 1 illustrate the predictive performance of the Partial Least Square (PLS) models in 
predicting cognitive abilities from mental health features. These features included: 1) emotional and behavioral 
problems assessed by the Child Behaviour Checklist (CBCL) (Achenbach et al., 2017), and 2) children’s temperaments 
assessed by the Behavioural Inhibition System/Behavioural Activation System (BIS/BAS) (Carver & White, 1994) and 
the Urgency, Premeditation, Perseverance, Sensation seeking, and Positive urgency (UPPS-P) impulsive behaviour 
scale (Zapolski et al., 2010). Using these two sets of mental health features separately resulted in moderate predictive 
performance, with correlation coefficients ranging from r = .24 to r = .31. Combining them into a single set of features, 
termed “mental health,” improved the performance to approximately r = .36, consistent across the two time points. 

Figure 1b illustrates the loadings and the proportion of variance in cognitive abilities explained by each Partial Least 
Squares (PLS) components. The first PLS component accounted for the highest proportion of variance, ranging from 
22.3% to 25.7%. This component was primarily influenced by factors such as attention and social problems, rule-
breaking and aggressive behaviours and Behavioural Activation System drive. A similar pattern was observed across 
both time points. 

Predicting cognitive abilities from neuroimaging  

Figures 2a, Supplementary Figures 1-2, and Supplementary Tables 1-3 illustrate the predictive performance of the 
opportunistic stacking models in predicting cognitive abilities from 45 sets of neuroimaging features. The predictive 
performance of each set of neuroimaging features varied significantly, with correlation coefficients ranging from 
approximately 0 (ENBack: Negative vs. Neutral Face) to around 0.4 (ENBack: 2-Back vs. 0-Back). Combining 
information from all 45 sets of neuroimaging features into a stacked model improved the performance to 
approximately r = 0.54, consistent across both time points. The stacked model (R² ≈ 0.29) explained almost twice as 
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much variance in cognitive abilities as the model based on the best single set of neuroimaging features (ENBack: 2-
Back vs. 0-Back, R² ≈ 0.15). Figures 2b, 3, and Supplementary Figure 3 highlight the feature importance of the 
opportunistic stacking models. Across both time points, the top contributing neuroimaging features, as indicated by 
SHAP values, were ENBack task-fMRI contrasts, rs-fMRI, and cortical thickness. 

Predicting cognitive abilities from polygenic scores 

Figures 2a and Supplementary Tables 1 illustrate the predictive performance of the Elastic Net models in predicting 
cognitive abilities using three polygenic scores (PGSs). The predictive accuracy of these PGSs was r = .25 at baseline 
and r = .25 at follow-up. Figure 2c highlights the feature importance within these models, indicating a stronger 
contribution from the PGS based on Savage’s et al. (2018) GWAS. 

Predicting cognitive abilities from socio-demographics, lifestyles and developmental adverse events  

Figure 4a and Supplementary Table 1 illustrate the predictive performance of the Partial Least Square (PLS) models in 
predicting cognitive abilities from socio-demographics, lifestyles, and developmental adverse events. Using 44 
features covering these areas, the predictive performance was around r = .49, consistent across the two time points. 
Figure 4b shows the loadings and the proportion of variance explained by these PLS models. The first PLS component 
accounted for the highest proportion of variance (around 10%). 

Based on its loadings, this first component was: a) Positively influenced by features such as parental income and 
education, neighbourhood safety, and extracurricular activities, b) Negatively influenced by features such as area 
deprivation, having a single parent, screen use, economic insecurities, lack of sleep, playing mature video games, 
watching mature movies, and lead exposure. 

Commonality analyses 

We separately conducted the four sets of commonality analyses. 

Commonality analyses for proxy measures of cognitive abilities based on mental health and neuroimaging 

At baseline, having both proxy measures based on mental health and neuroimaging in a linear mixed model explained 
27% of the variance in cognitive abilities. Specifically, 9.8% of the variance in cognitive abilities was explained by 
mental health, which included the common effect between the two proxy measures (6.48%) and the unique effect of 
mental health (3.32%) (see Supplementary Tables 4-5 and Figure 5). This indicates that 66% of the relationship 
between cognitive abilities and mental health, i.e., (6.48 ÷ 9.8) × 100, was shared with neuroimaging. The common 
effects varied considerably across different sets of neuroimaging features, ranging from approximately 0.08% to 
2.78%, with the highest being the ENBack task fMRI: 2-Back vs. 0-Back (see Supplementary Figure 4). The pattern of 
results was consistent across both time points. 

Commonality analyses for proxy measures of cognitive abilities based on mental health and PGSs 

At baseline, having both proxy measures based on mental health and PGSs in a linear mixed model explained 11.8% of 
the variance in cognitive abilities. Specifically, 9.21% of the variance in cognitive abilities was explained by mental 
health, which included the common effect between the two proxy measures (1.93%) and the unique effect of mental 
health (7.28%) (see Supplementary Tables 6-7 and Figure 5). This indicates that 21% of the relationship between 
cognitive abilities and mental health, i.e., (1.93 ÷ 9.21) x 100, was shared with PGSs. The pattern of results was 
consistent across both time points. 

Commonality analyses for proxy measures of cognitive abilities based on mental health and socio-demographics, 
lifestyles and developmental adverse events  

At baseline, having both proxy measures based on mental health and socio-demographics, lifestyles, and 
developmental adverse events in a linear mixed model explained 24.9% of the variance in cognitive abilities. 
Specifically, 9.75% of the variance in cognitive abilities was explained by mental health, which included the common 
effect between the two proxy measures (6.12%) and the unique effect of mental health (3.63%) (see Supplementary 
Tables 8-9 and Figure 5). This indicates that over 63% of the relationship between cognitive abilities and mental 
health, i.e., (6.12 ÷ 9.75) x 100,   was shared with socio-demographics, lifestyles, and developmental adverse events. 
The pattern of results was consistent across both time points. 
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Commonality analyses for proxy measures of cognitive abilities based on mental health, neuroimaging, PGSs and 
socio-demographics, lifestyles and developmental adverse events 

At baseline, having all four proxy measures based on mental health, neuroimaging, PGSs, and socio-demographics, 
lifestyles, and developmental adverse events in a linear mixed model explained 24.2% of the variance in cognitive 
abilities. Of the 8.97% of the variance in cognitive abilities explained by mental health, 7.05% represented common 
effects with the other proxy measures. This indicates that 79%, i.e., (7.05 ÷ 8.97) x 100, of the relationship between 
cognitive abilities and mental health was shared with the three other proxy measures (see Supplementary Tables 10-
11 and Figure 5). Additionally, among the variance that socio-demographics, lifestyles, and developmental adverse 
events accounted for in the relationship between cognitive abilities and mental health, neuroimaging could capture 
58%, while PGSs could capture 21%. The pattern of results was consistent across both time points. 
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Discussions 

We aim to understand the extent to which the relationship between cognitive abilities and mental health is 
represented in part by cognitive abilities at the neural and genetic levels of analysis. We began by quantifying the 
relationship between cognitive abilities and mental health, finding a medium-sized out-of-sample correlation of 
approximately r = .36. This relationship was shared with neuroimaging (66% at baseline) and PGS (21% at baseline), 
based on two separate sets of commonality analyses. This suggests the significant roles of these two neurobiological 
units of analysis in shaping the relationship between cognitive abilities and mental health (Morris & Cuthbert, 2012). 
We also found that the relationship between cognitive abilities and mental health was partly shared with 
environmental factors, as measured by socio-demographics, lifestyles, and developmental adverse events (63% at 
baseline). In another set of commonality analysis, this variance due to socio-demographics, lifestyles, and 
developmental adverse events was explained by neuroimaging and PGS at 58% and 21%, respectively, at baseline. 
Accordingly, the neurobiological units of analysis for cognitive abilities captured the environmental factors, consistent 
with RDoC’s viewpoint (Morris et al., 2022). Notably, this pattern of results remained stable over two years in early 
adolescence. 

Our predictive modelling revealed a medium-sized predictive relationship between cognitive abilities and mental 
health. This finding aligns with recent meta-analyses of case-control studies that link cognitive abilities and mental 
disorders across various psychiatric conditions (Abramovitch et al., 2021; East-Richard et al., 2020). Unlike previous 
studies, we estimated the predictive, out-of-sample relationship between cognitive abilities and mental disorders in a 
large normative sample of children. By using predictive models for out-of-sample prediction, the strength of the 
relationship between cognitive abilities and mental health estimated here should be more robust than when 
calculated using the same sample as the model itself, known as in-sample prediction/association (Marek et al., 2022; 
Yarkoni & Westfall, 2017). Examining the PLS loadings of our predictive models revealed that the relationship was 
driven by various aspects of mental health, including thought and externalising symptoms, as well as motivation. This 
suggests that there are multiple pathways—encompassing a broad range of emotional and behavioural problems and 
temperaments—through which cognitive abilities and mental health are linked. 

Our predictive modelling created proxy measures of cognitive abilities based on two neurobiological units of analysis: 
neuroimaging and polygenic scores (PGS) (Morris & Cuthbert, 2012). For neuroimaging, inspired by recent BWAS 
benchmarks (Engemann et al., 2020; Marek et al., 2022), we used a multivariate modelling technique called 
opportunistic stacking, which integrates information across various MRI features and modalities. Combining 45 sets of 
neuroimaging features resulted in relatively high predictive performance (out-of-sample r = .54 at baseline), compared 
to using any single set. This finding aligns with previous research that pooled multiple neuroimaging modalities 
(Engemann et al., 2020; Rasero et al., 2021; Tetereva et al., 2022). This level of predictive performance is numerically 
higher than that found in a recent meta-analysis, which mainly included studies using only one set of neuroimaging 
features, with an r of 0.42 (Vieira et al., 2022). Moreover, this performance level in predicting cognitive abilities is 
nearly the same as our previous attempt using a similar stacking technique to integrate MRI modalities in young adult 
samples from the Human Connectome Project (HCP) (Van Essen et al., 2013), which achieved an out-of-sample r = .57 
(Tetereva et al., 2022). Similarly, in the current study, the top contributing set of neuroimaging features, the 2-Back vs. 
0-Back task fMRI, was consistent with previous studies using the HCP (Sripada et al., 2020; Tetereva et al., 2022). 
Altogether, this demonstrates the robustness of our proxy measure of cognitive abilities based on multimodal 
neuroimaging. In addition to predictive performance, opportunistic stacking offers the added benefit of handling 
missing values (Engemann et al., 2020; Pat, Wang, et al., 2022), allowing us to retain data from 10,754 participants 
who completed the cognitive tasks at baseline and has at least one set of neuroimaging features. Consequently, with 
opportunistic stacking, we were more likely to retain MRI data from participants with higher fMRI noise, such as those 
with socioeconomic disadvantages (Cosgrove et al., 2022). More importantly, we demonstrated that the proxy 
measure based on multimodal neuroimaging explained the majority of the variance in the relationship between 
cognitive abilities and mental health, underscoring its significant role as a neurobiological unit of analysis for cognitive 
abilities (Morris & Cuthbert, 2012). 

For PGS, we created a proxy measure based on three large-scale GWAS on cognitive abilities (Davies et al., 2018; Lee 
et al., 2018; Savage et al., 2018). Using PGS resulted in a numerically weaker predictive performance (out-of-sample r 
= .25 at baseline) compared to multimodal neuroimaging. However, this predictive strength is still comparable to 
previous research. For instance, Allegrini and colleagues (2019) used a different cohort of children and found R² = .053 
when applying PGS based on Savage and colleagues’ (2018) to predict the cognitive abilities of 12-year-old children. 
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Given that PGS based on Savage and colleagues’ (2018) also drove the prediction in the current study, as seen in its 
feature importance, this similar level of predictive performance between Allegrini and colleagues (2019) and our study 
suggests consistency in the predictive performance of PGS. Despite this level of performance, PGS was able to explain 
some variance (21% at baseline) in the relationship between cognitive abilities and mental health, indicating some 
capacity of PGS as a neurobiological unit of analysis for cognitive abilities. 

There are multiple potential reasons why PGS performed much poorer than multimodal neuroimaging. Firstly, unlike 
genes, the brain changes throughout development and lifespan (Bethlehem et al., 2022), and so do cognitive abilities 
(Hartshorne & Germine, 2015). This dynamic nature might make multimodal neuroimaging a better tool for tracing 
cognitive abilities. Secondly, there might be a mismatch in the age of participants between the original GWAS (Davies 
et al., 2018; Lee et al., 2018; Savage et al., 2018) and the current study. While the original GWAS conducted meta-
analyses pooling data from participants aged 5 to 102, these studies might draw more heavily from older cohorts with 
large participant numbers, such as the UK Biobank (Sudlow et al., 2015). Allegrini and colleagues (2019) also 
demonstrated that PGS performs better in predicting cognitive abilities in older children (aged 16) compared to 
younger ones (aged 12). Therefore, a more child-specific PGS might be needed to explain more variance in children. 
Thirdly, the PGS used here included only common SNPs and not rare variants. Recent studies using whole-genome 
sequence data have found that rare variants contribute to the heritability of complex traits, such as height and body 
mass index  (Wainschtein et al., 2022). Given that cognitive abilities are also complex traits, future studies might need 
to examine if including rare variants can improve the predictive performance of PGS. 

Similarly, our predictive modelling created proxy measures of cognitive abilities for environmental factors based on 
socio-demographics, lifestyles, and developmental adverse events. In line with previous work (Kirlic et al., 2021; Pat, 
Wang, et al., 2022), we could predict unseen children’s cognitive abilities based on their socio-demographics, 
lifestyles, and developmental adverse events with a medium-to-high out-of-sample r = .49 (at baseline). This 
prediction was driven more strongly by socio-demographics (e.g., parent’s income and education, neighbourhood 
safety, area deprivation, single parenting), somewhat weaker by lifestyles (e.g., extracurricular activities, sleep, screen 
time, video gaming, mature movie watching, and parental monitoring), and much weaker by developmental adverse 
events (e.g., pregnancy complications). Importantly, proxy measures based on socio-demographics, lifestyles, and 
developmental adverse events captured a large proportion of the relationship between cognitive abilities and mental 
health. Furthermore, this variance captured by socio-demographics, lifestyles, and developmental adverse events 
overlapped mainly with the neurobiological proxy measures. This reiterates RDoC’s central tenet that understanding 
the neurobiology of a functional domain, such as cognitive abilities, could help us understand the extent to which 
environments influence mental health (Cuthbert & Insel, 2013; Insel et al., 2010). More importantly, all the results 
regarding neuroimaging, PGS, and socio-demographics, lifestyles, and developmental adverse events were reliable 
across two years during a sensitive period for adolescents. 

This study has several limitations that might affect its generalisability. Firstly, the range of mental health variables was 
not exhaustive. While we covered various emotional and behavioural problems (Achenbach et al., 2017) and 
temperaments, including behavioural inhibition/activation (Carver & White, 1994) and impulsivity (Zapolski et al., 
2010), we may still miss other critical mental health variables, such as psychotic-like experiences, eating disorder 
symptoms, and mania. Similarly, our ABCD samples were young and community-based, likely limiting the severity of 
their psychopathological issues (Kessler et al., 2007). Future work needs to test if the results found here are 
generalisable to adults and participants with stronger severity. Next, for cognitive abilities, while the six cognitive 
tasks (Luciana et al., 2018; Thompson et al., 2019) covered most of the RDoC cognitive abilities/systems constructs, 
we still missed variability in some domains, such as perception (Morris & Cuthbert, 2012). Additionally, several 
children (3,274) did not complete all six cognitive tasks at follow-up, which might create a discrepancy between 
baseline and follow-up samples. However, the differences in social demographics, lifestyles and developmental 
adverse events between participants who provided cognitive scores in the follow up were minimal (Cohen’s d ranging 
from 0.007 to 0.092, see Supplementary Table 18). Moreover, given that we found a similar pattern of predictive 
performance across the two time points, we believe excluding the children who did not complete the cognitive tasks 
at follow up should not alter our conclusions. 

Furthermore, while we used comprehensive multimodal MRI from 45 sets of features for neuroimaging, three fMRI 
tasks were not chosen based on their relevance to cognitive abilities (Casey et al., 2018). It is possible to obtain higher 
predictive performance based on other fMRI tasks. For all analyses involving PGS, we limited our participants to 
children of European ancestry due to the lack of summary statistics from well-powered GWAS for cognitive abilities in 
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non-European participants. This prevented us from fully leveraging the diverse samples in the ABCD study (Garavan et 
al., 2018). Future GWAS work with more diverse samples is needed to ensure equity and fairness in developing 
neurobiological units of analysis for cognitive abilities. Lastly, we relied on 44 variables of socio-demographics, 
lifestyles, and developmental adverse events included in the study, which might have missed some variables relevant 
to cognitive abilities (e.g., nutrition). The ABCD study (Casey et al., 2018) is ongoing, and future data might address 
some of these limitations. 

Overall, aligning with the RDoC perspective (Morris & Cuthbert, 2012), our findings support the use of neurobiological 
units of analysis for cognitive abilities, as assessed through multimodal neuroimaging and Polygenic Scores (PGS). 
These measures explain (a) the relationship between cognitive abilities and mental health and (b) the variance in this 
cognitive-ability-and-mental-health relationship attributable to environmental factors. Our results emphasise the 
importance of considering both neurobiology and environmental factors, such as socio-demographics, lifestyles, and 
adverse childhood events, to gain a comprehensive understanding of the aetiology of mental health (Insel et al., 2010; 
Morris et al., 2022).  
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Methods and Materials 

The Adolescent Brain Cognitive Development (ABCD) Study  

We used data from the Adolescent Brain Cognitive Development (ABCD) Study Curated Annual Release 5.1 
(DOI:10.15154/z563-zd24) from two time points. The baseline included data from 11,868 children (5,677 females and 
3 others, aged 9-10 years), while the two-year follow-up included data from the same children two years later (10,908 
children, 5,181 females and 3 others). Although the ABCD collected data from 22 sites across the United States, we 
excluded data from Site 22 since this site only provided data from 35 children at baseline and none at follow-up 
(Garavan et al., 2018). We also excluded 69 children based on the Snellen Vision Screener (Luciana et al., 2018; 
Snellen, 1862). These children either could not read any line on the chart, could only read the largest line, or could 
read up to the fourth line clearly but had difficulty reading stimuli on an iPad used for administering cognitive tasks 
(explained below). We listed the number of participants following each inclusion and exclusion criteria for each 
variable in Supplementary Figure 5 and Supplementary Table 12-13. Institutional Review Boards at each site approved 
the study protocols. Please see Clark and colleagues (2018) for ethical details, such as informed consent and 
confidentiality. 
 
Measures: Cognitive abilities 

Cognitive abilities were assessed using six cognitive tasks collected with an iPad during a 70-minute session outside of 
MRI at baseline and two-year follow-up (Luciana et al., 2018; Thompson et al., 2019). The first task was Picture 
Vocabulary, which measured language comprehension (Gershon et al., 2014). The second task was Oral Reading 
Recognition, which measured language decoding (Bleck et al., 2013). The third task was Flanker, which measured 
conflict monitoring and inhibitory control (Eriksen & Eriksen, 1974). The fourth task was Pattern Comparison 
Processing, which measured the speed of processing patterns (Carlozzi et al., 2013). The fifth task was Picture 
Sequence Memory, which measured episodic memory (Bauer et al., 2013). The sixth task was Rey-Auditory Verbal 
Learning, which measured memory recall after distraction and a short delay (Daniel & Wahlstrom, 2014). Rey-Auditory 
Verbal Learning was sourced from Pearson Assessment, while the other five cognitive tasks were from the NIH 
Toolbox (Bleck et al., 2013; Luciana et al., 2018). The ABCD study administered the Dimensional Change Card Sort and 
List Sorting Working Memory tasks from the NIH Toolbox (Bleck et al., 2013) only at baseline, not at the two-year 
follow-up (see DOI: 10.15154/z563-zd24). Consequently, these two tasks were not analysed in the current study. 
Additionally, 3,274 children at follow-up did not complete some of these tasks and were therefore excluded from the 
follow-up data analysis. 
 
We operationalised individual differences in cognitive abilities across the six cognitive tasks as a factor score of a 
latent variable, the ‘g-factor’. To estimate this factor score, we fit the standardised performance of the six cognitive 
tasks to a second-order confirmatory factor analysis (CFA) of a ‘g-factor’ model, similar to previous work (Ang et al., 
2020; Pat, Riglin, et al., 2022; Pat, Wang, et al., 2022; Thompson et al., 2019). In this CFA, we treated the g-factor as 
the second-order latent variable that underpinned three first-order latent variables, each with two manifest variables: 
1) ‘language,’ underlying Picture Vocabulary and Oral Reading Recognition, 2) ‘mental flexibility,’ underlying Flanker 
and Pattern Comparison Processing, and 3) ‘memory recall,’ underlying Picture Sequence Memory and Rey-Auditory 
Verbal Learning. 
 
We fixed the variance of the latent factors to one and applied the Maximum Likelihood with Robust standard errors 
(MLR) approach with Huber-White standard errors and scaled test statistics. To provide information about the internal 
consistency of the g-factor, we calculated OmegaL2 (Jorgensen et al., 2022). We used the lavaan (Rosseel, 2012) 
(version 0.6-15), semTools (Jorgensen et al., 2022), and semPlots (Epskamp, 2015) packages for this CFA of cognitive 
abilities.  
 
We found the second-order ‘g-factor’ model to fit cognitive abilities well across the six cognitive tasks. This is 
evidenced by several indices if we apply the model to the whole baseline data: scaled and robust CFI (.994), TLI (.986), 
RMSEA (.031, 90% CI [.024-.037]), robust SRMR (.013), and OmegaL2 (.78). See Supplementary Figure 6 for the 
standardised weights of this CFA model. This enabled us to use the factor score of the latent variable ‘g-factor’ as the 
target for our predictive models. 
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Measures: Mental health 

Mental health was assessed using two sets of features. The first set involved parental reports of children’s emotional 
and behavioural problems, as measured by the Child Behaviour Checklist (CBCL) (Achenbach et al., 2017).We used 
eight summary scores: anxious/depressed, withdrawn, somatic complaints, social problems, thought problems, 
attention problems, rule-breaking behaviours, and aggressive behaviours. For CBCL, caretakers rated each item as 0 = 
not true (as far as you know), 1 = somewhat or sometimes true, and 2 = very true or often true. The third set assessed 
children’s temperaments, conceptualised as risk factors for mental issues (S. L. Johnson et al., 2003; Whiteside & 
Lynam, 2003), using the Urgency, Premeditation, Perseverance, Sensation Seeking, and Positive Urgency (UPPS-P) 
Impulsive Behaviour Scale (Zapolski et al., 2010) and the Behavioural Inhibition System/Behavioural Activation System 
(BIS/BAS) (Carver & White, 1994). We used nine summary scores: negative urgency, lack of planning, sensation 
seeking, positive urgency, lack of perseverance, BIS, BAS reward responsiveness, BAS drive, and BAS fun. 
Supplementary Tables 14-15 provide summary statistics, histograms, and missing values for measures of mental 
health. They also include the actual variable names listed in the data dictionary and their calculations. 
 

Measures: Neuroimaging  

Neuroimaging data were based on the tabulated brain-MRI data pre-processed by the ABCD. We organized the brain-
MRI data into 45 sets of neuroimaging features, covering task-fMRI (including ENBack, stop signal (SST), and monetary 
incentive delay (MID) tasks), resting-state fMRI, structural MRI, and diffusion tensor imaging (DTI). The ABCD provided 
details on MRI acquisition and image processing elsewhere (Hagler et al., 2019; Yang & Jernigan, Terry, n.d.).  
 
The ABCD study provided recommended exclusion criteria for neuroimaging data based on automated and manual 
quality control (Yang & Jernigan, Terry, n.d.). Specifically, the study created an exclusion flag for each neuroimaging 
feature (with the prefix ‘imgincl’ in the ‘abcd_imgincl01’ table) based on criteria involving image quality, MR 
neurological screening, behavioural performance, and the number of repetition times (TRs), among others. We 
removed the entire set of neuroimaging features from each participant if any of its features were flagged or missing. 
We also detected outliers with over three interquartile ranges from the nearest quartile for each neuroimaging 
feature. We excluded a particular set of neuroimaging features from each participant when this set had outliers over 
5% of the total number of its neuroimaging features. For instance, for the 2-Back vs 0-Back contrast from the ENBack 
task-fMRI, we had 167 features (i.e., brain regions) based on the brain parcellation atlas used by the ABCD. If (a) one 
of the 167 features had an exclusion flag, (b) a participant had a vision problem, (c) any of the 167 features was 
missing, (d) at least nine features (i.e., over 5%) were outliers, then we would remove this 2-Back vs 0-Back contrast 
from a particular participant but still keep other sets of neuroimaging features that did not meet these criteria (see 
Supplementary Supplementary Table 12-13 for the number of participants after each exclusion criterion for each set 
of neuroimaging features). 
 
We standardised each neuroimaging feature across participants and harmonized variation across MRI scanners using 
ComBat (Fortin et al., 2017; W. E. Johnson et al., 2007; Nielson et al., 2018). Note that under predictive modelling, we 
discuss strategies we implemented to avoid data leakage and to model the data with missing values using the 
opportunistic stacking technique (Engemann et al., 2020; Pat, Wang, et al., 2022). 
 
Sets of Neuroimaging Features 1-26: task-fMRI 

We used unthresholded generalised-linear model (GLM) contrasts, averaged across two runs (Bolt et al., 2017; Pat et 
al., 2023; Pat, Wang, et al., 2022) for task-fMRI sets of features. These contrasts were embedded in the brain parcels 
based on the FreeSurfer’s atlases (Dale et al., 1999): 148 cortical-surface Destrieux parcels (Destrieux et al., 2010) and 
subcortical-volumetric 19 ASEG parcels (Fischl et al., 2002), resulting in 167 features in each task-fMRI set. 
 

Sets of Neuroimaging Features 1-9: ENBack task-fMRI 
The “ENBack” or emotional n-back task was designed to elicit fMRI activity related to working memory to neutral and 
emotional stimuli (Barch et al., 2013). Depending on the block, the children were asked whether an image matched 
the image shown two trials earlier (2-Back) or at the beginning (0-Back). In this task version, the images shown 
included emotional faces and places. Thus, in addition to working memory, the task also allowed us to extract fMRI 
activity related to emotion processing and facial processing. We used the following contrasts as nine separate sets of 
neuroimaging features for ENBack task-fMRI: 2-Back vs 0-Back, Face vs Place, Emotion vs Neutral Face, Positive vs 
Neutral Face, Negative vs Neutral Face, 2-Back, 0-Back, Emotion and Place. 
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Sets of Neuroimaging Features 10-19: Monetary Incentive Delay (MID) task-fMRI 
The MID task was designed to elicit fMRI activity related to reward processing (Knutson et al., 2000). In this task, 
children responded to a stimulus shown on a screen. If they responded before the stimulus disappeared, they could 
either win $5 (Large Reward), win $0.2 (Small Reward), lose $5 (Large Loss), lose $0.2 (Small Loss), or not win or lose 
any money (Neutral), depending on the conditions. At the end of each trial, they were shown feedback on whether 
they won money (Positive Reward Feedback), did not win money (Negative Reward Feedback), avoided losing money 
(Positive Punishment Feedback), or lost money (Negative Punishment Feedback). We used the following contrasts as 
ten separate sets of neuroimaging features for MID task-fMRI: Large Reward vs Small Reward anticipation, Small 
Reward vs Neutral anticipation, Large Reward vs Neutral anticipation, Large Loss vs Small Loss anticipation, Small Loss 
vs Neutral anticipation, Large Loss vs Neutral anticipation, Loss vs Neutral anticipation, Reward vs Neutral anticipation, 
Positive vs Negative Reward Feedback, and Positive vs Negative Punishment Feedback. 
 

Sets of Neuroimaging Features 20-26: Stop-Signal Task (SST) task-fMRI 

The SST was designed to elicit fMRI activity related to inhibitory control (Whelan et al., 2012). Children were asked to 
withhold or interrupt their motor response to a ‘Go’ stimulus whenever they saw a ‘Stop’ signal. We used two 
additional quality-control exclusion criteria for the SST task: tfmri_sst_beh_glitchflag and tfmri_sst_beh_violatorflag, 
which notified glitches as recommended (Bissett et al., 2021; Garavan et al., 2018). We used the following contrasts as 
seven separate sets of neuroimaging features for SST task-fMRI: Incorrect Go vs Incorrect Stop, Incorrect Go vs Correct 
Go, Correct Stop vs Incorrect Stop, Any Stop vs Correct Go, Incorrect Stop vs Correct Go, Correct Stop vs Correct Go, 
and Correct Go vs Fixation. 
 
Sets of Neuroimaging Features 27-29: Resting-state fMRI (rs-fMRI) 

The ABCD study collected rs-fMRI data for 20 minutes while children viewed a crosshair. The study described the pre-
processing procedure elsewhere (Hagler et al., 2019). The investigators parcellated the cortical surface into 333 
regions and the subcortical volume into 19 regions using Gordon’s (Gordon et al., 2016) and ASEG (Fischl et al., 2002) 
atlases, respectively. They grouped the cortical-surface regions into 13 predefined large-scale cortical networks 
(Gordon et al., 2016). These large-scale cortical networks included auditory, cingulo-opercular, cingulo-parietal, 
default-mode, dorsal-attention, frontoparietal, none, retrosplenial-temporal, salience, sensorimotor-hand, 
sensorimotor-mouth, ventral-attention, and visual networks. Note that the term ‘None’ refers to regions that did not 
belong to any network. They then correlated time series from these regions and applied Fisher’s z-transformation to 
the correlations. We included three sets of neuroimaging features for rs-fMRI. The first set was cortical functional 
connectivity (FC) with 91 features, including the mean values of the correlations between pairs of regions within the 
same large-scale cortical network and between large-scale cortical networks. The second set was subcortical-network 
FC with 247 features, including the mean values of the correlations between each of the 19 subcortical regions and 
the 13 large-scale cortical networks. The third set was temporal variance with 352 features (i.e., 333 cortical and 19 
subcortical regions), representing the variance across time calculated for each parcellated region. Temporal variance 
reflects the magnitude of low-frequency oscillations (Yang & Jernigan, Terry, n.d.). 
 
Sets of Neuroimaging Features 30-44: Structural MRI (sMRI) 

The ABCD study collected T1-weighted and T2-weighted 3D sMRI images and quantified them into various measures, 
mainly through FreeSurfer v7.1.1 (Yang & Jernigan, Terry, n.d.). Similar to task-fMRI, we used 148 cortical-surface 
Destrieux (Destrieux et al., 2010) and subcortical-volumetric 19 ASEG (Fischl et al., 2002) atlases, resulting in 167 
features. We included 15 sets of neuroimaging features for sMRI: cortical thickness, cortical area, cortical volume, 
sulcal depth, T1 white-matter averaged intensity, T1 grey-matter averaged intensity, T1 normalised intensity, T2 
white-matter averaged intensity, T2 grey-matter averaged intensity, T2 normalised intensity, T1 summations, T2 
summations, T1 subcortical averaged intensity, T2 subcortical averaged intensity and subcortical volume. Note: see 
Figure 3 for the neuroimaging features included in T1 and T2 summations. 
 
Sets of Neuroimaging Features 45: Diffusion tensor imaging (DTI) 

We included fractional anisotropy (FA) derived from DTI as another set of neuroimaging features. FA characterizes the 
directionality of diffusion within white matter tracts, which is thought to indicate the density of fiber packing 
(Alexander et al., 2007). The ABCD study used AtlasTrack (Hagler et al., 2009, 2019) to segment major white matter 
tracts. These included the corpus callosum, forceps major, forceps minor, cingulate and parahippocampal portions of 
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the cingulum, fornix, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, pyramidal/corticospinal tract, 
superior longitudinal fasciculus, temporal lobe portion of the superior longitudinal fasciculus, anterior thalamic 
radiations, and uncinate. Given that ten tracts were separately labelled for each hemisphere, there were 23 
neuroimaging features in this set. 
 
Measures: Polygenic Scores  

Genetic profiles were constructed based on polygenic scores (PGS) of cognitive abilities. The ABCD study provides 
detailed notes on genotyping in another source (Uban et al., 2018). Briefly, the study genotyped saliva and whole 
blood samples using Smokescreen™ Array. The investigators then quality-controlled the data using calling signals and 
variant call rates, applied the Ricopili pipeline and imputed the data with TOPMED (see  
https://topmedimpute.readthedocs.io/). The study also identified problematic plates and data points with a subject-
matching issue. We further excluded children with minimal or excessive heterozygosity and excluded Single 
Nucleotide Polymorphisms (SNPs) based on minor allele frequency (less than 5%) and violations of Hardy–Weinberg 
equilibrium (P-value less than\1E−10) (details can be found at https://github.com/ricanney/stata). 
 
We calculated PGS using three definitions from three large-scale genome-wide association studies (GWAS) on 
cognitive abilities: n=300,486 participants aged 16 to 102 (Davies et al., 2018), n=257,84 participants aged 8 to 96 (Lee 
et al., 2018) and n=269,867 participants aged 5 to 98 (Savage et al., 2018). These GWAS synthesised findings from 
different cohorts that collected cognitive tasks. Due to the diversity in cognitive tasks used across cohorts, they 
defined cognitive abilities in unique ways. For instance, Lee and colleagues (2018) utilised principal component 
analysis to consolidate various cognitive task scores into a single measure within each cohort from the Cognitive 
Genomics Consortium (COGENT) consortia (Lencz et al., 2014), but only focused on the verbal-numerical reasoning 
(VNR) test within the UK Biobank cohort (Sudlow et al., 2015). In a similar approach, Davies and colleagues 
(2018) employed principal component analysis to capture cognitive abilities from different cohorts within both 
CHARGE consortium data sets (Psaty et al., 2009) and COGENT (Lencz et al., 2014). They also focused on VNR testing 
within UK Biobank (Sudlow et al., 2015). Similarly, Savage and colleagues (2018) calculated a singular score for 
cognitive abilities using ‘a single sum score, mean score, or factor score’ collated from various tasks across thirteen 
cohort studies alongside logistic regression in one case-control study. 
 
Participants in these GWAS were of European ancestry. Because PGS has a lower predictive ability when target 
samples (i.e., in our case, ABCD children) do not have the same ancestry as those of the discovery GWAS 
sample (Duncan et al., 2019), we restricted all analyses involving PGS to 5,776 children of European ancestry. These 
children were within four standard deviations from the mean of the top four principal components (PCs) of the super-
population individuals in the 1000 Genomes Project Consortium Phase 3 reference (Auton et al., 2015). 
 
We employed the Pthreshold approach (Choi et al., 2020). In this approach, we defined ‘risk’ alleles as those 
associated with cognitive abilities in the three discovery GWASs (Davies et al., 2018; Lee et al., 2018; Savage et al., 
2018) at ten different PGS thresholds: 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001. 
We then computed PGS as the Z-scored, weighted mean number of linkage-independent risk alleles in approximate 
linkage equilibrium derived from imputed autosomal SNPs. We selected the best PGS threshold for each of the three 
definitions by choosing the PGS threshold that demonstrated the strongest correlation between its PGS and cognitive 
abilities in the ABCD (i.e., the g-factor factor score). Refer to the section on predictive modelling below for strategies 
we implemented to avoid data leakage due to this selection of the PGS threshold and the family structure in the 
ABCD. 
 
Measures: sociodemographics, lifestyles and developmental adverse events 

Environmental factors were based on 44 features, covering socio-demographics, lifestyles, and developmental adverse 
events. This included (a) 14 features for child social-demographics (Zucker et al., 2018), including bilingual use (Dick et 
al., 2019), parental marital status, parental education, parental income, household size, economic insecurities, area 
deprivation index (Kind et al., 2014), lead risk (Frostenson et al., n.d.), crime report (Federal Bureau Of Investigation, 
2012), neighbourhood safety (Echeverria et al., 2004), school environment, involvement and disengagement (Stover 
et al., 2010), (b) five features for child social interactions from Parent Monitoring scale (Chilcoat & Anthony, 1996), 
Child Report of Behaviour Inventory (Schaefer, 1965), Strength and Difficulties Questionnaire (Goodman et al., 2003) 
and Moos Family Environment Scale (Moos et al., 1974), (c) eight features from child’s sleep problems based on the 
Sleep Disturbance scale (Bruni et al., 1996), (d) four features for child’s physical activities from Youth Risk Behaviour 
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Survey (Centers for Disease Control and Prevention, 2023), (e) four features for child screen use (Bagot et al., 2018), (f) 
six features for parental use of alcohol, tobacco and marijuana before and after pregnancy from the Developmental 
History Questionnaire (Kessler et al., 2009; Merikangas et al., 2009), and (g) three features for developmental adverse 
events from the Developmental History Questionnaire, including prematurity and birth and pregnancy complications 
(Kessler et al., 2009; Merikangas et al., 2009). Note that we treated developmental adverse events from the 
Developmental History Questionnaire as environmental factors, as these events are either parental behaviours (e.g., 
parental use of alcohol, tobacco and marijuana) or parental medical conditions (e.g., pregnancy complications) that 
affect children. Supplementary Tables 16-17 provide summary statistics, histograms, and missing values for measures 
of socio-demographics, lifestyles and developmental adverse events. They also include the actual variable names 
listed in the data dictionary and their calculations. 
 
Predictive modelling  

For building predictive multivariate models, we implemented a nested leave-one-site-out cross-validation. Specifically, 
we treated one out of 21 sites as a test set and the rest as a training set for training predictive models. We then 
repeated the model-building process until every site was a test set once and reported overall predictive performance 
across all test sites. Within each training set, we applied 10-fold cross-validation to tune the hyperparameters of the 
predictive models. The nested leave-one-site-out cross-validation allowed us to ensure the generalisability of our 
predictive models to unseen sites. This is important because different sites involved different MRI machines, 
experimenters, and participants of other demographics (Garavan et al., 2018). Next, data from children from the same 
family were collected from the same site. Accordingly, using leave-one-site-out also prevented data leakage due to 
family structure, which might inflate the predictive performance of the models, particularly those involving polygenic 
scores. Still, given the different number of participants in each site, one drawback for the nested leave-one-site-out 
cross-validation is that we ended up with some test sets with fewer participants than others. Accordingly, we provided 
a supplemental analysis using the classical nested cross-validation, which included ten non-overlapping outer folds, 
randomly chosen without considering the site information, as test sets and ten inner folds for hyperparameter tuning 
(see Supplementary Figure 7). Briefly the results of the leave-one-site-out cross-validation and classical nested cross-
validation were close to each other, albeit classical nested cross-validation having slightly higher performance.   
 
To demonstrate the stability of the results across two years, we built the predictive models (including hyperparameter 

tuning) separately for baseline and follow-up data. We separately applied standardisation to the baseline training and 

test sets for both the target and features to prevent data leakage between training and test sets. To ensure similarity 

in the data scale across two time points, we used the mean and standard deviation of the baseline training and test 

sets to standardise the follow-up training and test sets, respectively. For cognitive abilities, which were used as the 

target for all predictive models, we applied this standardisation strategy both before CFA (i.e., to the behavioural 

performance of the six cognitive tasks) and after CFA (i.e., to the g-factor factor scores). Moreover, we only estimated 

the CFA of cognitive abilities- using the baseline training set to ensure that the predictive models of the two time 

points had the same target. We then applied this estimated CFA model to the baseline test set and follow-up training 

and test sets. We examined the predictive performance of the models via the relationship between predicted and 

observed cognitive abilities, using Pearson's correlation (r), coefficient of determination (R2, calculated using the sum 

of square definition), mean-absolute error (MAE) and root mean square error (RMSE). 

 

Predicting cognitive abilities from mental health 

We developed predictive models to predict cognitive abilities from three sets of mental health features: CBCL and 
temperaments. We separately modelled each of these two sets and also simultaneously modelled the two sets by 
concatenating them into one set of features called “mental health”. We implemented Partial Least Squares (PLS) 
(Wold et al., 2001) as a multivariate algorithm for these predictive models. Note that while PLS is sometimes used for 
reducing the dimensionality of features within a dataset, here we utilised PLS in a predictive framework:  we tuned 
and estimated PLS loadings in each training set and applied the final model to the corresponding test set. PLS 
decomposes features into components that capture not only the features' variance but also the target's variance 
(Wold et al., 2001). PLS has an advantage in dealing with collinear features (Dormann et al., 2013), typical for mental 
health issues (Caspi & Moffitt, 2018).  
 
PLS has one hyperparameter, the number of components. In our grid search, we tested the number of components, 
ranging from one to the total number of features. We selected the number of components based on the drop in root 
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mean square error (RMSE). We kept increasing the number of components until the component did not reduce 0.1% 
of the total RMSE. We fit PLS using the mixOmics package (Rohart et al., 2017) with the tidymodels package as a 
wrapper (Kuhn & Wickham, 2018/2023). 
 
To understand how PLS made predictions, we examined loadings and the proportion of variance explained. Loadings 
for each PLS component show how much each feature contributes to each PLS component. The proportion of variance 
explained shows how much variance each PLS component captures compared to the total variance. We then 
compared loadings and the proportion of variance explained with the univariate Pearson’s correlation between each 
feature and the target. Note that because we could not guarantee that each training set would result in the same PLS 
components, we calculated loadings and the proportion of variance explained on the full data without splitting them 
into training and test sets. It is important to note that the loadings and the proportion of variance explained are for 
understanding the models, but for assessing the predictive performance and computing a proxy measure of cognitive 
abilities (i.e., the predicted values), we still relied on the nested leave-one-site-out cross-validation. 
 
Predicting cognitive abilities from neuroimaging 

We developed predictive models to predict cognitive abilities from 45 sets of neuroimaging features. To avoid data 
leakage, we detected the outliers separately in the baseline training, baseline test, follow-up training and follow-up 
test sets. Similarly, to harmonise neuroimaging features across different sites while avoiding data leakage, we applied 
ComBat (Fortin et al., 2017; W. E. Johnson et al., 2007; Nielson et al., 2018) to the training set. We then applied 
ComBat to the test set, using the ComBatted training set as a reference batch. 
 
Unlike PLS used above for predictive models from mental health, we chose to apply opportunistic stacking (Engemann 
et al., 2020; Pat, Wang, et al., 2022) when building predictive models from neuroimaging. As we showed previously 
(Pat, Wang, et al., 2022), opportunistic stacking allowed us to handle missingness in the neuroimaging data without 
sacrificing predictive performance. Missingness in children's MRI data is expected, given high levels of noise (e.g., 
movement artifact) (Fassbender et al., 2017). For the ABCD, if we applied listwise exclusion using the study’s exclusion 
criteria and outlier detection, we would have to exclude around 68% and 74%, at baseline and followup respectively 
of the children with MRI data from any set of neuroimaging features flagged (Pat, Wang, et al., 2022) (see 
Supplementary Figure 7). With opportunistic stacking, we only required each participant to have at least one out of 45 
sets of neuroimaging features available. Therefore, we needed to exclude just around 9% and 41%, at baseline and 
followup respectively, of the children (see Supplementary Figure 7). Our opportunistic stacking method kept 10,754 
and 6,412 participants at baseline and follow-up, respectively, while listwise deletion only kept 3,784 and 2,788 
participants, respectively. We previously showed that the predictive performance of the models with opportunistic 
stacking is similar to that with listwise exclusion (Pat, Wang, et al., 2022).  
 
Opportunistic stacking (Engemann et al., 2020; Pat, Wang, et al., 2022) involves two layers of modelling: set-specific 
and stacking layers. In the set-specific layer, we predicted cognitive abilities separately from each set of neuroimaging 
features using Elastic Net (Zou & Hastie, 2005). While being a linear and non-interactive algorithm, Elastic Net 
performs relatively well in predicting behaviours from neuroimaging MRI, often on par with, if not better than, other 
non-linear and interactive algorithms, such as support vector machine with non-linear kernel, XGBoost and Random 
Forest (Pat et al., 2023; Tetereva et al., 2022; Vieira et al., 2022). Moreover, Elastic Net coefficients are readily 
explainable, enabling us to explain how the models drew information from each neuroimaging feature when making a 
prediction (Molnar, 2019; Pat et al., 2023). 
 
Elastic Net simultaneously minimises the weighted sum of the features’ coefficients. Its loss function can be written 
as: 
 

L�������� � ∑ ������	
�
��

���

�
� � 	���

�
∑ ��

���
��� �  ∑ ���� ��

��� �,                                                    (1) 

 

where �� is a row vector of all the features in observation �, and �� is a column vector of features’ coefficient. There are 
two hyperparameters: (1) the penalty �λ� constraining the magnitude of the coefficients and (2) the mixture (α) 
deciding whether the model is more of a sum of squared coefficients (known as Ridge) or a sum of absolute values of 
the coefficients (known as Least Absolute Shrinkage and Selection Operator, LASSO). Using grid search, we chose the 
pair of penalty and mixture based on the lowest root mean square error (RMSE). The penalty was selected from 20 
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numbers, ranging from 10��� to 10, equally spaced with the ����� scale, and the penalty was selected from 11 
numbers, ranging from 0 to 1 on a linear scale.   
 
Training the set-specific layer resulted in the predicted values of cognitive abilities, one from each set of neuroimaging 
features. The stacking layer, then, took these predicted values across 45 sets of neuroimaging features and treated 
them as features to predict cognitive abilities, thereby drawing information across (as opposed to within) sets of 
neuroimaging features. Importantly, we used the same training set across both layers, ensuring no data leakage 
between training and test sets. Opportunistic stacking dealt with missing values from each set of neuroimaging 
features by, first, duplicating each feature (i.e., each of 45 predicted values from the set-specific layer) into two 
features, resulting in 90 features. We then replaced the missing values in the duplicated features with either 
unrealistically large (1000) or small (-1000) values. Accordingly, we could keep the data as long as at least one set of 
neuroimaging features had no missing value. Using these duplicated and imputed features, we predicted cognitive 
abilities from different sets of neuroimaging features using Random Forest (Breiman, 2001). Ultimately, the stacking 
layer resulted in a predicted value of cognitive abilities based on 45 sets of neuroimaging features.  
 
Random Forest generates several regression trees by bootstrapping observations and including a random subset of 
features at each split (Breiman, 2001). To make a prediction, Random Forest aggregates predicted values across 
bootstrapped trees, known as bagging. We used 500 trees and turned two hyperparameters. First, ‘mtry’ was the 
number of features selected at each branch. Second, ‘min_n’ was the minimum number of observations in a node 
needed for the node to be split further. Using a Latin hypercube grid search of 3,000 numbers (Dupuy et al., 2015; 
Sacks et al., 1989; Santner et al., n.d.), we chose the pair of mtry, ranging from 1 to 90, and min_n, ranging from 2 to 
2,000, based on the lowest root mean square error (RMSE). 
 
To understand how opportunistic stacking made predictions, we plotted Elastic Net coefficients for the set-specific 
layer and SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) for the stacking layer, averaged across 21 test 
sites. For the set-specific layer, Elastic Net made a prediction based on the linear summation of its regularised, 
estimated coefficients, and thus, plotting the coefficient of each neuroimaging feature allowed us to understand the 
contribution of such feature. For the stacking layer, it is difficult to trace the contribution from each feature from 
Random Forest directly, given the use of bagging. To overcome this, we computed Shapley values instead (Roth, 
1988). Shapley values indicate the weighted differences in a model output when each feature is included versus not 
included in all possible subsets of features. SHAP (Lundberg & Lee, 2017) is a method to estimate Shapley values 
efficiently. Thus, SHAP allowed us to visualise the contribution of each set of neuroimaging features to the prediction 
in the stacking layer. Given that we duplicated the predicted values from each set of neuroimaging features in the 
stacking layer, we combined the magnitude of SHAP across the duplicates.  
 
We fit Elastic Net and Random Forest using the glmnet (Friedman et al., 2010) and ranger (Wright & Ziegler, 2017) 
packages, respectively, with the tidymodels (Kuhn & Wickham, 2018/2023) package as a wrapper. We approximated 
the Shapley values (Lundberg & Lee, 2017) using the fastshap package (Greenwell, 2023). The brain plots were created 
via the ggseg,  ggsegDesterieux, ggsegJHU and ggsegGordon packages (Mowinckel & Vidal-Piñeiro, 2020). 
 
Predicting cognitive abilities from polygenic scores 

We developed predictive models to predict cognitive abilities from polygenic scores, as reflected by PGS of cognitive 
abilities from three definitions (Davies et al., 2018; Lee et al., 2018; Savage et al., 2018). We first selected the PGS 
threshold for each of the three definitions that demonstrated the strongest correlation with cognitive abilities within 
the training set. This left three PGSs as features for our predictive models, one for each definition. To control for 
population stratification in genetics, we regressed each PGS on four genetic principal components separately for the 
training and test sets. Later, we treated the residuals of this regression for each PGS as each feature in our predictive 
models. Similar to the predictive models for the set-specific layer of the neuroimaging features, we used Elastic Net 
here as an algorithm. Given that the genetic data do not change over time, we used the same genetic features for 
baseline and follow-up predictive models. We selected participants based on ancestry for predictive models involving 
polygenic scores, leaving us with a much smaller number of children (n=5,776 vs. n=11,868 in the baseline).  
 
Predicting cognitive abilities from socio-demographics, lifestyles and developmental adverse events 

We developed predictive models to predict cognitive abilities from socio-demographics, lifestyles and developmental 
adverse events, reflected in the 44 features. We implemented partial least squares (PLS) (Wold et al., 2001) as an 
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algorithm similar to the mental health features. To deal with missing values, we applied the following steps separately 
for baseline training, baseline test, follow-up training and follow-up test sets. We first imputed categorical features 
using mode and converted them into dummy variables. We then standardised all features and imputed them using K-
nearest neighbours with five neighbours. Note that in a particular site, the value in a specific feature was at 0 for all of 
the observations (e.g., site 3 having a crime report at 0 for all children), making it impossible for us to standardise this 
feature when using this site as a test set. In this case, we kept the value of this feature at 0 and did not standardise it.  
 
Note that the ABCD study only provided some features in the baseline, but not the follow-up. Accordingly, we treated 
these baseline features as features in our follow-up predictive models and combined them with the other collected in 
the follow-up. Supplementary Table 17 listed all of the variables and their calculation. 
 
Commonality analyses 

Following the predictive modelling procedure above, we extracted predicted values from different sets of features at 
each test site and treated them as proxy measures of cognitive abilities (Dadi et al., 2021). The out-of-sample 
relationship between observed and proxy measures of cognitive abilities based on specific features reflects variation 
in cognitive abilities explained by those features. For instance, the relationship between observed and proxy measures 
of cognitive abilities based on mental health indicates the variation in cognitive abilities that could be explained by 
mental health. Capitalising on this variation, we then used commonality analyses (Nimon et al., 2008) to demonstrate 
the extent to which other proxy measures captured similar variance of cognitive abilities as mental health. 
 
First, to control for the influences of biological sex, age at interview and medication information, we residualised 
those variables from observed cognitive abilities and each proxy measure of cognitive abilities. We defined medication 
using the su_y_plus table and generated dummy variables based on the medication's functionality, as categorized by 
the Anatomical Therapeutic Chemical (ATC) Classification System (refer to Supplementary Table 19). We then applied 
random-intercept, linear-mixed models (Raudenbush & Bryk, 2002) to the data from all test sites, using the lme4 
package (Bates et al., 2015). In these models, we considered families to be nested within each site, which allow 
different families from each site can have an unique intercept. We treated different proxy measures of cognitive 
abilities as fixed-effect regressors to explain cognitive abilities. We, then, estimated marginal �� from the linear-mixed 
models, which describes the variance explained by all fixed effects included in the models (Nakagawa & Schielzeth, 
2013; Vonesh et al., 1996) and multiplied the marginal �� by 100 to obtain a percentage. By including and excluding 
each proxy measure in the models, we were able to decompose marginal �� into unique (i.e., attributed to the 
variance, uniquely explained by a particular proxy measure) and common (i.e., attributed to the variance, jointly 
explained by a group of proxy measures) effects (Nimon et al., 2008). We focused on the common effects between a 
proxy measure based on mental health and other proxy measures in four sets of commonality analyses. Note that 
each of the four sets of commonality analyses used different numbers of participants, depending on the data 
availability.  
 
Commonality analyses for proxy measures of cognitive abilities based on mental health and neuroimaging 

Here, we included proxy measures of cognitive abilities based on mental health and/or neuroimaging. Specifically, for 
each proxy measure, we added two regressors in the models: the values centred within each site (denoted �� ) and 
the site average (denoted  !"�). For instance, we applied the following lme4 syntax for the models with both proxy 
measures: 
 
# � β� � β������� ���������� � β������� ���������!" � β#��$%&'��"'"���� � β(��$%&'��"'"���!" �
�1| �&': )!*��+�,           (2) 
 
We computed unique and common effects (Nimon et al., 2008) as follows: 
 
,-�./'����� ������ � ������ ������,�$%&'��"'"

� 0 ��$%&'��"'"
�  

,-�./'�$%&'��"'" � ������ ������,�$%&'��"'"
� 0 ������ ������

�  

1�**�-����� ������,�$%&'��"'" � ������ ������,�$%&'��"'"
� 0 ,-�./'����� ������ 0 ,-�./'�$%&'��"'", (3)                                   

 
where the subscript of �� indicates which proxy measures were included in the model.  
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In addition to using the proxy measures based on neuroimaging from the stacking layer, we also conducted 
commonality analyses on proxy measures based on neuroimaging from each set of neuroimaging features. This allows 
us to demonstrate which sets of neuroimaging features showed higher common effects with the proxy measures 
based on mental health. Note that to include as many participants in the models as possible, we dropped missing 
values based on the availability of data in each set of neuroimaging features included in the models (i.e., not applying 
listwise deletion across sets of neuroimaging features). 
 
Commonality analyses for proxy measures of cognitive abilities based on mental health and polygenic scores 

Here, we included proxy measures of cognitive abilities based on mental health and/or polygenic scores. Since family 
members had more similar genetics than non-members, we changed our centring strategy to polygenic scores. With 
the proxy measure based on polygenic scores, we applied 1) centring on two levels: centring its values within each 
family first and then within each site (denoted �� , ��)) 2) averaging on two levels: averaging of its values within 
each family first and then within each site (denoted  !"�, )!"�). Accordingly, we used the following lme4 syntax for 
the models with both proxy measures: 
 
# � β� � β������� ���������� � β������� ���������!" � β#�*+,����,��- � β(�*+,���!",-�!" � �1| �&': )!*��+�,  (4) 
 
We computed unique and common effects as follows: 
 
,-�./'����� ������ � ������ ������,*+,

� 0 �*+,
�  

,-�./'"��� � ������ ������,*+,
� 0 ������ ������

�  

1�**�-����� ������,*+, � ������ ������,*+,
� 0 ,-�./'����� ������ 0 ,-�./'*+,,(5)     

                                                                          
Commonality analyses for proxy measures of cognitive abilities based on mental health and socio-demographics, 
lifestyles and developmental adverse events 

Here, we included proxy measures of cognitive abilities based on mental health and/or socio-demographics, lifestyles 
and developmental adverse events. We applied the following lme4 syntax for the models with both proxy measures: 
 
# � β� � β������� ���������� � β������� ���������!" � β#��&� �'- .�!���� � β(��&� �'- .�!���!" � �1| �&': )!*��+�, 

(6) 
 
Where soc lif dev shorts for socio-demographics, lifestyles and developmental adverse events. We computed unique 
and common effects (Nimon et al., 2008) as follows: 
 
,-�./'����� ������ � ������ ������,�&� �'- .�!

� 0 ��&� �'- .�!
�  

,-�./'�&� �'- .�! � ������ ������,�&� �'- .�!
� 0 ������ ������

�  

1�**�-����� ������,�&� �'- .�! � ������ ������,�&� �'- .�!
� 0 ,-�./'����� ������ 0 ,-�./'�&� �'- .�!,   (7)    

 
Commonality analyses for proxy measures of cognitive abilities based on mental health, neuroimaging, polygenic 
scores and socio-demographics, lifestyles and developmental adverse events 

Here, we included proxy measures of cognitive abilities based on mental health, neuroimaging, polygenic scores 
and/or socio-demographics, lifestyles and developmental adverse events. We applied the following lme4 syntax for 
the model with all proxy measures included: 
 
# � β� � β������� ���������� � β������� ���������!" � β#��$%&'��"'"���� � β(����!" � β/�*+,����,��- �
β0�*+,���!",-�!" � β1��&� �'- .�!���� � β2��&� �'- .�!���!" � �1| �&': )!*��+�,     (8) 

 
We computed unique and common effects (Nimon et al., 2008, 2017) as follows: 
 
,-�./'�� � ���,3,�,"

� 0 �3,�,"
�  

,-�./'3 � ���,3,�,"
� 0 ���,�,"

�  

,-�./'� � ���,3,�,"
� 0 ���,3,"

�  

,-�./'" � ���,3,�,"
� 0 ���,3,�

�  
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1�**�-��,3 � 0��,"
� � ���,�,"
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� ,           (9)                            

where mh, b, g, and s denote mental health, brain (i.e., neuroimaging), genetic profile (i.e., polygenic scores) and/or 
socio-demographics, lifestyles and developmental adverse events, respectively.  
 

Data and Code Sharing 

We used publicly available ABCD 5.1 data (DOI: 10.15154/z563-zd24) provided by the ABCD study 
(https://abcdstudy.org), held in the NIMH Data Archive (https://nda.nih.gov/abcd/). We uploaded the R analysis script 
and detailed outputs here https://github.com/HAM-lab-Otago-University/Commonality-Analysis-ABCD5.1. 
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Figure 1. Predictive models, predicting cognitive abilities from mental-health features via Partial Least Square (PLS). 

a) predictive performance of the models, indicated by scatter plots between observed vs predicted cognitive abilities 
based on mental health. All data points are from test sets. r is the average Pearson’s r across 21 test sites, and a value 
in the parenthesis is the standard deviation of Pearson’s r across sites. UPPS-P Impulsive and Behaviour Scale and the 
Behavioural Inhibition System/Behavioural Activation System (BIS/BAS) were used for child temperaments, 
conceptualised as risk factors for mental issues. Mental health includes features from CBCL and child temperaments. 
b) Feature importance of mental health, predicting cognitive abilities. The features were ordered based on the loading 
of the first PLS component. Univariate correlations were Pearson’s r between each mental-health feature and 
cognitive abilities. Error bars reflect 95%CIs of the correlations. CBCL = Child Behavioural Checklist, reflecting 
children’s emotional and behavioural problems; UPPS-P = Urgency, Premeditation, Perseverance, Sensation seeking 
and Positive urgency Impulsive Behaviour Scale; BAS = Behavioural Activation System. 
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Figure 2. Predictive models predicting cognitive abilities from neuroimaging via opportunistic stacking and

polygenic scores via Elastic Net. a) Scatter plots between observed vs predicted cognitive abilities based on

neuroimaging and polygenic scores. a) All data points are from test sets. r is the average Pearson’s r across 21 test

sites, and a value in the parenthesis is the standard deviation of Pearson’s r across sites. b) Feature importance of the

stacking layer of neuroimaging, predicting cognitive abilities via Random Forest. For the stacking layer of

neuroimaging, the feature importance was based on the absolute value of SHAP, averaged across test sites. A higher
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absolute value of SHAP indicates a higher contribution to the prediction. Error bars reflect standard deviations across 
sites. c) Feature the importance of polygenic scores in predicting cognitive abilities via Elastic Net. For polygenic 
scores, the feature importance was based on the Elastic Net coefficients, averaged across test sites. We also plotted 
Pearson’s correlations between each polygenic score and cognitive abilities computed from the full data. Error bars 
reflect 95%CIs of these correlations.  
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Figure 3. Feature importance of each set of neuroimaging features, predicting cognitive abilities in the baseline

data. The feature importance was based on the Elastic Net coefficients, averaged across test sites. We did not order

these sets of neuroimaging features according to their feature importance (see Figure 2). MID = Monetary Incentive

Delay task; SST = Stop Signal Task; DTI = Diffusion Tensor Imaging; FC = functional connectivity. 
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Figure 4. Predictive models, predicting cognitive abilities from socio-demographics, lifestyles and developmental 

adverse events via Partial Least Square (PLS). a) Scatter plots between observed vs predicted cognitive abilities based 
on socio-demographics, lifestyles and developmental adverse events. All data points are from test sets. r is the 
average Pearson’s r across 21 test sites, and a value in the parenthesis is the standard deviation of Pearson’s r across 
sites. b) Feature importance of socio-demographics, lifestyles and developmental adverse events, predicting cognitive 
abilities via Partial Least Square. The features were ordered based on the loading of the first component. Univariate 
correlations were Pearson’s correlation between each feature and cognitive abilities. Error bars reflect 95%CIs of the 
correlations. 
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Figure 5. Venn diagrams showing common and unique effects of proxy measures of cognitive abilities based on

mental health, neuroimaging, polygenic scores and/or socio-demographics, lifestyles and developmental adverse

events in explaining cognitive abilities across test sites. We computed the common and unique effects in % based on

the marginal  of four sets of linear-mixed models.  
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