1		
2		<i>Clostridium tetani</i> bacteraemia in the plague area in France: two cases.
3		
4		Boualam M.A., ^{1,2} †, Bouri A. ^{1,2} †, Signoli M., ³ Drancourt M., ^{1,2}
5		Caputo, A., ¹ Terrer E., ^{1,2,4} Aboudharam, G. ^{1,2,4}
6		
7	1.	Aix-Marseille University, IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille,
8		France.
9	2.	IHU Méditerranée Infection, Marseille, France.
10	3.	Aix-Marseille University, CNRS, EFS, ADES, UMR, 7268 Marseille, France.
11	4.	Aix-Marseille University, École de Médecine Dentaire Marseille, France.
12		
13	† These f	irst authors equally contributed to this work.
14	Correspo	nding author: Aboudharam Gérard, Aix-Marseille University, École de Médecine
15	Dentaire	Marseille, France. IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille, France.
16	IHU Médi	terranée Infection 19–21 Boulevard Jean Moulin 13005, Marseille, France.
17	E-mail ad	dress: <u>gerard.aboudharam@univ-amu.fr</u> .
18	Phone nu	mber: (+33) 04 13 73 20 01.
19		
20	Keyword	s: <i>Clostridium, Clostridium tetani</i> , tetanus, palaeomicrobiology, palaeoculturomics.
21	Abstract	word count: 188.
22	Text word	d count: 2,256.

23 ABSTRACT

24	Background: Paleoculturomics aims to culture ancient pathogens from human remains such as
25	dental pulp, which traps a drop of blood at the time of the death, to diagnose bacteraemia.
26	Clostridium tetani (C. tetani) bacteraemia is a rare situation, with only four case reports in the
27	literature.
28	Methods: Fourteen teeth collected from 14 individuals buried at the site of the 1590 plague in
29	Fedons, France, were surface decontaminated before the pulp was cultured under strict
30	anaerobiosis with negative controls. Colonies were identified by mass spectrometry and whole
31	genome sequencing, and C. tetani-specific PCR was performed using DNA extracted from dental
32	pulps, calculus and sediments.
33	Results: C. tetani cultured in two dental pulp specimens from two individuals was firmly
34	identified by MALDI-TOF mass spectrometry, and whole genome sequencing confirmed
35	toxigenic C. tetani. In the remaining twelve individuals, no such C. tetani was recovered and
36	further detection by PCR and palaeoculturomics of dental calculus and sediments surrounding
37	the teeth in these two individuals remained negative.
38	Conclusion: Toxigenic C. tetani which did not result from mere environmental contamination,

39 caused bacteraemia in two individuals from a modern time plague site in France.

40 **INTRODUCTION**

- 41 *Clostridium tetani* (*C. tetani*) is a gram-positive, spore-forming, rod-shaped anaerobic bacterium
- 42 the toxigenic strains of which cause tetanus (1). C. tetani forms spores with resistance to heat,
- 43 desiccation and oxygen exposure, allowing *C. tetani* to survive for decades in environments such

44 as soil (1). The *C. tetani* 2.8 Mb genome comprises a plasmid potentially encoding tetanus toxin

45 TeNT (2)(3), and such toxigenic *C. tetani* strains cause deadly tetanus after local infection and,

46 rarely, bacteraemia which has only been reported in four cases (**Table 1**).

47 Here, our unanticipated observation of two additional cases of toxigenic *C. tetani* bacteraemia

- 48 in two 16th century individuals, questioned the natural history of this underreported form of *C*.
- 49 *tetani* infection.
- 50

51 MATERIALS AND METHODS

Archaeological investigations: The Fédons burial site was discovered during preventive 52 53 archaeology surveys carried out in anticipation of the construction of a new train line (4). This 54 site is located 3.5 km west of the town of Lambesc in France (43°392172 North, 5°152452 East). The site is unambiguously related to a 1590 plague infirmary as deduced from confrontation of 55 56 historical sources with archaeological and anthropological observations (5) and confirmed after 57 palaeomicrobiological investigations firmly documented the causative Yersinia pestis (Y. pestis) by using a DNA investigations and immunochromatographic ones (5,6). This mass grave 58 59 contained 133 skeletons, buried at the same time and in the same place (4). Fourteen tooth samples were collected from 14 of these individuals of different ages and sex, as determined 60 using the methods presented by Schmitt A. et al., 2022 and Bruzek J. et al., 2002 (7, 8). For 61

62 palaeomicrobiological investigations, one tooth from each individual was placed into an 63 individual plastic bag with a note containing information on the individual and the sampling site. 64 The teeth were kept at room temperature in a dedicated palaeomicrobiology laboratory at IHU 65 Méditerranée Infection, Marseille, France, in accordance with French regulations for 66 archaeological studies. 67 Paleoculturomics: Each tooth yielded calculus before the external surface was disinfected with 68 99% ethanol and bleach for 30 seconds. All further steps were performed under an anaerobic 69 hood (Don Whitley, Bingley, UK) in order to avoid exposure to atmospheric oxygen in the 70 presence of negative controls, as previously described (9). All the instruments used for tooth 71 opening and dental pulp extraction were sterilised before being placed under the anaerobic 72 hood. Each tooth was cut in half, and the pulp of each half tooth was scraped into a 1.5 mL 73 Eppendorf tube and hydrated with 10 μ L of sterile phosphate buffered saline (PBS) (**Figure 1**). 74 The same procedure was repeated with previously preserved dental calculus. Then, 5 µL of 75 dental pulp and 5 µL of rehydrated dental calculus were separately inoculated onto a 5% sheep 76 blood agar petri dish (Becton Dickinson GmbH, Heidelberg, Germany) and 5 µL onto Brain Heart 77 Infusion Broth medium (Merck KGaA, Darmstadt, Germany) supplemented with haemin (Merck 78 KGaA, Darmstadt, Germany) (**Figure 1)**. The negative control consisted of 10 μL sterile PBS 79 inoculated onto a 5% sheep blood agar plate. During the entire handling process, a culture 80 medium plate was opened into the anaerobic hood to control for hood sterility. Each inoculated 81 blood agar plate was placed in a bag with an anaerobic generator (BD GasPak, EZ Pouch 82 Systems, Becton Dickinson, Franklin Lakes, NJ, US) and incubated at 37 °C under a 5% CO₂ 83 enriched atmosphere (3). Such bags also contained one negative control plate.

84 **aDNA extraction:** aDNA was extracted from dental pulp and calculus using a previous reported 85 protocol, with modifications (10). In brief, 1 mL of lysis buffer (900 μ L of 0.5M EDTA, 10 μ L of 25 86 mg/mL proteinase K, 90 µL of nuclease free water) was incubated with pulp or dental calculus 87 for 14 hours at 37 °C in a rotative wheel at 500 rpm. A negative control was performed from the 88 beginning of extraction and consisted of nuclease free water. After incubation, centrifugation at 89 132000 g for two minutes was performed and the supernatant was transferred to a sterile 50 90 mL Falcon tube containing10 mL of binding buffer (3.6 mL of nuclease free water, 7.16 g of 91 guanidine hydrochloride powder, 6 mL of isopropanol, 150 µL of freshly prepared 5% Tween-20, 92 and 450 µL of 3M sodium acetate (pH, 5.2) with vortex. Then, 700 µL of the solution was 93 transferred on Qiagen MinElute Silica Spin columns, previously placed in a QIAvac vacuum 94 systems (Qiagen, Hilden, Germany) after complete aspiration of the added solute and this step was repeated until the full 11 mL of the sample had been adsorbed on the column. To wash, we 95 96 added 700 µL of PE buffer to the MinElute column and centrifuged for one minute at 132000 g. 97 To elute DNA, 12.5 μL of TE buffer were added with centrifugation for one minute at 132000 g, 98 this step was repeated twice in order to obtain a final volume of 25 μ L.

99

PCR-sequencing: To confirm the presence of *C. tetani* in the ancient pulps, a PCR targeting a
 240-bp tetanospasmin (tent) gene of *C. tetani* was performed, using the following primers set
 by Guo *et al*, 2012 (11): F1-ATGCGCCATCGTATACTAAC; R1-CCATCTTTCGGATAACCTACA; F2 TATGTATTTGACAAATGCG; R2-CTTTCGGATAACCTACAAT. The thermal profile included an initial
 five-minute denaturation step at 95 °C followed by 45 cycles consisting of 30 seconds of
 dissociation at 95 °C, 30 seconds of annealing at 51 °C and 60 seconds elongation at 72 °C.

106	Amplification products observed by electrophoresis gel migration were confirmed by
107	sequencing after a purification step and sequence alignment against tetanus toxin and other
108	<i>Clostridium</i> species toxins using MEGA X (12). The extraction negative control followed the
109	same steps throughout the manipulation.
110	
111	Whole genome sequencing (WGS): The two C. tetani isolates were further investigated by WGS
112	using Illumina MiSeq (Illumina Inc., San Diego, CA, USA) following a previously reported protocol
113	(13). Reads were trimmed by removing adapters using the CLC genomics workbench and
114	decontaminated using BBduk tools from Galaxy Europe online software (Galaxy,
115	https://usegalaxy.eu/) (14). The resulting reads were analysed online with taxonomic sequence
116	classification Kraken2 software and visualised by Krona Pie chart on Galaxy Europe
117	(Supplementary data, Figure 1). Generated reads were assembled using Unicycler software
117 118	(Supplementary data, Figure 1) . Generated reads were assembled using Unicycler software (15)and assembled genomes were blasted against the NCBI database to confirm identity. After
118	(15)and assembled genomes were blasted against the NCBI database to confirm identity. After
118 119	(15)and assembled genomes were blasted against the NCBI database to confirm identity. After obtaining the whole genome sequence, annotation was performed on the Bacterial and Viral
118 119 120	(15)and assembled genomes were blasted against the NCBI database to confirm identity. After obtaining the whole genome sequence, annotation was performed on the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (<u>https://www.bv-brc.org</u>) (16), including antibiotic
118 119 120 121	(15)and assembled genomes were blasted against the NCBI database to confirm identity. After obtaining the whole genome sequence, annotation was performed on the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (<u>https://www.bv-brc.org</u>) (16), including antibiotic resistance and virulence genes analysis (Supplementary data, Figure 2). Finally, taxonomic
118 119 120 121 122	(15)and assembled genomes were blasted against the NCBI database to confirm identity. After obtaining the whole genome sequence, annotation was performed on the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (<u>https://www.bv-brc.org</u>) (16), including antibiotic resistance and virulence genes analysis (Supplementary data, Figure 2). Finally, taxonomic classification based on DNA-DNA hybridisation (DDH) was performed using Type (Strain)
118 119 120 121 122 123	(15)and assembled genomes were blasted against the NCBI database to confirm identity. After obtaining the whole genome sequence, annotation was performed on the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (<u>https://www.bv-brc.org</u>) (16), including antibiotic resistance and virulence genes analysis (Supplementary data, Figure 2). Finally, taxonomic classification based on DNA-DNA hybridisation (DDH) was performed using Type (Strain) Genome Server (TYGS) (<u>https://tygs.dsmz.de/</u>) (17). After genome annotation using Prokka tools
118 119 120 121 122 123 124	(15)and assembled genomes were blasted against the NCBI database to confirm identity. After obtaining the whole genome sequence, annotation was performed on the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (<u>https://www.bv-brc.org</u>) (16), including antibiotic resistance and virulence genes analysis (Supplementary data, Figure 2). Finally, taxonomic classification based on DNA-DNA hybridisation (DDH) was performed using Type (Strain) Genome Server (TYGS) (<u>https://tygs.dsmz.de/</u>) (17). After genome annotation using Prokka tools (18), genomic comparisons incorporating coding DNA sequences (CDS) extracted from 10 <i>C</i> .

128	CMCC64008 (GCF_029636225.1) along with ancient genomes Q7452 (GCF_949357665.1) and
129	Q7451 (GCF_949357675.1)] were made using an online protein sequence-based bidirectional
130	BLAST approach on Proksee (<u>https://proksee.ca/</u>)(19). Resulting proteomes were analysed with
131	Roary (Rapid large-scale prokaryotic pangenome Analysis) (20) to deduce pan-, core- and
132	accessory genomes. Gene presence / absence and distribution of core and shell gene blocks
133	were uploaded and visualised on Phandango (21) in the perspective of distinguishing any
134	genomic differences between "ancient" and "modern" C. tetani genome sequences.
135	
136	RESULTS
137	Palaeoculturomic investigations of 14 dental pulps and 14 dental calculus yielded C. tetani in
138	culture in dental pulps retrieved from two individuals, Ind-7 and Ind-44, whereas all the other
139	cultures, including the negative controls, remained sterile after one week of incubation.
140	Microscopic observation of colonies showed sporulated, gram-positive bacteria (Figure 2)

identified as *C. tetani* by matrix-assisted laser desorption ionization time-of-flight mass

spectrometry, with an identification score >2.12 (22). Isolated C. tetani from Ind-7 and Ind-44

143 were deposited in the Collection de Souches de l'Unité des Rickettsies (IHU Méditerranée

144 Infection, Marseille, France) under reference numbers CSUR Q7451 and CSUR Q7452,

145 respectively. Further, toxigenic *C. tetani* strains were confirmed by aDNA PCR amplification and

sequencing of a 240-bp TeNT fragment in Ind-7 and Ind-44 dental pulps (data not shown)(11). C.

147 *tetani* was not detected by the two different paleoculturomics and paleomicrobiology

approaches in the sediments and calculus surrounding the *C. tetani*-positive teeth. WGS yielded

a 228752936-base pair (bp) genome with a 28.5% GC content for *C. tetani* CSUR Q7451 isolated

150	from Ind-7 (accession number: GCA_949357675), and a 2🛛857ឋ805-pb genome with a 28.6% GC
151	content for <i>C. tetani</i> CSUR Q7452 isolated from Ind-44 (accession number: GCA_949357665).
152	Genomic analysis confirmed <i>C. tetani</i> identification with an 87.9% DDH value with reference
153	genome (GCF_000762305.1) for ancient isolates, both encoding a 3,948-bp, 27% GC content-
154	tetanus neurotoxin <i>tet</i> X gene exhibiting 99.34% sequence similarity with homologous reference
155	gene. Genomic comparisons revealed 2,268 core genes (present in 100% of studied genomes)
156	forming 55.28% of the 4,103-gene pangenome, 1,094 shell genes (present in 15-95% of
157	genomes) forming 26.67% and 741 cloud genes (present in < 15% of genomes) forming 18.05%
158	of pangenome (Figure 4) . Ancient Q7451 and Q7452 genomes specifically lacked 283 genes
159	(Figure 3); and specifically incorporated three genetic blocks for a total of 4,780 bp
160	(Supplementary data Figure 3; Supplementary Table 1). According to the anthropological
161	description and the bone maturation, Ind-44 was a woman aged between 20 and 24 years at the
162	time of her death and Ind-7 was a man aged between 20 and 29 years old at the time of his
163	death.
164	

165 **DISCUSSION**

In this study, culturing dental pulp collected from individuals who died during a 1590 plague
episode in France (5, 6), resulted in the diagnosis of two cases of *C. tetani* bacteraemia. The
non-detection of *C. tetani* (which had never been previously worked on in this laboratory), in
surrounding soil and dental calculus specimens rendered external contamination of the dental
pulp improbable, leading to the conclusion that bloodborne *C. tetani* contaminated the dental
pulp at the time of death. Moreover, WGS comparisons of the two ancient genomes here

reported with eight modern ones, indicated two lines of discriminant genomic events, common
to the two ancient genomes and absent from modern counterparts, comforting the antiquity of
strains Q7452 and Q7451. While deletions in ancient Q7452 and Q7451 genomes may testify of
mis sequencing, the unanticipated discovery of three "in-block" DNA additions representing
12.2% of modern genomes clearly indicated that ancient Q7452 and Q7451 genomes
genomically differed from modern ones and did not result from any mere contamination during

178 the 500-year taphonomy process.

179 Indeed, highly vascularised dental pulp supported culturing a blood drop trapped inside 180 the pulp cavity at the time of death. A sporulated form of *C. tetani* allowed the pathogen to 181 survive for five centuries, a situation antedating by four centuries that of *Clostridium tertium* in 182 1914 soldiers 'dental pulp in a quite a different historical and archaeological context (9). With the presence of appropriate controls, this observation of *C. tetani* recovered from two ancient 183 pulp samples therefore led to the diagnosis of *C. tetani* bacteraemia, a condition rarely reported 184 185 in the literature. Only four previous cases of such bacteraemia have been described in recent 186 decades (Table 1). One case of C. tetani bacteraemia was in a 73-year-old man suffering from a 187 hepatocellular carcinoma in 2017 in Taiwan (23). Another case was reported in an 86-year-old 188 man with iatrogenic hypothyroidism in 2022 in the United States (24), and a third case was 189 identified in an 87-year-old woman in 2013, also in the United States (25). In this study, 190 toxigenic C. tetani bacteraemia was found in young individuals aged between 20 and 29 years at 191 the time of their death, as calculated by bone maturity. A fourteen percent (2/14 individuals) prevalence of toxigenic C. tetani bacteraemia estimated in the present study, although derived 192

193 from a small number of investigated cases, nevertheless may indicate a particular natural
194 history of the pathogen in the context of plague.

195 Indeed, in this situation, Ind-7 but not Ind-44 tested positive for the plague agent Y. 196 pestis, in line with previously reported detection of Y. pestis aDNA in this site (5). Present report 197 is therefore one more illustration of dual infection in the course of documented plague, after 198 cases of co-infection with Y. pestis has been reported with Treponema pallidum complex in a post-medieval and 17th individual (26,27); with *Haemophilus influenzae* serotype b in 540 to 550 199 200 CE individual (28); with *Bartonella guintana* in individuals buried in a 11th–15th site in France 201 (29). Furthermore, nine cases of Streptococcus spp.-Y. pestis coinfection have been reported 202 between 1937 and 2019 (30). These studies question role of immunosuppressive effect of 203 plague providing the opportunity for other pathogen replication, modulating their natural 204 history. Present observation suggests that, in the context of plague, a deadly infection acutely 205 diverting the immune system (31), C. tetani may act as an invasive agent, by-passing its portal of 206 entry, an invasiveness attenuated in the contemporary population, and both pathogens 207 contribute towards death. In these individuals, it is not possible to conclusively demonstrate 208 route of infection. C. tetani spores are known to infect wound or injury with tetanus appearing 209 several days later in case of toxicogenic strains (25). Most likely both individuals have 210 contracted wound *C. tetani* infection before the death, with bacteriemia contributing to death. 211 Indeed, surrounding sediments were negative for *C. tetani* following the palaeomicrobiological 212 investigations, as reported.

This situation of dual infection may be underdiagnosed after detection of deadly plague
may stop any further investigation for additional, potentially life-threatening pathogens, leading

215	to neglect co-infection. Open-mind metagenomics and paleoproteomics investigations of
216	ancient specimens as well as multiplex detection of pathogens may overcome misdiagnosis.
217	

218 CONCLUSIONS

219	Here, we diagnosed two cases of bacteraemia C. tetani, suggested a natural history of C. tetani
220	infection in this population during the post-Black Death period, different from the natural
221	history observed after the introduction of antitetanic serotherapy and vaccination in 1890 and
222	1924, respectively (32,33). In these anthropological and historical circumstances, C. tetani was
223	probably an invasive agent with attenuated invasiveness in the contemporary population. The
224	possibility of cultivating bacteria from archaeological dental material and from ancient dental
225	pulp in particular opens up new perspectives for palaeomicrobiology. Bacteraemia-causing
226	microorganisms, otherwise undetectable, can be highlighted or isolated by this method (9).
227	

228 **REFERENCES**

229	1.	Popoff MR, Mazuet C, Poulain B. Botulism and tetanus. <i>The Prokaryotes: Human</i>
230		<i>Microbiology</i> (2013)247–290. doi: 10.1007/978-3-642-30144-5 97/COVER
231	2.	Levy PY, Fournier PE, Lotte L, Million M, Brouqui P, Raoult D. Clostridium tetani
232		Osteitis without Tetanus - Volume 20, Number 9—September 2014 - Emerging
233		Infectious Diseases journal - CDC. Emerg Infect Dis (2014) 20:1571–1573. doi:
234		10.3201/EID2009.131579
235	3.	Finn CW, Silver RP, Habig WH, Hardegree MC, Zon G, Garon CF. The Structural
236		Gene for Tetanus Neurotoxin Is on a Plasmid. <i>Science (1979)</i> (1984) 224:881–884.
237		doi: 10.1126/SCIENCE.6326263
238	4.	Bizot B, Castex D, Reynaud P, Signoli M. Saison d'une peste (avril - septembre
239		1590): Le cimetière des Fédons à Lambesc (Bouches-du-Rhône). CNRS Éditions via
240		OpenEdition (2016). https://books.google.fr/books?id=ao58DQAAQBAJ
241	5.	Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. Detection of 400-
242		year-old Yersinia pestis DNA in human dental pulp: An approach to the diagnosis of
243		ancient septicemia. <i>Proc Natl Acad Sci U S A</i> (1998) 95:12637–12640. doi:
244		10.1073/PNAS.95.21.12637/ASSET/A0A43A87-7FD8-404A-8AD9-
245		OFF5B4DF6891/ASSETS/GRAPHIC/PQ2181735003.JPEG
246	6.	Bianucci R, Rahalison L, Massa ER, Peluso A, Ferroglio E, Signoli M. Technical note:
247		A rapid diagnostic test detects plague in ancient human remains: An example of
248		the interaction between archeological and biological approaches (southeastern
249		France, 16th–18th centuries). Am J Phys Anthropol (2008) 136:361–367. doi:
250		10.1002/AJPA.20818
251	7.	Bruzek J. A method for visual determination of sex, using the human hip bone. Am
252		J Phys Anthropol (2002) 117:157–168. doi: 10.1002/AJPA.10012
253	8.	Schmitt A. Estimation de l'âge au décès des sujets adultes à partir du squelette :
254		des raisons d'espérer. <i>Bull Mem Soc Anthropol Paris</i> (2002) 14: doi:
255		10.4000/BMSAP.256
256	9.	Meucci M, Costedoat C, Verna E, Adam F, Signoli M, Drancourt M, Beye M,
257		Aboudharam G, Barbieri R. Whole genome sequence of bacteremic Clostridium
258		tertium in a World War I soldier, 1914. <i>Curr Res Microb Sci</i> (2022) 3:100089. doi:
259		10.1016/J.CRMICR.2021.100089
260	10.	Spyrou MA, Tukhbatova RI, Wang CC, Valtueña AA, Lankapalli AK, Kondrashin V v.,
261		Tsybin VA, Khokhlov A, Kühnert D, Herbig A, et al. Analysis of 3800-year-old
262		Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. <i>Nature</i>
263		<i>Communications 2018 9:1</i> (2018) 9:1–10. doi: 10.1038/s41467-018-04550-9
264	11.	Guo M, Feng P, Zhang L, Feng C, Fu J, Pu X, Liu F. Rapid Detection of Clostridium
265		tetani by Recombinase Polymerase Amplification Using an Exo Probe. J Microbiol
266		<i>Biotechnol</i> (2022) 32:91. doi: 10.4014/JMB.2109.09022
267	12.	Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary
268		Genetics Analysis across Computing Platforms. <i>Mol Biol Evol</i> (2018) 35:1547. doi:
269		10.1093/MOLBEV/MSY096

270	13.	Colson P, Fournier PE, Chaudet H, Delerce J, Giraud-Gatineau A, Houhamdi L,
271		Andrieu C, Brechard L, Bedotto M, Prudent E, et al. Analysis of SARS-CoV-2 Variants
272		From 24,181 Patients Exemplifies the Role of Globalization and Zoonosis in
273		Pandemics. Front Microbiol (2022) 12:4202. doi:
274		10.3389/FMICB.2021.786233/BIBTEX
275	14.	Afgan E, Nekrutenko A, Grüning BA, Blankenberg D, Goecks J, Schatz MC, Ostrovsky
276		AE, Mahmoud A, Lonie AJ, Syme A, et al. The Galaxy platform for accessible,
277		reproducible and collaborative biomedical analyses: 2022 update. <i>Nucleic Acids</i>
278		<i>Res</i> (2022) 50:W345–W351. doi: 10.1093/NAR/GKAC247
279	15.	Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome
280		assemblies from short and long sequencing reads. <i>PLoS Comput Biol</i> (2017)
281		13:e1005595. doi: 10.1371/JOURNAL.PCBI.1005595
282	16.	Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM,
283		Dickerman A, Dietrich EM, Kenyon RW, et al. Introducing the Bacterial and Viral
284		Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and
285		ViPR. <i>Nucleic Acids Res</i> (2023) 51:D678–D689. doi: 10.1093/nar/gkac1003
286	17.	Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and
287		DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol (2014) 64:352–
288		356. doi: 10.1099/IJS.0.056994-0
289	18.	Seemann T. Prokka: rapid prokaryotic genome annotation. <i>Bioinformatics</i> (2014)
290		30:2068–2069. doi: 10.1093/BIOINFORMATICS/BTU153
291	19.	Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen CY, Graham M, Van
292		Domselaar G, Stothard P. Proksee: in-depth characterization and visualization of
293		bacterial genomes. <i>Nucleic Acids Res</i> (2023) 51:W484–W492. doi:
294		10.1093/NAR/GKAD326
295	20.	Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush
296		D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis.
297		Bioinformatics (2015) 31:3691–3693. doi: 10.1093/BIOINFORMATICS/BTV421
298	21.	Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR.
299		Phandango: an interactive viewer for bacterial population genomics.
300		Bioinformatics (2018) 34:292–293. doi: 10.1093/BIOINFORMATICS/BTX610
301	22.	Seng P, Drancourt M, Gouriet F, Scola B la, Fournier PE, Rolain JM, Raoult D.
302		Ongoing revolution in bacteriology: routine identification of bacteria by matrix-
303		assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect
304		<i>Dis</i> (2009) 49:543–551. doi: 10.1086/600885
305	23.	Lai CC, Chen CC, Hsu HJ, Chuang YC, Tang HJ. Clostridium tetani bacteremia in a
306		patient with cirrhosis following transarterial chemoembolization treatment for
307		hepatocellular carcinoma. J Microbiol Immunol Infect (2018) 51:155–156. doi:
308		10.1016/J.JMII.2017.06.010
309	24.	Kazadi D, Zychowski D, Skipper C, Teravskis P, Hansen GT, Ordaya EE. Clostridium
310		Tetani Bacteremia From a Suspected Cutaneous Source. <i>Cureus</i> (2022) 14: doi:
311		10.7759/CUREUS.22848
312	25.	Hallit RR, Afridi M, Sison R, Salem E, Boghossian J, Slim J. Clostridium tetani
313		bacteraemia. J Med Microbiol (2013) 62:155–156. doi: 10.1099/JMM.0.044941-0

314 315 316 317 318	26.	Giffin K, Lankapalli AK, Sabin S, Spyrou MA, Posth C, Kozakaitė J, Friedrich R, Miliauskienė Ž, Jankauskas R, Herbig A, et al. A treponemal genome from an historic plague victim supports a recent emergence of yaws and its presence in 15th century Europe. <i>Scientific Reports 2020 10:1</i> (2020) 10:1–13. doi: 10.1038/s41598-020-66012-x
319	27.	Keller M, Guellil M, Slavin P, Saag L, Irdt K, Niinemäe H, Solnik A, Malve M, Valk H,
320		Kriiska A, et al. A Refined Phylochronology of the Second Plague Pandemic in
321		Western Eurasia. <i>bioRxiv</i> (2023)2023.07.18.549544. doi:
322		10.1101/2023.07.18.549544
323	28.	Guellil M, Keller M, Dittmar JM, Inskip SA, Cessford C, Solnik A, Kivisild T, Metspalu
324		M, Robb JE, Scheib CL. An invasive Haemophilus influenzae serotype b infection in
325		an Anglo-Saxon plague victim. <i>Genome Biology 2022 23:1</i> (2022) 23:1–27. doi:
326		10.1186/S13059-021-02580-Z
327	29.	Tran TNN, Forestier C Le, Drancourt M, Raoult D, Aboudharam G. Brief
328		communication: Co-detection of Bartonella quintana and Yersinia pestis in an
329		11th–15th burial site in Bondy, France. Am J Phys Anthropol (2011) 145:489–494.
330		doi: 10.1002/AJPA.21510
331	30.	Erly B, Fleck-Derderian S, Cooley KM, Meyer-Lee K, House J, Vinhatton E, Nelson
332		CA. A Perilous Combination: Streptococcus Coinfection with Human Plague—
333		Report of Two Cases and Review of the Literature, 1937–2022.
334		https://home.liebertpub.com/vbz (2023) 23:371–377. doi: 10.1089/VBZ.2022.0084
335	31.	Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D,
336		Drancourt M. Yersinia pestis: the Natural History of Plague. <i>Clin Microbiol Rev</i>
337		(2021) 34:1–44. doi: 10.1128/CMR.00044-19
338	32.	Gradmann C, Simon J. Evaluating and Standardizing Therapeutic Agents, 1890-
339		1950. Palgrave Macmillan UK (2010). 53 p.
340		https://books.google.fr/books?id=uuWFDAAAQBAJ
341	33.	World Health Organization. Tetanus vaccines: WHO position paper – February
342		2017. Weekly Epidemiological Record 92:53–76.
343		https://iris.who.int/handle/10665/254583
344		
345		

347 **Conflicts of interest:**

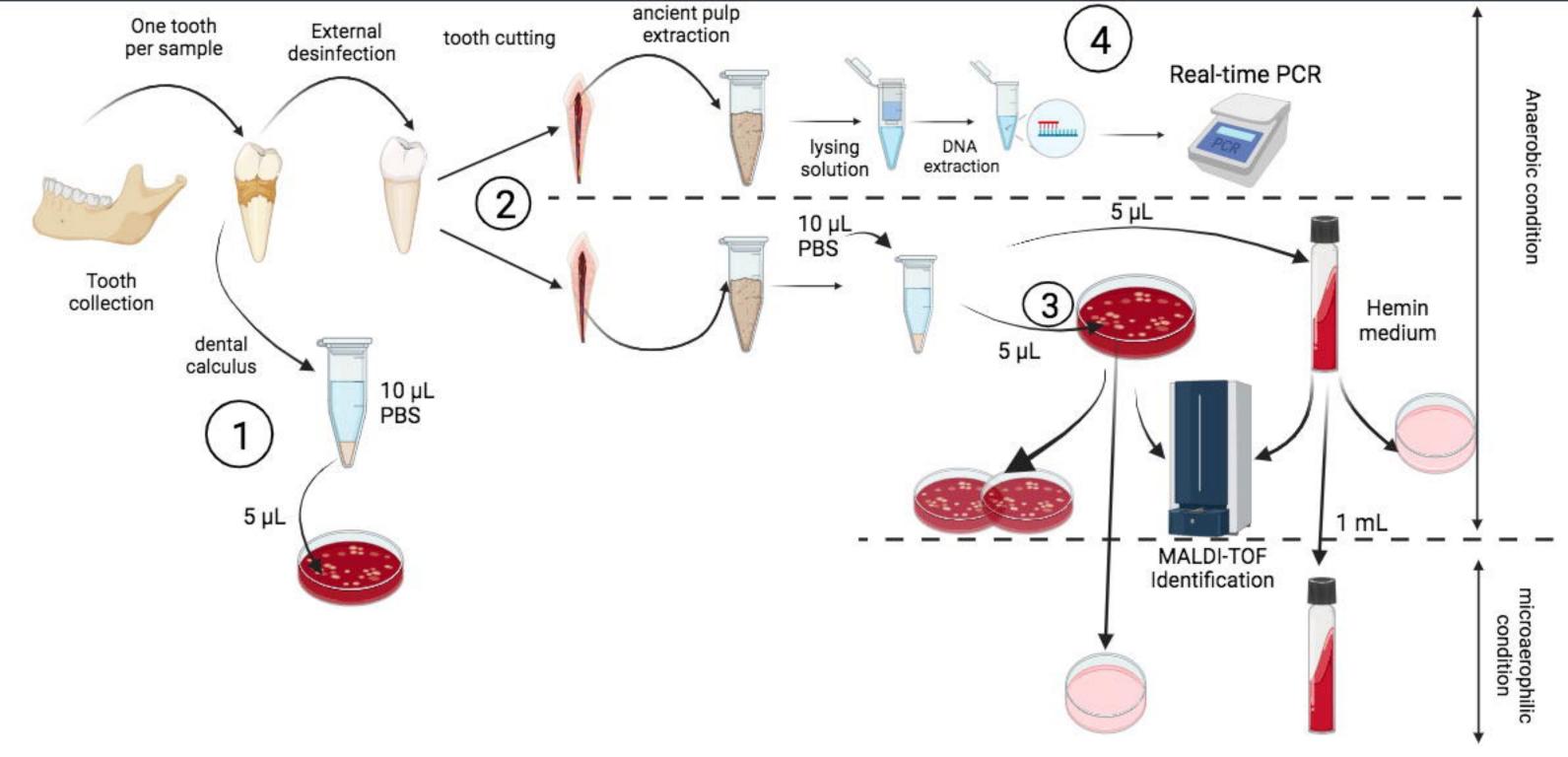
348 The authors declare no conflicts of interest.

- 350 **Financial support:**
- 351 This work was supported by the French Government under the "Investissements d'avenir"
- 352 (Investments for the Future) program managed by the Agence Nationale de la Recherche (ANR,
- 353 fr: National Agency for Research) (reference: Méditerranée Infection 10-IAHU-03).

354 Table list:

355 **Table 1:** Reported invasive *Clostridium tetani* cases.

Case	Date	Form	Place	Sex	Age (years)	Means of identification	Toxigenic form	Reference
1	2022	Bacteraemia	USA	Male	86	-MALDI-TOF -16S rRNA genome sequencing	Non	(24)
2	2017	Bacteraemia	Taiwan	Male	73	-MALDI-TOF -16S rRNA genome sequencing	Non	(23)
3	2013	Bacteraemia	USA	Female	87	-Système RapID ANA (enzymatic reaction)	Non	(25)
4	2014	Bacteraemia	France (Marseill e)	Male	26	NGS sequencing	yes	(2)
5	1590	Bacteraemia	France (Marseill	Male	20-29	-MALDI-TOF -NGS sequencing	yes	This study


			e)			-PCR		
						amplification		
						(TeNT)		
						-MALDI-TOF		
			France			-NGS sequencing		
6	1590	Bacteraemia	(Marseill	Female	20-24	-PCR	yes	This study
			e)			amplification		
						(TeNT)		

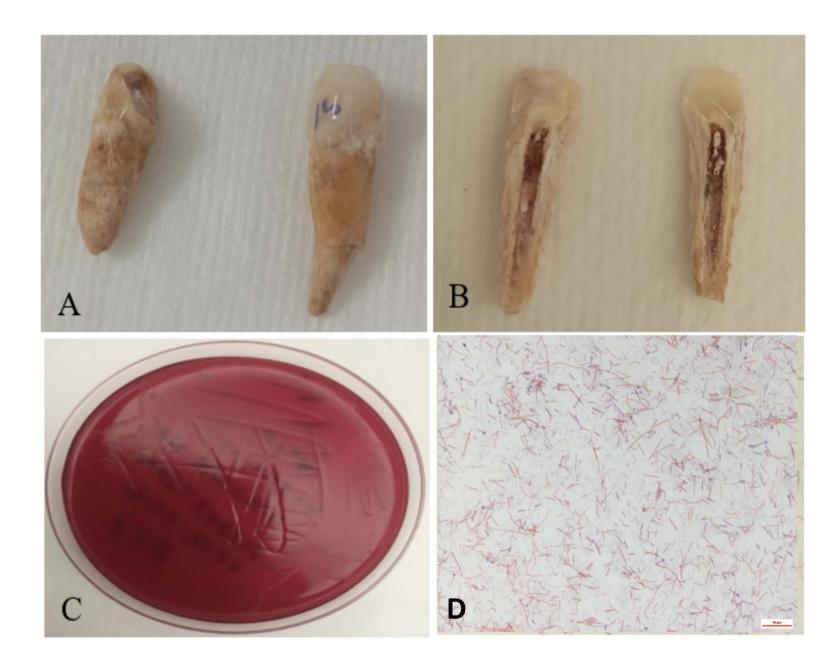
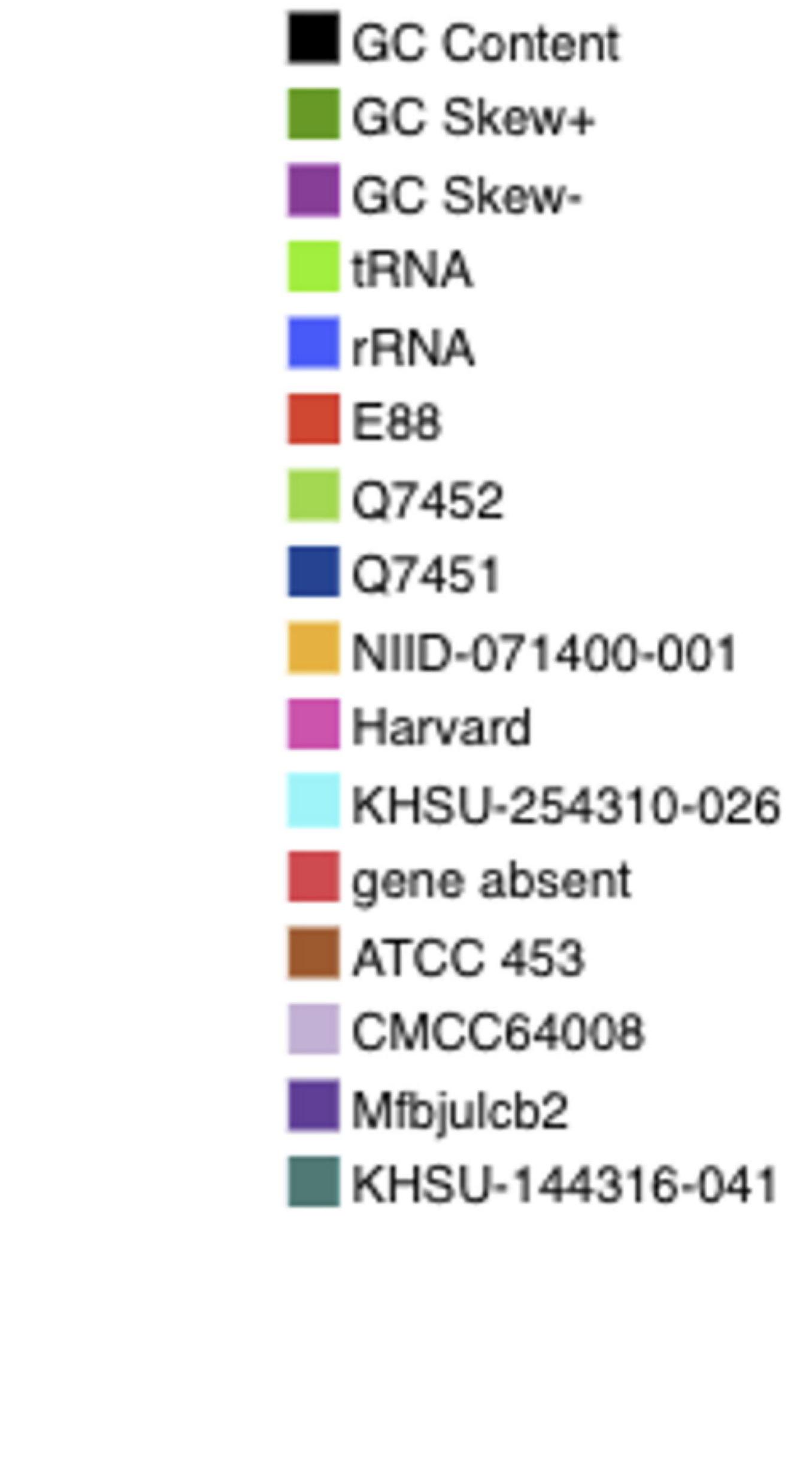
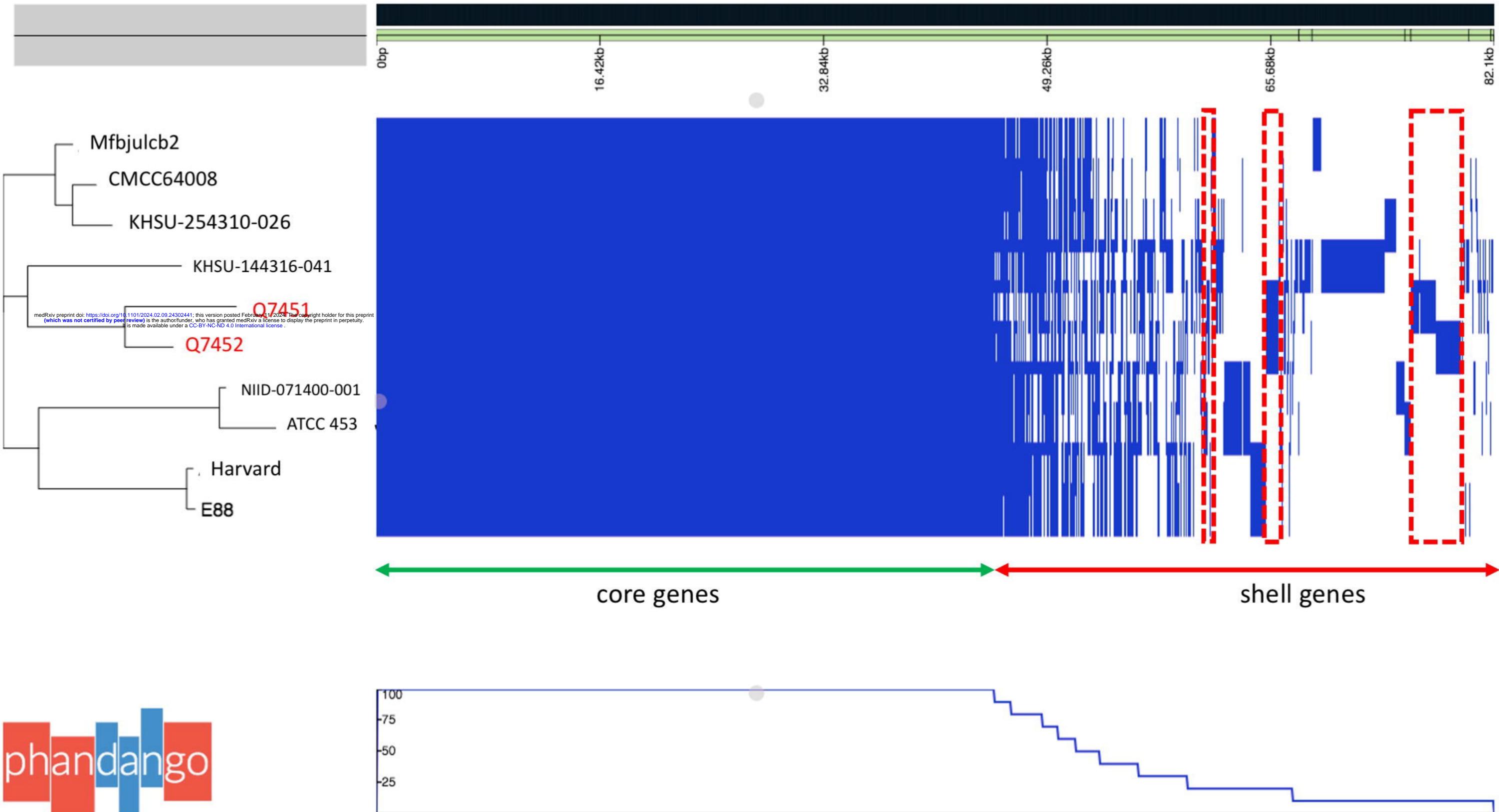

357 Figures list and legends:


Figure 1: Workflow of the paleoculturomics approach, (1) cultivation of ancient dental calculus 358 359 as soil contamination control. (2) Dental pulp extraction and pulp culture after hydration. (3) 360 Identification of positive cultures. (4) DNA extraction and PCR screening. 361 Figure 2: (A-B) Dental pulp sample from two immature individuals dated to the 16th century. (C-362 **D**) Isolation bacteraemia of *Clostridium tetani*. (**A**) The 16th century teeth of two prepubescent 363 364 individuals are cleaned with 99% ethanol and bleach. (B) The dental pulp is kept in a closed 365 environment (the pulp cavity). (C) Appearance of a bacterial carpet of *C. tetani* after one week 366 of incubation on COS Agar enriched with 5% sheep blood. (D) Microscopic observation of C. 367 *tetani* in rod form after staining with magnification 100X. 368 369 Figure 3: Circular representation of the genomic comparisons using coding DNA sequences 370 (CDS), display on Proksee online (https://proksee.ca/)(19(19), displaying Blast comparison of the 371 ten C. tetani strain genomes, features an in the in red ring in middle depicting the CDS of C. 372 tetani reference strain E88, surrounded by two rings depict GC content and the GC skew and a 373 gray ring representing the backbone. Following the backbone, the CDS present at the level of 374 the reference genome and absent within the two ancient genomes Q7451 and Q7452 marked in 375 red, tracking of the genes of the nine genomes including the two genomes reported in this study 376 with different colors detailed in the legend.


377


- 378 **Figure 4:** Pan-genome genetic relatedness analysis (utilizing the Roary pan-genome pipeline)
- 379 (20,21), of the ten *C. tetani* strain. A total of 4,103 genes were identified. At left a dendrogram,
- in red the two strains of this study. Right: heatmap of the core genes each row shows the gene
- 381 profile of each strain's gene presence are in blue and gene absence in white matrix.

