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29 Abstract

30 Introduction

31 Precision, or personalised medicine has advanced requirements for medical data management 

32 systems (MedDMSs). MedDMS for precision medicine should be able to process hundreds of 

33 parameters from multiple sites, be adaptable while remaining in sync at multiple locations, real-time 

34 syncing to analytics and be compliant with international privacy legislation. This paper describes the 

35 LogiqSuite software solution, aimed to support a precision medicine solution at the patient care 

36 (LogiqCare), research (LogiqScience) and data science (LogiqAnalytics) level. LogiqSuite is certified 

37 and compliant with international medical data and privacy legislations. 

38 Method

39 This paper evaluates a MedDMS in five types of use cases for precision medicine, ranging from data 

40 collection to algorithm development and from implementation to integration with real-world data. 

41 The MedDMS is evaluated in seven precision medicine data science projects in prehospital triage, 

42 cardiovascular disease, pulmonology, and oncology. 

43

44 Results

45 The P4O2 consortium uses the MedDMS as an electronic case report form (eCRF) that allows real-

46 time data management and analytics in long covid and pulmonary diseases. In an acute myeloid 

47 leukaemia study data from different sources were integrated to facilitate easy descriptive analytics 

48 for various research questions. In the AIDPATH project, LogiqCare is used to process patient data, 

49 while LogiqScience is used for pseudonymous CAR-T cell production for cancer treatment. In both 

50 these oncological projects the data in LogiqAnalytics is also used to facilitate machine learning to 

51 develop new prediction models for clinical-decision support (CDS). The MedDMS is also evaluated 
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52 for real-time recording of CDS data from U-Prevent for cardiovascular risk management and from 

53 the Stroke Triage App for prehospital triage.

54

55 Discussion

56 The MedDMS is discussed in relation to other solutions for privacy-by-design, integrated data 

57 stewardship and real-time data analytics in precision medicine. 

58

59 Conclusion

60 LogiqSuite is used for multi-centre research study data registrations and monitoring, data analytics 

61 in interdisciplinary consortia, design of new machine learning / artificial intelligence (AI) algorithms, 

62 development of new or updated prediction models, integration of care with advanced therapy 

63 production, and real-world data monitoring in using CDS tools. The integrated MedDMS application 

64 supports data management for care and research in precision medicine.

65
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66 Introduction

67 Standardisation of medical practice has yielded great progress for modern medicine, but the number 

68 of new drugs approved per billion US dollars spent on research and development has halved roughly 

69 every nine years since 1950 in inflation-adjusted terms, implying that the efficacy of medical 

70 progress has gone done by a factor 80 (1-4). Animal models of disease lack human disease variations 

71 (5,6). Precision, or personalised medicine (7) promises significant therapeutic improvements by 

72 prediction, prevention, personalisation or stratification, and participation of patients (8,9). It 

73 depends on distinguishing different disease mechanisms at a detail level where animal models have 

74 limited predictive value. 

75

76 Medical data management for precision medicine 

77 Precision medicine studies clinically relevant i.e., large effects, allowing limited clinical studies (2,10) 

78 and patients stratification in small groups (11,12). Medical data science projects increase in 

79 complexity due to the evaluation of different biomarkers, either separately or in numerous 

80 combinations (13,14). While clinical trials in conventional medicine often limit their criteria by 

81 exclusion of potential comorbidities, precision medicine aims to include real-world data as relevant 

82 cases of human disease (15-18). Statistical analyses combining collections of real-world data (19,20) 

83 and clinical trial recordings (21) challenges the prerequisites for medical data management systems 

84 (medical DMSs; MedDMSs). Appropriate tools, like MedDMSs for medical data science on stratified 

85 interventions are needed for precision medicine (22,23) and lack of these lack slows down the 

86 transition to precision medicine (24). The MedDMSs are also crucial to in data collection for the 

87 mathematical development of artificial intelligence (AI) algorithms (25). 

88 Precision medicine defines new requirements for MedDMSs. In traditional medicine, a MedDMS has 

89 dozens of parameters from a single site. MedDMSs for precision medicine should be able to process 
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90 hundreds or thousands of parameters to allow distinguishing and discrimination between various 

91 forms of disease with different mechanisms and/or requiring different interventions. It is unlikely 

92 that a single site will have relevant numbers for all stratified subgroups, thus the MedDMS should be 

93 able to integrate data from multiple sites, while maintaining compliant with privacy legislation, e.g. 

94 the EU General Data Protection Regulation (GDPR). The integration should include data validation 

95 and coordination for progressive insights. 

96 These requirements together point towards a centrally governed cloud solution that integrates data 

97 from multiple sites, while maintaining the appropriate privacy level and access on a need-to-know 

98 basis for each subset of data. 

99

100 Requirements for a MedDMS for precision medicine

101 Privacy protection legislations, like the GDPR, call for privacy-by-design and fine-tuned data access 

102 (26). Distinct medical conditions and research areas need different data models. Data models should 

103 be plastic for progressive insights and robust for long term data storage and management. Medical 

104 data are inherently complex with static data (e.g. sexes), data with a defined start and/or end date 

105 (e.g. diagnosis), repeated lab test results (e.g. haemoglobin), different kinds of sequence variations 

106 (e.g. mutations, indels, translocations), immunological cytokine profiles (27), and systems biology 

107 (28,29).

108 We are at the eve of implementation of precision medicine (30), but enhanced data management 

109 systems (DMSs) are needed for precision medicine (31,32). Real-world data are important both for 

110 initial model development, but also for real-world feedback in the process of continuous learning for 

111 continual improvement of the models. Most drugs and other interventions lack data for real-world 

112 evidence, beyond the controlled clinical trials, as they are hard to capture in current medical practice 

113 (19). Clinical studies are mostly performed under ideal circumstances with patients that fit the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302600doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302600
http://creativecommons.org/licenses/by/4.0/


114 inclusion and exclusion criteria, which often implying a single disease without comorbidities, while 

115 real patients mostly have multiple comorbidities. Real-world data without tight inclusion and 

116 exclusion criteria increase the complexity of data.

117 When data become more complex, statistical rules request more data, making data sharing crucial 

118 for precision medicine. The GDPR allows the use of anonymous data in research, and pseudonymous 

119 data when patients give their consent. Medical data should be sharable between studies, implying 

120 that data should be findable, accessible, interoperable, and reusable (FAIR) (33,34). Data dictionaries 

121 allow FAIR data dictionaries to added to the data in LogiqSuite. In some European countries, patients 

122 should give informed consent to every scientific study that is performed with their data. Based on 

123 either opt-in or opt-out, it should be possible to include or exclude data from analytics.

124 Data quality is the heart of data science (35). A developed mathematical prediction model is unlikely 

125 to be of better quality than its data input. Handling big and complex medical data are challenges for 

126 MedDMSs and thus for implementation of precision medicine (36-39). Data quality starts with input 

127 validation (40). The MedDMS should also have dynamic forms to minimise redundant question (41). 

128 It should have reports for user feedback, be integrated in care settings for real-world data, as well as 

129 research settings for trial data. Moreover continuous improvement requires data integration with 

130 clinical-decision support (CDS) tools for precision medicine. 

131 In medical practice and research settings, responsible physicians, and investigators, respectively are 

132 assigned to cases, but their departments are also involved. Medical specialists often have authorised 

133 crosstalk between different cases of their patients, with the regulated rights for data viewing 

134 authorisation at the case level to avoid unnecessary complexity. 

135

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302600doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302600
http://creativecommons.org/licenses/by/4.0/


136 Validation of the MedDMS for precision medicine

137 From these requirements, we set up LogiqSuite, a MedDMS to facilitate precision medicine in multi-

138 centre research studies, data analytics, AI development of prediction models, integration of care and 

139 research, and real-world data monitoring in using CDS tools. We describe five different use cases of 

140 LogiqSuite in seven topics of oncology, cardiovascular medicine, pulmonology, and pre-hospital 

141 triage. The use cases included fusing datasets, study monitoring, integrating care and research, 

142 development, and the implementation of a MedDMS. In different use cases, the usability of 

143 LogiqSuite as a MedDMS for precision medicine is evaluated. 

144
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145 Materials & methods

146 Concept

147 Our MedDMS is an integrated solution dubbed LogiqSuite, consisting of LOGIQ applications built on 

148 logic to LOG data Intelligently and Quantitatively. The concept is to record medical case data at the 

149 source to enable medical data science for precision medicine at the levels of patients, subjects, and 

150 data analytics. LogiqCare uses directly identifiable patient data to avoid patients being mix-up in 

151 clinical care. LogiqScience uses pseudonymised subject data for scientific research, laboratory, and 

152 other activities, where sample identity is crucial but direct identification of patients is undesirable. 

153 LogiqSuite allows seamless integration of LogiqCare and LogiqScience to aid collaboration between 

154 physicians and researchers. The data of LogiqCare and LogiqScience are synced to LogiqAnalytics for 

155 data analytics, in real-time, while the data are deidentified and depersonalised by controlling and 

156 minimising identifiable information. Separating LogiqAnalytics from the LogiqCare and LogiqScience 

157 database allows to filter out personal identifiers as well as to filter data not that should not be used 

158 for analytics (e.g., when records with unreliable or unconsented data) or data that do not conform to 

159 the need-to-know basis for analytics. 

160

161 Generic Design

162 All data handling and storage is encrypted in LogiqSuite according to the GDPR, ISO27001, and Dutch 

163 healthcare regulatory guidelines i.e., NEN7510 (42). LogiqSuite is a robust cloud-native solution in 

164 Microsoft Azure cloud. Data are restricted to be handled and stored in the European Economic Area. 

165 The solutions have a web interface accessible with current versions of Google Chrome, Mozilla 

166 Firefox, Microsoft Edge, and (limited) on Safari for iOS and macOS. LogiqSuite is built using modern 

167 software development best practices (continuous integration and delivery, using a test, pilot, and 

168 production deployment, automated tests, various checks, and balances on quality). New 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302600doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302600
http://creativecommons.org/licenses/by/4.0/


169 developments are delivered under a feature toggle which allows for quickly providing new 

170 functionality or security fixes.

171 Data isolation can be achieved by running in a multitenant environment (logical separation) or by 

172 having a dedicated environment per project (physical isolation). Backups are done automatically for 

173 both point-in-time restore (seven days into past) and long-term full backups (weekly are retained for 

174 30 days, monthly for 365 days). Scalability is possible in the compute, data, and web layers to cope 

175 with any workload. Specific details can be found in the technical documentation (43).

176

177 Technical details

178 LogiqSuite uses standard protocols: REST API for querying data and data ingress (migration), 

179 CSV/JSON serialisation for import/export of data, TLS 1.2 for encryption of communication channels, 

180 and OIDC or SAML for integrations with Identity Providers (e.g. Active Directory) (Figure 1). Full 

181 details can be found at the technical paper (44).

182 Data are stored in LogiqSuite as a stream of immutable events, which allows historical 

183 reconstruction. These events are communicated over a shared message bus that any internal service 

184 can subscribe to. For example, the service that is responsible for the web site maps the events to a 

185 database that is optimised for querying data. A service from LogiqAnalytics can take the same events 

186 and map them to a database specially tailored for a specific use case. Notably, sensitive personal 

187 identifiable information (PII) can be removed during this mapping, ensuring that research data are 

188 always anonymous. All data streams in LogiqSuite are evaluated in real-time and maintain 

189 continually in sync.

190 LogiqSuite is developed according to privacy-by-design principles and data sharing on a need-to-

191 know basis, using the cloud-native capabilities of Azure (App Services, Azure SQL, Cosmos DB, Vault, 

192 Service Bus, etc). LogiqSuite relies on Auth0 for authentication-as-a-service (45) i.e., to establish 
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193 connections with customer identity providers in a reliable and secure manner. Customers can also 

194 connect using just their own account, without the need for an enterprise connection. Multifactor 

195 authentication (MFA) is enforced for individual users. 

196 LogiqAnalytics leverages the Microsoft Power BI platform to allow users to collaborate on datasets 

197 and create insightful dashboards. Users of the same project can share dashboards using the 

198 Microsoft Teams environment.

199 Projects that use the Sciencrew platform for publishing content enjoy seamless integration in 

200 LogiqSuite. LogiqSuite is continuously improved (46). LogiqCare & LogiqScience provide a set of REST 

201 APIs for integration with third party systems for data accessibility (47).

202

203 Figure 1. Data flows in LogiqSuite. In brief, data are stored in read-, and write-model data bases, where the 

204 write-model is the single source of true, and the read a fast cache of aggregated data. 

205

206 Case-centred data in LogiqCare and LogiqScience 

207 LogiqCare and LogiqScience provide different access to case data of patients and subjects, 

208 respectively. Depending on the users’ roles, directly identifiable or pseudonymous data are hidden, 

209 viewable, or editable. Depending on the implementation use case, patients, and subjects can be 

210 coupled, e.g. for data science collaboration between care and research projects. The central concept 

211 is the case, which can be fully customised for a certain diagnosis. Users will have worklist for the 

212 tasks to be done at their group or department.

213 Generally, writing and viewing access of data is mostly authorised at the case level, analogous to 

214 medical practice. The patient or the subject is the identifier for the person to which the case belongs. 

215 Organising data in cases allows collaborations between medical departments, like pulmonology and 

216 oncology for cases with comorbidity of asthma and oncology, respectively. Cases may contain 
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217 consultations to structure data in anamnesis, direct measurements, and questionnaires send 

218 (in)directly to the patient. Cases may also contain test cascades to collaborate between 

219 departments, like a pulmonology department requesting blood tests from haematology. These test 

220 cascades will orchestrate the appropriate rights to view and edit, as well as the workload list of 

221 various departments. Test requests are generated by the appealing departments and the test results 

222 and/or test conclusions are entered by the performing departments. Data management can be 

223 organised over the boundaries of any single organisation, as LogiqSuite is fully cloud based and can 

224 allow multiple organisations to collaborate under precise restrictions. This collaboration could be 

225 sharing data at the case level or within test cascades. 

226 Descriptions in the user interface and data fields can be translated to the user’s preferred language, 

227 e.g. to avoid translation of physician-patient interactions, and patient’s language, e.g. in the case of 

228 questionnaires sent directly to patients. When entering choices of options, the user interface is 

229 switch to the user language (e.g. Dutch), while syncing the appropriate English translation to 

230 LogiqAnalytics for data science purposes. 

231

232 Solution design

233 The LogiqSuite application is open to external interactions to other applications, like clinical decision 

234 support tools (e.g., U-Prevent, which is also built by Ortec), and has open API for third party apps 

235 (Figure 2). Data communication can be done using patient, subject, case, or test identifiers.

236

237 Figure 2. LogiqSuite landscape. LogiqSuite (blue) with interactions to other solutions from ORTEC (orange) and 

238 external sources (green). In brief, LogiqCare allows recording of (a) Patient data in LogiqCare, and (b) Subject 

239 data in LogiqScience, with (c) Cases as a central database. Case data are (d) synced to LogiqAnalytics for real-

240 time descriptive statistics, and (e) ready-to-use for medical math, using AI to develop new prediction models. 
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241 Prediction models can be (f) productised for risk predictions for clinical-decision support, that are (g) coupled 

242 with the central cases. Central cases also allow (h) open API communication with third party apps.

243

244 Data transfer access

245 Data from other databases can be mapped and imported into LogiqSuite by extract – transform – 

246 load (ETL) procedures. The ETL process allows verifiable, reliable, and repeatable data import from 

247 different sources into LogiqSuite. During the Transform step of ETL, data curation was also 

248 performed on the data from the various sources.

249

250 Data science in LogiqAnalytics

251 LogiqAnalytics consists of a SQL database with numerical data and predefined choice options. All 

252 relevant data are real-time synced to LogiqAnalytics. Some data might enhance personal 

253 identifiability, like dates of birth and visits, and free text. In analytics the dates are converted to 

254 numerical data like age at diagnosis or duration of disease. Free texts are not suitable for analytics, 

255 so data intended to be analysed should be grouped into option prior data entry. The database 

256 structure in LogiqAnalytics can be configured to the needs of the project using SQL view tables, e.g. 

257 mapped into a relevant data model structure. This table structure also allows different parties to see 

258 different domains of data. 

259 Additionally, it supports proper metadata documentation by an integrated data dictionary. The 

260 deidentified data are available in real-time for descriptive analytics in generated reports with 

261 Microsoft Power BI, Excel, SPSS, and other applications. The data can also be used for advanced 

262 analytics and AI-powered model development.
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263 Results

264 Although biomedical research has some generic principles, it also has a shear infinite number of 

265 putative solutions. Implementation in different projects is preceded by customization and regulation 

266 of user access.

267

268 Customisation process

269 DMSs for Personalized medicine should be flexible to allow the rapid creation of complex databases 

270 for collaboration of many scientific groups. Database design should be plastic and robust for 

271 progressive insights and historical consistency. Upon saving data, templates are used to build 

272 entities, that warrant data integrity independent of later database changes. The databases are 

273 configured using data templates for cases, consultations, and test requests, test results, and test 

274 conclusions. These are fully designable using standard building blocks in LogiqCare and LogiqScience.

275 Users lead the customisation process by defining their templates in an Excel file, supported by a 

276 medical data scientist of the LogiqSuite team (Figure 3). The medical data scientists provide crucial 

277 input for data stewardship before data collection to facilitate real-time data analytics. After 

278 verification by a medical data scientist, the Excel template is converted to a Logiq template on the 

279 pilot environment. User interface of templates could be translated to any language e.g., for 

280 international studies. The templates function as data-entry screens in the pilot environment. Next, 

281 template validation is done by an appointed user. After customer approval, the template is made 

282 available on the production environment. Changes could be implemented rapidly, e.g. if needed 

283 within a day, while maintaining the careful multistep process.

284 In the LogiqAnalytics database data could be regrouped if desired for certain analytics, but in general 

285 the structure of the LogiqCare and LogiqScience template is used. Data can be enriched with a user-

286 defined data dictionary, to give meaning to values for analysis, and to facilitate FAIR data exchange. 
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287

288 Figure 3. Template customisation process. In brief, (a) medical data scientist (MDS) provides a template to 

289 designated (b) medical researcher (MRes) who will design the desired data flows with MDS advice. When 

290 finalised, (c) the MDS will run the python script to upload the template in the Pilot environment, where (d) the 

291 medical researcher will validate the template, for (e) improvements or (f) to instruct the MDS to (g) transfer 

292 the template to the production environment.

293

294 Regulation of user access 

295 Access control is supervised using a documented four-eyes principle i.e., the person granting access 

296 is not the same person as executing access. Project leaders assign the persons to decide on role- 

297 (RBAC) and attribute-based access control (ABAC), reading and writing rights for a maximum of one 

298 year per request. The requests are logged automatically for traceability and executed manually by 

299 ORTEC to avoid abuse. 

300 LogiqSuite provides its own Azure AD as Identity Provider (IdP) to which members of another 

301 organisation can be invited using federation identity. This implies that company policies for data 

302 access apply. Authenticating to the LogiqSuite Azure AD requires an additional MFA, that might be 

303 merged into the external Azure AD’s authentication policy. Single sign-on is supported. For individual 

304 users, LogiqSuite can provide its own Azure AD as IdP, equipped with MFA that can be enforced.

305 User access is granted by the project lead and executed by ORTEC to obey the four-eyes principle. 

306 Only specific ORTEC users have roles with exclusive rights, like Admin, to manage accounts, 

307 departments, and groups, and Configurator, to edit studies and templates for data, e-mails, and 

308 reports. Roles for customer users are constrained to User and Viewer, limited by attributes for 

309 accounts, departments, and Care and/or Science. To avoid unintended interactions between 

310 functions, distinct RBAC and ABAC are separated for each task. After login, LogiqSuite users with 

311 multiple functions can switch between their active functions with distinct RBAC and ABAC, to avoid 
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312 unintended control due to combining functions, e.g. an editing right in function A should not change 

313 a viewing right in function B. 

314

315 Evaluation of precision medicine use cases.

316 LogiqSuite has three different privacy levels i.e., directly identifiable, pseudonymous, and (shear) 

317 anonymous for care, research (science), and analytics, respectively. This allows users to select their 

318 desired balance between protection of patient and data safety. 

319 In seven different biomedical projects we could identify five different use-cases for precision 

320 medicine: (I) reorganisation and integration of data analytics for descriptive statistics in oncology, (II) 

321 real-time monitoring of a multicentre clinical study for pulmonary disease, (III) integration of clinical 

322 patient data with GMP data in oncology, (IV) AI development of for clinical decision support (CDS) 

323 models in oncology, and (V) integration of real-world data with CDS in cardiovascular risk 

324 management and prehospital triage. 

325

326 I. Integration of databases for analyses

327 Different databases contained parts of the clinical follow-up data on minimal residual disease (MRD) 

328 from Acute Myeloid Leukaemia (AML) (48). In this research project, data was available in different 

329 databases from haemato-oncology of Adults in the Netherlands (HOVON) (49) and local databases 

330 built by the Amsterdam UMC, which had data on patient-survival follow-up and follow-up 

331 leukaemia-aberrant immune phenotypes (LAIPs), respectively (Figure 4). A common data model was 

332 crafted combining the structure of these databases in a subject-case structure with consults for 

333 direct analysis, and test cascades with test-requests for samples, test-results for direct analyses, and 

334 test-conclusions for LAIP-specific data. 
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335 A research MedDMS was built in LogiqScience, and the data were synced to LogiqAnalytics. The data 

336 consist of subject, the genetic characterisation of their AML, the characterisation, classification, and 

337 quantification of LAIPs, and therapy and survival data. Data was loaded using ETL from a csv file out 

338 of a query from the HOVON database and multiple local data management systems in Amsterdam 

339 UMC and GIMEMA in Rome. 

340

341 Figure 4. Extract-Transform-Load integration for AML. In brief, (a) data was extracted from different 

342 databases, which were coupled with unique identifiers, (b) data transformation consisted of mapping to the 

343 LogiqSuite’s data structure and values, that were translated and curated before loading into LogiqSuite, (c) 

344 which are written and stored as F-sharp code, to allow tracking and reusing of the procedure, and (d) data are 

345 loaded in LogiqSuite and organized in Patient or Subject – Case – Consults & Test cascade structures.

346

347 II. Real-time monitoring of a multilocation clinical study

348 Clinical studies in precision medicine are often performed at multiple locations in different 

349 languages, while they ideally should be monitored, orchestrated, and managed at a central location 

350 in real time. The results are real-time synced for data analytics. The LogiqScience orchestrates the 

351 clinical study as a central electronic case report form (eCRF) in LogiqScience. Different attributes 

352 were used for ABAC to limit data access on a need-to-know basis, e.g. by only providing access to 

353 subjects of a user’s centre. Two additional institutes contributed data on lifestyle intervention and 

354 air pollution exposure, which had different roles limiting which subset of the Subject’s data could be 

355 accessed. Additionally, Test cascades allowed cooperation between departments while properly 

356 controlling data access on a need-to-know basis. 

357 The Long Covid use case (50) belongs to the precision medicine for lung diseases (P4O2) research 

358 project, a multi-site clinical study for lung diseases for precision medicine, including a Long Covid 

359 study. Data was entered by five different inclusion centres directly into LogiqScience as an eCRF. The 
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360 eCRF templates used by the researchers were designed in English, but the questionnaire templates 

361 for the patients were available in Dutch. The multilingual properties of LogiqCare and LogiqScience 

362 offer these possibilities, but LogiqAnalytics is synced in English only. Choices, dates, and numerical 

363 values were synced to LogiqAnalytics, allowing real-time monitoring of the progress in subject 

364 inclusion and data completeness by Power BI dashboards (Figure 5). Data on air pollution by 

365 ultrasonic personal aerosol sampler was transferred into the database by ETL. Researchers could 

366 monitor the data availability dashboard and provide real-time feedback to users, such that data 

367 could be completed in time. As a result of the real-time sync to LogiqAnalytics, as soon as the data of 

368 the last subject was entered into the eCRF, the analytics database was ready for analysis. 

369

370 Figure 5. Early study dashboard P4O2 Covid showing trial progress state in April 2022. In brief, data are 

371 synced in analytics, showing real-time study overview. Arrows point to missing data, which are indicated in 

372 grey. This information was used for real-time identification of missing data, and early corrective actions.

373

374 III. Integration of care and precision medicine production.

375 The AIDPATH project aims to set up AI-powered decentralised production of advanced (CAR-T cell) 

376 therapies in hospitals all over Europe. Production of precision medicine or advanced therapeutic 

377 medicinal products, like the production of autologous CAR-T cells, requires integration of clinical 

378 care and good manufacturing practice (GMP) production data for advanced therapies. Using 

379 LogiqSuite, it is possible to integrate a patient’s clinical care data in LogiqCare with pseudonymised 

380 CAR-T cell production data in LogiqScience (Figure 6).

381 The AIDPATH project consortium aims to have AI-guided production of autologous chimeric antigen 

382 receptor T-cells (CAR-T cells) distributed over various UMCs (51). In the AIDPATH project, two flows 

383 are combined, a clinical with patient data with a GMP production with subject data, allowing direct 
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384 patient identification where needed, and preserving patient privacy where possible. Specific 

385 pretreatment patient data are crucial for CAR-T cell production and thus integrated in shared cases 

386 between patients and subjects. Some details are only needed for care or manufacturing purposes, so 

387 case data might be shared, but underlying consultations and test cascades could be unshared. This 

388 allows seamless collaboration between care and manufacturing, ensures the pseudonymised 

389 production data are unambiguously coupled to the patient, without sacrificing patient privacy (52). 

390 The decentralised AIDPATH production system uses laboratory devices to automatically process the 

391 CAR-T cells. The devices are digitally connected to the COPE (Control Optimise Plan Execute). COPE 

392 acts as a manufacturing execution system and connects to the devices using their respective 

393 software interfaces. This enables detailed live data logging, process control as well as online 

394 production parameter modification. The COPE Software acts as a user interface for the automation 

395 environment showing the pseudonymised patient data from the LoqiqSuite platform. Using the 

396 LogiqSuite platform, data from all decentralised production sites will be registered in a standardised 

397 manner. The resulting LogiqAnalytics database will uniformly combine data from all sites and be 

398 crucial for continuous learning and model development.

399

400 Figure 6. Integration of care and GMP processes in AIDPATH. In brief, UMC 1 has (a) care and (b) CAR-T cell 

401 productions of (c) autologous cells, coupling the products and (d) their quality control to the (e) patient 

402 treatment. Care will be (f) recorded in LogiqCare and (g) ATMP / GMP CAR-T cell production and (h) quality 

403 control in LogiqScience, which are (i) interconnected. If a clinical-decision tool is developed this can be (j) used 

404 to determine a desired CAR-T cell product from personal clinical data, and (k) provide this information to adapt 

405 the production process. Data within a case (l) contains consults and test cascades (Figure 4), (m) data from 

406 other institutes (UMC 2) is added to LogiqAnalytics and all data are gathered for (n) continual learning to 

407 improve the clinical-decision support tool.

408
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409 IV. AI development from a database

410 In two oncological projects, AML-MRD and AIDPATH, data from LogiqAnalytics is used for machine 

411 learning algorithms to develop predictive models for survival analysis with competing risks, that can 

412 be used as CDS tools (53). The data was imported from other software solutions (e.g., Access-, SPSS-, 

413 and Excel-databases) using ETL procedures and integrated in LogiqScience. The data from AML-MRD 

414 has been described above (e.g. Figure 4). The data for the AIDPATH use case 5 was derived from 

415 multicentre clinical trial ARI-0001 (54,55) and ARI-0002h (56). 

416 In the AML-MRD case the competing risks were graft versus host disease (GvHD) and toxicity 

417 (chemotherapy related risk), and tumour relapse. In the CAR-T cell case the competing risks were 

418 cytokine-release syndrome, immune suppression, and tumour relapse.

419 Data from LogiqScience was synced to LogiqAnalytics. Available and putative relevant biomedical 

420 parameters were selected, based on their potential mechanistical relevance and their timely 

421 availability for prognosis in practice. Machine learning was employed directly on data in 

422 LogiqAnalytics (57). All these activities can be performed directly on the real-time synced data in 

423 LogiqAnalytics, allowing the CDS prediction model to be updated without having to rebuild the 

424 machine learning flow. Currently, we are working on the parameter selection and data analytics in 

425 these projects to develop a prediction model.

426

427 V. Real-world data integration with clinical-decision support tools

428 ORTEC has developed and connected two CDS tools, U-Prevent and the Stroke Triage App, to 

429 LogiqScience to collect data directly after CDS use. Since LogiqAnalytics is fed real-time from 

430 LogiqCare and LogiqScience, this allows continuous learning of the CDS prediction model. After 

431 expert evaluation for MDR this results in continual learning to improve the AI CDS tools. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302600doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302600
http://creativecommons.org/licenses/by/4.0/


432 U-Prevent is an MDD-certified clinical decision support solution with multiple prediction models for 

433 cardiovascular risk management. Practical use is greatly enhanced by using data directly from 

434 electronic health records (58). U-Prevent allows users to enter missing data or to use imputation 

435 (59). In the recent PROSPERA project (unpublished results), we have coupled LogiqSuite to U-Prevent 

436 (see Figure 2), allowing it to prefill data in U-Prevent from the primary care electronic health records 

437 in U-Prevent. After data revision and updates by the physician, the U-Prevent CDS tool can be used 

438 in patient care to support share decision making and allocating appropriate care. At the end of the 

439 U-Prevent session, the updated data and CDS outcomes are stored in LogiqScience. Hereby, 

440 LogiqSuite facilitates efficient use of a clinical decision support tool and automatic registration of 

441 follow-up data, in this case in a pseudonym way due to local interpretations of the GDPR. Moreover, 

442 the analytics environment yields real-time dashboard with included patients, genders, risks profiles, 

443 prevention strategies, and more, that can easily be selected per primary care centre. These key-

444 performance indicators (KPIs) facilitate benchmarking of various practitioners.

445 For prehospital triage of patients with suspected acute stroke we developed the Stroke Triage App, a 

446 MDR class I CDS tool (unpublished results), based on the risk predictions and time tables of PRESTO-

447 2 implementation study (60,61) and disease history and routing information. In brief, the Stroke 

448 Triage App supports routing decisions for emergency care by advising on the adequate hospital level 

449 for stroke care in relation to the patient’s prehospital triage assessment. Pseudonymous patient 

450 identifiers, data from prehospital triage, GPS location, routing information, and advised outcome are 

451 stored in LogiqScience. During the study the data can be enriched with clinical follow-up data. This 

452 will allow the continual evaluation of the Stroke Triage App and facilitate continuous improvement 

453 of the underlying CDS prediction model for prognosis used in routing decisions.
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454 Discussion

455 Precision medicine stratifies diagnosis-treatment combinations between similar diseases, using large 

456 and complex datasets. This implies the need for good quality large databases of complex medical 

457 data that should be GDPR compliant, collect real-world data, integrate care and research, allow FAIR 

458 data exchange with multiple parties, communicate with clinical-decision support tools, easy to adapt 

459 for progressive insight, facilitate real-time analysis, and provide ready-to-use data for AI methods to 

460 develop new prediction models for prognostic, diagnostic and therapeutic purposes. In different use-

461 cases we have described a MedDMS system that fulfils the basic criteria. The different approach of 

462 the integrated solution does not end but opens important subjects of discussion.

463

464 Data protection 

465 MedDMSs for precision medicine goes beyond data sharing in the cloud and demands a higher level 

466 of traceable procedures. This includes documentation of implementation, data stewardship for the 

467 traceability of design modification, data validation steps, and privacy protection by a fine-grained 

468 authorisation network. The automatic recorded and verified process documentation becomes more 

469 important where research complexity grows in number of parameters and inclusion centres. The 

470 plan for data management is crucial, so a MedDMS cannot seen independent from its procedures to 

471 maintain confidentiality of data and consistency of the database. 

472 LogiqSuite allows integration of medical care and clinical research with real-time available 

473 descriptive statistics, and machine learning in one solution, with different and appropriate privacy 

474 levels for each use case. LogiqSuite distinguishes itself from other MedDMS by its interactions with 

475 CDS prediction models for precision medicine as shown in the two double use-cases. LogiqSuite has 

476 prepares real-world data in real-time for development. Data from LogiqSuite is directly available in 

477 CDS tools, facilitating their easy use. This is linked to the feedback of the (modified) input and results 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302600doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302600
http://creativecommons.org/licenses/by/4.0/


478 into LogiqSuite. Syncing these data in real-time to LogiqAnalytics facilitates the cycle of continual 

479 learning for precision medicine.

480 Sharing data from different study sites applies standard and interoperable solutions for 

481 implementing and managing medical registries to each site (62). LogiqSuite allows this with the same 

482 data templates, but ABAC restricts data access to those authorised to the relevant attributes e.g., 

483 institutes. Input validation is an important asset of data stewardship (40). The medical data scientists 

484 guide the use of these and other features in the MedDMS implementation.

485

486 Comparing MedDMSs

487 LogiqSuite is not the first cloud MedDMS. REDCap exists since 2009 (63) and is used for multilocation 

488 eCRFs (64). Castor EDC (65) and FIMED (66) also support storage of medical research data. Castor 

489 EDC has a signable integrated informed consent for research purposes, which should technically be a 

490 trusted third party (TTP) i.e., with separate access authentication. LogiqSuite distinguishes from 

491 other MedDMS using four-eyes principles to guard data structure, quality, and access. Since this 

492 process loops in the medical data scientists, they can also give advice for dynamic templates and live 

493 analytics, which are new for many medical researchers. LogiqSuite also has added template 

494 translations, sending of questionaries to patients or subjects, connectivity with open API, and 

495 support with data transfer from other sources by ETL. LogiqSuite users are charmed by the real-time 

496 study monitoring, which is suitable for monitoring study completeness and exerting needed 

497 corrective actions. 

498
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499 Integrated versus federated MedDMS.

500 Not all involved in precision medicine choose to integrate MedDMSs in a single solution. Some 

501 parties propose blockchain with communication tools between physically separate MedDMSs (67). 

502 Separate MedDMSs offers some easy advantages for privacy protection, but ABAC and RBAC 

503 strategies on a need-to-know basis could also do this. Federated learning methods in healthcare are 

504 developed to allow machine learning to be exerted. The major challenge in machine learning is the 

505 poor data quality yielding poor CDS models. While federated learning is pioneered in various 

506 projects, methods for data stewardship and curation in federated learning still needs to be explored.

507 Separate MedDMSs will have different interpretations of parameters and different data quality. Poor 

508 quality data could be curated, which is a critical step in machine learning (68). Input validation and 

509 data curation techniques might be suboptimal for federated approaches (69,70). Options are to 

510 perform this either centrally (71) or by general rules (e.g. x times the standard deviation) (72). In our 

511 experience, these methods have limited efficacy for curing complex, large, divergent medical data 

512 with missing properties. Other methods for data curation are needed for efficient use of federated 

513 learning techniques. Especially, systematic shifts due to confounders between data subgroups 

514 should be detected and understood. Ideally data stewardship assesses an anonymised data set 

515 completely, since this facilitates the application of the complex rules for data stewardship more 

516 appropriately.

517

518 Beyond the MedDMS.

519 Even if many medical research groups collaborate in single database, there will always be medical 

520 data beyond the current collaborations, which also needs to be integrated for scientific research. So 

521 MedDMSs should be prepared for FAIR data exchange. Medical data are complex by their nature, 

522 consisting of various domains (e.g. anamnesis, follow-up, disease classifications, lab tests, 

523 medication) and includes various types of data (e.g. dates, values, repeated measurements), which 
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524 use various methods for data classifications. After early and continued initiatives for Observational 

525 Medical Outcomes Partnership (OMOP) common data model (73,74), the scientists expanded this to 

526 collaborate in different settings for FAIR data exchange (75). Common data models are important for 

527 various purposes and crucial for AI (76). Systems are being developed to add FAIR standards de novo 

528 to MedDMSs (77). Multiple initiatives exist to draw data details of FAIR sharing (78), many in 

529 national or regional settings. Combining complexity of medical data and the regional approach, we 

530 foresee that there will be multiple relevant common data models and corresponding data 

531 dictionaries. The LogiqAnalytics data can be filled with all relevant predefined common data model 

532 structures, using SQL views. In LogiqSuite multiple data dictionaries can be integrated for FAIR data 

533 exchange.
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534 Conclusions

535 LogiqSuite is a MedDMS that integrates directly identifiable care data, pseudonymous science data 

536 and minimal identifiable to anonymous analytic data. LogiqSuite was evaluated in five different use 

537 cases for precision medicine, including data research, multilocation study monitoring, integration of 

538 research and production data with care data, real-time use of data for prediction model 

539 development, and input and registration of data from CDS tools. The value of this MedDMS was 

540 shown in different biomedical fields, including oncology, cardiovascular risk management, 

541 pulmonology, and prehospital triage. 

542 LogiqSuite is unique in supporting real-time data analysis in care settings, which is also a beloved 

543 feature for scientific researchers. Moreover, LogiqSuite supports collaborative clinical care and 

544 research/laboratory workflows. The data can originate from manual entry in clinical care, eCRFs of 

545 research studies, clinical-decision support tools, import via ETL from third-party sources, and 

546 through FAIR-compliant open API. Available data can be monitored in real-time, providing tools for 

547 data monitoring and continuous feedback loop for data analytics and prediction model 

548 development. In clinical practice this facilitates continual learning with real-world data, since MDR 

549 legislation require a clinical evaluation for the validity of updated prediction models in every cycle. 

550 Appropriate tools are crucial for KPI monitoring and progress in care and science. The LogiqSuite 

551 MedDMS application supports data management and science for advancement to precision 

552 medicine by data collection and collaboration, facilitating analytics and machine learning, and 

553 implementation of CDS tools. 

554
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572 Abbreviation list

573 ABAC Attribute-Based Access Control 

574 AI Artificial Intelligence

575 AML Acute Myeloid Leukaemia

576 CAR-T Chimeric Antigen Receptor T-Cells 

577 CDS Clinical Decision Support 

578 DMS Data Management System

579 eCRF Electronic Case Report Form 

580 ETL Extract Transform Load

581 FAIR Findable, Accessible, Interoperable, and Reusable 

582 GDPR General Data Protection Regulation

583 GMP Good Manufacturing Practice

584 IdP Identity Provider 

585 LAIP Leukaemia-Aberrant Immune Phenotype

586 MedDMS Medical Data Management System

587 MDR Medical Device Regulation

588 MFA Multi-Factor Authentication

589 MRD Minimal Residual Disease 

590 OMOP Observational Medical Outcomes Partnership

591 PII Personal Identifiable Information

592 RBAC Role-Based Access Control

593 TTP Trusted Third Party

594
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