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ABSTRACT 
 
Patients diagnosed with localized high-risk prostate cancer have higher rates of recurrence, and the 
introduction of neoadjuvant intensive hormonal therapies seeks to treat occult micrometastatic disease 
by their addition to definitive treatment. Sufficient profiling of baseline disease has remained a 
challenge in enabling the in-depth assessment of phenotypes associated with exceptional vs. poor 
pathologic responses after treatment. In this study, we report comprehensive and integrative gene 
expression profiling of 37 locally advanced prostate tumors prior to six months of androgen deprivation 
therapy (ADT) plus the androgen receptor (AR) inhibitor enzalutamide prior to radical prostatectomy. A 
robust transcriptional program associated with HER2 activity was positively associated with poor 
outcome and opposed AR activity, even after adjusting for common genomic alterations in prostate 
cancer including PTEN loss and expression of the TMPRSS2:ERG fusion. Patients experiencing 
exceptional pathologic responses demonstrated lower levels of HER2 and phospho-HER2 by 
immunohistochemistry of biopsy tissues. The inverse correlation of AR and HER2 activity was found to 
be a universal feature of all aggressive prostate tumors, validated by transcriptional profiling an external 
cohort of 121 patients and immunostaining of tumors from 84 additional patients. Importantly, the AR 
activity-low, HER2 activity-high cells that resist ADT are a pre-existing subset of cells that can be 
targeted by HER2 inhibition alone or in combination with enzalutamide. In summary, we show that 
prostate tumors adopt an AR activity-low prior to antiandrogen exposure that can be exploited by 
treatment with HER2 inhibitors. 
 
ClinicalTrials.gov registration: NCT02430480. 
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INTRODUCTION 
 
 The molecular and clinical heterogeneity of localized high-risk (also known as locally advanced) 
prostate cancer (PCa) pose considerable obstacles for its diagnosis and treatment [1, 2]. Although the 
use of computed tomography (CT) and magnetic resonance imaging (MRI) has improved in vivo 
localization of extraprostatic disease that is associated with higher risk of prosate-specific antigen 
(PSA)/biochemical recurrence (BCR) or metastasis, significant weight is given to the volume and extent 
of dedifferentiation of PCa visualized on needle biopsies for assessing individualized risk [3]. Patients 
with locally advanced PCa receive multimodal therapies, which can include androgen deprivation 
therapy (ADT) with radiation therapy or adjuvant following surgery [3-6]. In patients treated by radical 
prostatectomy, adjuvant or neoadjuvant (before surgery) therapies function to reduce local tumor burden 
and target occult micrometastases that would eventually drive relapse [6, 7]. Phase 2 trials of different 
neoadjuvant therapies for localized high-risk PCa have tested multiple combinations of hormonal and 
chemohormonal therapies, including 2nd and 3rd generation androgen receptor (AR)-targeting agents [8-
13], cytotoxic chemotherapy [14-16], and immunotherapy [17-19]. A persistent challenge common to all 
of these studies has been identifying robust baseline characteristics that would show long-term survival 
benefits based on prognostic features readily identified by short-term pathologic readouts. 
 In clinical trials of neoadjuvant intensive ADT, the biomarker showing the most robust performance 
towards predicting long-term outcome is residual cancer burden (RCB). Calculated based on the tumor 
cellularity of the final pathologic specimen, patients with lower RCB having complete pathologic 
responses (pCR) or minimal residual disease (MRD) demonstrated delayed BCR [20, 21], with three-
year BCR-free rates of 95.2% (pCR/MRD) vs. 48.7% (greater than MRD). Using RCB or BCR as 
endpoints, molecular features detected in both posttreatment and baseline tissues have been reported 
with various prognostic potential, including the mutation status of TP53 [22-25] and 
immunohistochemistry (IHC) against PTEN or ERG [9, 10, 22]. Across all reported studies, nearly 
every patient has shown at least some pathologic and/or imaging response to therapy. What remains 
unknown, however, is to what extent that clonal or subclonal intrinsic resistance to neoadjuvant 
intensive ADT, even in patients showing partial responses, can be targeted further. 
 Intrinsic resistance to targeted therapies involves cell-intrinsic mechanisms implicating the original 
target, which in the case of prostate cancer is the AR [26, 27]. In contrast to well-documented 
mechanisms of adaptive resistance involving AR point mutations or amplification after long-term 
exposure to ADT [27-29], a subset of aggressive prostate tumors display resistance to ADT as measured 
by transcriptional profiling of the tumor to have lower AR activity [24, 30, 31]. Due to the challenges of 
extensive profiling of biopsy tissues, genomic, histologic, and phenotypic properties of these low-AR 
tumors are not well characterized. Cellular mechanisms functioning to suppress AR activity, or which 
may otherwise be elevated in the absence of AR activity, have similarly remained elusive. Limited 
histologic and transcriptomic profiling of prostatectomy tissues after neoadjuvant ADT have identified 
potentially targetable “bypass” pathways, including AKT, HER2/HER3, CDK4/6, MET, BCL-2, and 
XBP1 [25, 32, 33]. Also proposed as an adaptive mechanism to prolonged ADT exposure, the detection 
of phosphorylated HER2 in metastatic PCa tumor biopsies supported previous clinical studies, which in 
this context showed little clinical benefit [32, 34-37]. Here, we present HER2 activity not as an adaptive 
bypass pathway but as an inherent and targetable mechanism of resistance in de novo locally advanced 
PCa with AR-low characteristics. 
  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302395doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302395


  6 

RESULTS 
 
Prostate tumors exhibiting poor pathologic response to neoadjuvant ADT plus enzalutamide harbor a 
transcriptional signature of elevated HER2 activity 
 
 Using whole-transcriptome sequencing, we assessed patterns of gene expression and pathway 
activation in 147 tumor foci isolated from prostate biopsies prior to undergoing six months of intense 
neoadjuvant ADT (Fig. 1A). These foci were sampled using laser capture microdissection from 48 
distinct MRI-visible lesions in 37 patients who participated in our clinical trial, with a median of two 
biopsy blocks per patient and a median of two foci per block sequenced. Most foci were isolated 
separately on the basis of differing histologic features, such as Gleason pattern or variability in key PCa 
markers such as PTEN or ERG staining. 
 Our overall goal was to identify variability in genes and pathways expressed at baseline that would 
track with resistance to therapy. Therefore, we initially stratified samples by our predefined cutpoint of 
posttreatment residual tumor volume of 0.05 cm3, which was measured from the largest area of tumor in 
the final prostatectomy specimens (Figs. 1A,B, and see methods) [8]. As we also sequenced foci from 
resolving MRI lesions that were acquired from nonresponding patients, we further limited our analysis 
to 117 foci isolated only from MRI index lesions. By principal component analysis, however, there was 
no obvious structure that distinguished foci from exceptional responder (ER) patients vs. incomplete and 
nonresponder (INR) patients (Fig. 1C). In addition, application of four predefined gene groups that had 
previously been shown to segregate treatment resistant tumors into transcriptionally defined subtypes in 
the castration-resistant setting [38] did not prominently identify multiple baseline tumor subgroups (Fig. 
1D). Rather, nearly every focus showed strong enrichment for genes in the androgen receptor-dependent 
adenocarcinoma gene group, which included AR, NKX3-1 and KLK3 (Fig. 1D). 
 Nevertheless, we noted a trend in which cases that harbored greater volumes of residual tumor after 
therapy (RCB, toward the right of the heatmap in Fig. 1D) expressed lower relative levels of genes in 
the androgen receptor-dependent adenocarcinoma group, including KLK3. This was confirmed by a 
negative correlation between the H-index of IHC against PSA on the same tissues, the protein product of 
KLK3, when compared to residual cancer volumes on a per-patient level (ρ = -0.43, Pρ = 0.016) [22]. 
Therefore, we sought to use RCB as a continuous variable to identify differentially-expressed genes 
across the cohort. Retaining the variability afforded by multiply-sampled cases, we employed a linear 
mixed-effect statistical model, holding RCB as a fixed effect, and modeling each patient as a random 
effect (Fig. 1E). The outcome of this analysis identified 644 differentially-expressed genes (Padj < 0.05, 
see Supplementary Table 1), where each unit of fold-change represents 1 cm3 of posttreatment RCB 
(Fig. 1F). Amongst the most negative fold-change genes (i.e. the genes that were more down-regulated 
in patients who went on to exhibit exceptional responses) were the AR-responsive KLK2 and KLK3 
suggesting that these tumors had greater AR activity. By contrast, two of the most positive fold-change 
genes were AKR1C1 and AKR1C3 of the testosterone biosynthesis pathway, representing in part an 
adaptive response to low androgens in more aggressive prostate tumors [39]. 
 To identify targetable pathways that are overrepresented in baseline tumors that resist therapy, we 
processed the 644-gene list using the Upstream Regulator module of Ingenuity Pathway Analysis. As 
depicted in Figure 1G, the most negatively enriched (inactivated) regulator was AR (zcorr = -5.2, padj = 
2.6 × 10-15), while the upstream regulator with the lowest adjusted P value was ERBB2 (human 
epidermal growth factor receptor 2, HER2; zcorr = 3.7, padj = 2.6 × 10-37). As part of our previous 
analyses, we found that both the TMPRSS2-ERG fusion (measured by either IHC or RNA-seq) and 
PTEN loss (IHC) were independently associated with poor pathologic responses (see Fig. 1D) and had 
substantial effects on global transcription [22, 40]. Therefore, we further modeled ERG or PTEN IHC 
status as additional random effects in our linear mixed-effect model. Regressing out the transcriptional 
impacts of ERG (Fig. 1H) nor PTEN (Fig. 1I) did not appreciably change AR's position or statistical 
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significance in the bottom 10 inactivated pathways and HER2's position in the top 10 activated 
pathways. Thus, HER2 activity represents potential and distinctive mechanism of intrinsic resistance to 
neoadjuvant intense ADT. 
 
HER2 protein expression is associated with poor response 
 
 HER2 up-regulation or activation has been implicated previously as an adaptive response to 
androgen deprivation and AR inhibition in metastatic PCa [35, 41]. We therefore performed a series of 
immunostains against total and phosphorylated (Y1221/1222) HER2 in matched baseline biopsies and 
posttreatment prostatectomy sections (Fig. 2A) to confirm the results suggested by our transcriptional 
analyses. Across the cohort, we observed variable HER2 and pHER2 expression in both untreated 
(biopsy; 37 cases, 1–3 slides per case for HER2; 34 cases, 1 slide per case for pHER2) and residual 
(posttreatment only; 34 cases; 1–8 slides per case) tumor specimens. As expected, the predominant 
staining pattern observed for total HER2 in both baseline and posttreatment specimens was membranous 
(Supplementary Fig. 1), encompassing both invasive and intraductal tumor foci, although a subset of 
cases demonstrated predominantly cytosolic staining for HER2.  
 Semi-quantitative H-scoring analysis by an expert genitourinary pathologist (R.T.L.) identified 
major trends in staining intensity, separately scoring cytosolic and membranous staining for invasive and 
intraductal tumors, for HER2 and pHER2 immunostains (Fig. 2B). Interestingly, HER2 at baseline was 
expressed mostly in invasive tumor foci (both membranous and cytosolic), and intraductal HER2-
expressing baseline tumor were less common that in posttreatment tumors. pHER2 was expressed in a 
minor fraction of all baseline and posttreatment foci. 
 We used the maximum H-score for each case, irrespective of morphology, to identify staining trends 
across the cohort. For example, similar numbers of baseline cases harbored low (H-score 11–100), 
medium (H-score 101–200) and high (H-score 201–300) intensity for HER2, given that a majority of 
tumor tissue was positive (Fig. 2C). By contrast, most biopsies (30/31) displayed focal pHER2 
expression at low and background (H-score 0–10) levels (Fig. 2D). Residual tissue (20/34) harbored low 
and medium intensity for HER2 (Fig. 2E) but similar to baseline all tissues expressed pHER2 at low and 
background levels (Fig. 2F). 
 We observed a statistically significant correlation at the patient-level between pre- and posttreatment 
IHC staining for HER2 (Fig. 2G; ρ = 0.39, Pρ = 0.024) but not pHER2 (Fig. 2H). Nonetheless, and 
consistent with our whole-transcriptome analyses, higher semi-quantitative HER2 staining intensities 
were observed in biopsies from INR vs. ER patients (Fig. 2I, P = 0.046, χ-squared test). Substantive 
staining for pHER2 was only observed in biopsies from INR patients (Fig. 2J, P = 0.048, χ-squared 
test). Collectively, these data confirm that increased HER2 protein expression at baseline is a molecular 
feature of tumor that go on to exhibit poor responses to neoadjuvant intense ADT plus enzalutamide, 
and that this may be associated with canonical HER2 activity.  
  
Prostate cancer antiandrogen resistance is driven by a pre-existing subpopulation with elevated HER2 
activity 
 
 Although HER2 activation measured by pHER2 was modestly expressed in tissue samples, we also 
explored the expression and phosphorylation levels of EGFR and HER3, as persistent or constitutively 
active signaling through receptor tyrosine kinases occurs in many solid tumor types including subtypes 
of breast cancer (HER2) and lung cancer (EGFR), especially when the gene is amplified. EGFR 
expression, but not its phosphorylation (Y1068), displayed similar patterns to HER2 staining 
(Supplementary Fig. 2A-E), although baseline expression stratified by pathologic outcome was not 
statistically significant (Supplementary Fig. 2F, P = 0.10, χ-squared test). HER3 and pHER3 (Y1289) 
expression was negligible across all samples (Supplementary Fig. 2G-I). These findings are consistent 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302395doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302395


  8 

with our prior report of exome sequencing of tumor tissue from this study, which did not show any 
evidence of amplification or mutations rendering it constitutively active for EGFR or ERBB3 (encoding 
HER3) [22]. 
 We therefore focused on our observation that HER2 expression posttreatment could be due to a 
subset of resistant cells that were already expressing HER2 prior to the initiation of therapy. Because 
HER2 expression and its activity tracked with pathologic outcome, we next sought to validate this 
finding. However, a lack of baseline samples acquired from other studies rendered this infeasible. 
Nonetheless, our observation that AR activity opposed HER2 activity offered an alternative approach 
which was amenable to any dataset with whole transcriptome gene expression. For example, when we 
ranked our original dataset by AR activity using single-sample GSVA of the mSigDB AR Hallmarks 
gene set, and examined those genes which tracked with AR activity, the Upstream Regulator module of 
Ingenuity Pathway Analysis reported AR activity to be positively enriched (zcorr =  5.1, padj = 2.6 × 10-8) 
and ERBB2 opposing it, now negatively enriched (zcorr =  -2.4, padj = 8.4 × 10-7, Fig. 3A). We next 
employed this approach on a novel cohort comprised of 123 tumors samples we acquired from the 
Prostate Cancer Biorepository Network. We observed similar results (Fig. 3B), with AR positively 
enriched as expected (zcorr =  5.7, padj = 3.0 × 10-13) and ERBB2 negatively enriched (zcorr =  -3.0, padj = 
1.1 × 10-15). We also assessed this phenotype in the prostate cancer TCGA cohort, but due to concerns 
about substantial variability in purity arising from cell type admixtures from the original sample 
collection [42], we employed deconvolution using dampened weighted least squares (DWLS) estimation 
to arrive at luminal PCa cell-specific gene expression values. AR was the most activated upstream 
regular as expected (zcorr =  6.1, padj = 2.9 × 10-9, Fig. 3C), and ERBB2 was again negatively enriched 
(zcorr =  -2.3, padj = 4.7 × 10-5). Collectively, these data suggest that AR activity is inversely associated 
with HER2 activity across a range of untreated PCa cohorts. 
 Using data from the Broad Institute Dependency Map (DepMap), we explored the relationship 
between AR or HER2 activity (similarly measured using single-sample GSVA), ERBB2 expression, and 
enzalutamide sensitivity. AR activity stratified several established cell lines, with NCIH660, PC3 and 
DU145 cells showing lower signature scores (Fig. 3D). Two of these lines, DU145 and PC3 cells, also 
had greater HER2 scores, while the AR high cell lines (22Rv1, VCaP, LNCaP and MDa-PCa-2b cells) 
uniformly had lower HER2 scores. When comparing the four cell lines that had paired viability data 
from drug treatment (enzalutamide) and RNAi exposure (against ERBB2), LNCaP and 22Rv1 cells, 
which are AR-positive, display greater sensitivity to enzalutamide than PC3 and DU145 cells (Fig. 3E). 
However, PC3 and DU145 demonstrated impaired growth (relative to LNCaP) when treated with RNAi 
against ERBB2, indicating that established cell lines may be an acceptable model to explore the AR-
HER2 relationship further (Fig. 3E). 
 We accessed a published single-cell RNA-seq dataset [43] in which LNCaP cells were treated with 
antiandrogen and transcriptomically profiled shortly after exposure (48h) or after resistance developed 
(9-13 months, Fig. 3F). After joint normalization of the untreated (DMSO) control and treated samples, 
we employed trajectory analysis to identify differentially-expressed clusters of genes (Fig. 3G,H), with 
clusters 7, 8 and 9 best representing cell clusters present at baseline that were enriched upon resistance 
development (Fig. 3I). We derived differentially-expressed genes using pseudo-bulk analysis, 
comparing these clusters against the rest. Ingenuity Pathway Analysis recapitulated our earlier findings, 
showing ERBB2 activity increased in resistant cells (zcorr =  3.0, padj = 7.4 × 10-38) while AR activity 
decreased in sensitive cells (zcorr = -3.5, padj = 1.6 × 10-24). These findings indicate that de novo PCa cell 
resistance to antiandrogen is driven, at least in part, by a pre-existing subset of cells with elevated HER2 
activity. 
  
AR-positive prostate cancer cell lines are sensitive to HER2 inhibition which enriches for cells with 
greater AR activity  
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 The increased abundance of HER2 activity in enzalutamide-resistant PCa cells raises the possibility 
that treatment with inhibitors against HER2 (or other receptor tyrosine kinases, RTKs) may either 
increase tumor cell AR activity or enrich for the population of tumor cells that is harboring greater AR 
activity. We thus assessed the sensitivity of 8 different RTK inhibitors (RTKi) against three different 
AR-positive prostate cancer cell lines: LNCaP, LAPC4 and 22Rv1 cells. LNCaP and LAPC4 represent 
an earlier state of hormone sensitivity in an untreated tumor, while 22Rv1 cells are AR-positive cells 
with treatment-acquired resistance to hormone therapy and antiandrogen. 
 Using a 7-concentration dose response curve in sextuplicate, we derived IC50 values for each RTKi 
over a five-day time course, repeated at least three different times (Fig 4A,B and Supplementary Table 
2), assessing viability using Cell-Titer Glo. As predicted above, all three AR-positive cell lines 
displayed exquisite sensitivity to neratinib (IC50: 0.47–1.3 µM), an irreversible inhibitor selective for 
HER2. Cells were also sensitive to afatinib (IC50: 1.0–2.8 µM), an inhibitor of homo/heterodimerization 
for EGFR/HER2/HER3. Consistent with our finding that EGFR alone did not track with resistance (see 
Fig. 1), EGFR-specific inhibitors such as gefitinib and erlotinib displayed weaker or no (respectively) 
antitumor effect (Fig. 4B). 
 Using these empirically determined IC50 doses, we next examined the impact of drug exposure on 
gene expression over a 5-day time course across three independent experiments. As controls, we also 
treated with enzalutamide, abiraterone, or grew cells with charcoal-stripped serum to deplete the media 
of androgens. We extracted RNA from each time point and performed whole-transcriptome sequencing 
(Fig. 4A). Using a linear mixed-effect model we identified differentially expressed genes that changed 
in the same direction (up or down) over the entire time course, per unit time. We then processed these 
genes using the Upstream Regulator module of Ingenuity Pathway Analysis to determine if AR activity 
was increasing on account of the RTK treatment (Fig. 4C). Most RTKi treatments resulted in 
statistically significant and positive z scores for AR activity. Notably, we observed that upon treatment 
with afatinib at each cell line’s IC50, increased AR pathway activity was observed across the LNCaP, 
LAPC4 and 22Rv1. Increases for AR activity were also observed with neratinib treatment for LNCaP 
and 22Rv1 cells, and surprisingly, treatment with the VEGFR inhibitor sunitinib also had a consistent 
and positive impact on AR activity. By contrast, treatment with ADT (CSS), abiraterone or 
enzalutamide had mostly negative effects on AR activity. 
 At the protein level, treatment with afatinib in both LNCaP (Fig. 4D) and 22Rv1 (Fig. 4E) cells 
enriched for AR expression after one day and persisted for up to five days. Increases in PSA protein 
levels were also observed over days 1–5 (Fig. 4D-E). Collectively, these findings suggest that receptor 
tyrosine kinase inhibitors, particularly the HER2 inhibitors afatinib and neratinib, are highly potent on 
established AR-positive PCa cell lines, and that cells resistant to these treatments after 1–5 days express 
proportionally greater levels of AR. 
 
Nascent prostate cancer harbors distinct AR-positive and HER2-positive subpopulations 
 
 Given the potency of HER2 inhibition in PCa cell lines, we next sought to determine whether HER2 
inhibition had an antitumor effect in human patient-derived PCa models. Therefore, we treated four 
different PCa organoid models derived from intermediate-risk disease with 0–5 µM neratinib or 10 µM 
ABT-373 (BCL-2 inhibitor) as a positive control. 48 hours after treatment, we dissociated the organoids, 
stained the cells with 7-aminoactinomycin D (7-AAD) and conjugated antibodies against Annexin V, 
and quantified staining using flow cytometry. After gating each organoid model for live and dead cells 
(Fig. 5A), we applied these gates to the neratinib-treated models (Fig. 5B). As summarized in Figure 
5C, two models (183 and 187) demonstrated exquisite sensitivity to neratinib, with >80% of cells dead 
at 3 µM and >95% cells dead at 5 µM. By contrast, model 190 was mostly resistant, with less than 35% 
apoptotic at 5 µM. Intriguingly, model 188 displayed a mixed phenotype with approximately 50% and 
65% of cells apoptotic at 3 µM and 5 µM, respectively. This range of responses suggests that the 
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proportion of HER2-dependent cells may change between individuals, and that pre-existing 
subpopulations of each tumor may display differential sensitivity. 
 We reasoned that if pre-existing and co-mingled cell populations were to be treated using a 
combination approach, the exposure paradigm would be additive rather than synergistic. Indeed, a 
combination approach of enzalutamide and afatinib in LNCaP cells at the drugs’ respective IC20 
marginally increased decreased cell viability greater than the IC20 dose of enzalutamide or afatinib alone 
(Fig. 5D). By contrast, treatment with enzalutamide, afatinib or neratinib at an IC50 dose consistently 
killed approximately 50% of LNCaP cells, and the addition of afatinib or neratinib to enzalutamide at its 
IC50 further improved cell killing to approximately 80% (Padj < 0.0001, repeated measures ANOVA) and 
65% (Padj = 0.0004), respectively (Fig. 5E). Collectively, these data indicate that the improved cell 
killing by combining antiandrogen with HER2 inhibition is due to the simultaneous targeting of two 
distinct cell subpopulations. 
 Finally, we asked whether such a variable proportion of AR activity-high or HER2-high prostate 
tumor cells was a universal feature of untreated (hormone-sensitive) localized prostate tumors. We 
devised a multiplex immunofluorescent panel with antibodies against AR, PSA and HER2 and extended 
our analysis to an institutional cohort of 84 radical prostatectomy tissues that received no prior androgen 
deprivation therapy. As shown in the representative micrographs in Figure 5F, although PCa luminal 
epithelial cells were AR-positive, the intensity of PSA and HER2 varied substantially. Importantly, 
regions that were PSA (and/or AR) high were mutually exclusive to tumor foci that were expressing 
high levels of HER2, and vice versa. These findings indicate that localized prostate cancers may be 
variably sensitive to HER2 inhibition, or combination AR and HER2 inhibition, depending upon the 
proportion of HER2-high AR activity-low tumor cells contained therein. 
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DISCUSSION 
 
 Neoadjuvant therapies for prostate cancer face inherent challenges of patient selection and the 
uncertainties of how subsequent therapies, upon recurrence, contribute to metastasis development. In the 
current study, we identified patterns of baseline gene expression signatures that tracked with the volume 
of posttreatment residual disease, a surrogate pathologic biomarker for BCR [20]. Our identification of 
HER2 activity association with poor responses to intense androgen deprivation neoadjuvant therapy is in 
turn associated with these tumors’ lower dependence on AR and thus decreased sensitivity to AR 
antagonism. We also demonstrated that HER2 inhibition, alone or in conjunction with AR-targeted 
therapies, has potent anti-tumor activity. 
 Significantly, our present study demonstrates that HER2 expression in primary PCa represents a 
therapeutic vulnerability. HER2 has long been a tantalizing target in PCa, although most of these studies 
have been conducted in the metastatic and castration-resistant setting after tumors have recurred after 
androgen ablation [32, 34-37, 44, 45]. One possibility for these studies’ outcomes is that the molecular 
mechanisms suppressing AR activity in HER2-high tumor cells become sufficiently reprogrammed after 
years of prolonged ADT for recurrent PCa such that the therapeutic window for co-targeting HER2 and 
AR has been lost. Indeed, the AR gene is amplified in 50-80% of ADT-treated metastatic tumors, which 
results in significant reprogramming of cistromic and cis-regulatory elements governing gene expression 
[46, 47]. In the hormone sensitive setting, HER2 monotherapies have also been largely ineffective [44, 
48], which may be explained in part by our finding that the proportion of AR- and HER2- dependent 
cells varies by patient, necessitating co-targeting. Our finding that approximately 60% of localized high-
risk patients in our current study harbored moderate-to-high levels of HER2 protein expression in the 
absence of genomic amplification mirrors those of other histologic analyses [49-51]. 
 Although AR-targeted therapies alone are highly effective in the hormone-sensitive localized and 
metastatic settings, the addition of chemotherapy to ADT plus a novel hormonal agent has demonstrated 
that up-front intensification delays progression to castration resistance [52, 53]. With genomically-
informed neoadjuvant studies (e.g. NCT04812366) testing similar combinations in the presurgical 
setting, our current report substantiates clinical investigation into the combination of HER2 with or 
without intensive ADT, based in part on AR high vs. low transcriptional activity or the proportion of 
each cell subset as determined by IHC. Indeed, this proportion may serve as a molecular determinant of 
ADT sensitivity, given that the AR activity-low cells are a pre-existing subpopulation necessitating 
combination therapy at doses indicative of two independent targets (see Figs. 4 and 5). Thus, as this 
subset of never-before-treated, de novo prostate tumors are showing little (or no) AR activity by 
transcriptional and histologic profiling, ADT may not be appropriate as a universal first-line systemic 
therapy. 
 A distinction, as well as a limitation, of the present study was our use of prostate biopsy tissue from 
a neoadjuvant therapy clinical trial as a platform for discovery. Such abundance of biopsy tissue, made 
possible by advances in targeted biopsy technologies and the requirement of our treatment protocol for 
on-study biopsies, was not possible for other neoadjuvant studies with molecular components recently 
published [10, 11, 24, 25]. However, without well-defined transcriptomes across a broad range of tumor 
pathologic responses (RCBs), direct validation of the results of this study was not possible in a 
statistically meaningful secondary cohort. However, by using AR transcriptional activity as a surrogate 
marker of RCB, we found that AR activity and HER2 activity remain as distinctly inverse properties of 
prostate tumors which could be extended to other case sets. This inverse relationship of AR and HER2 
activity, which we describe here in localized prostate cancer for the first time, is similar to that recently 
reported for salivary gland cancers [54, 55]. Salivary duct carcinoma (SDC) normally expresses the 
androgen receptor, but a subset was shown to have higher levels of HER2 which corresponded to low or 
absent AR expression [55]. Consistent with the current study, patients with high HER2/low AR SDC 
had worse prognoses [55]. 
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 Determining long-term disease-free survival benefits requires more extensive follow-up from the 
results of neoadjuvant therapy clinical trials, especially when conducted as platform studies with 
pathologic readouts. However, as we have shown here, a feature of prostate cancer cells to resist direct 
AR antagonism by enzalutamide is their intrinsic ability to have lower levels of AR activity. Therefore, 
even in the absence of extended clinical follow-up data, we have identified novel features of prostate 
tumor cells with direct clinical significance in their sensitivity to HER2 inhibition while demonstrating 
resistance to enzalutamide. Going beyond the localized high-risk population, we propose that the AR-
low population of metastatic hormone-sensitive PCa that would otherwise show poor response to 
enzalutamide may be targeted by HER2 inhibition, a hypothesis that could be readily tested in a 
genomically-guided neoadjuvant therapy clinical study. 
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PATIENTS, MATERIALS AND METHODS 
 
Ethical approval 
 Human biospecimens used in this study were derived from tissues acquired as part of National 
Cancer Institute study 15-c-0124 (NCT02430480), which was approved by the National Institutes of 
Health Institutional Review Board (IRB) in accordance with the Declaration of Helsinki. Tissue samples 
were acquired from the Prostate Cancer Biorepository Network (PCBN) through an agreement with the 
University of Washington Genitourinary Cancer Specimen Biorepository (agreement number 888). 
Prostate cancer patient-derived organoids were acquired and grown at Emory University under an 
Emory IRB-approved protocol (STUDY00005649). Standard-of-care prostatectomy specimens were 
used in accordance with protocols 15-008 and 15-492 from the Dana-Farber/Harvard Cancer Center. 
 
Biopsy and radical prostatectomy selection 
 Biopsy specimens for laser capture microdissection (LCM) and immunohistochemistry (IHC) were 
previously described [22]. Briefly, patients who enrolled in a clinical trial of neoadjuvant ADT plus 
enzalutamide for 6 months underwent templated and MR/US-fusion targeted biopsies prior to the 
initiation of therapy. Biopsies were selected for LCM and IHC based on tumor content and adverse 
pathologic features. Radical prostatectomy specimens from each patient were used to derive residual 
cancer burden (RCB) volumes as a measure of absolute pathologic response, as previously described [8, 
22]. Briefly, RCB was calculated by multiplying the number of slices containing residual tumor by the 
largest cross-sectional width and length of that tissue and by block thickness (0.6 cm). Volume was 
further corrected by multiplying by 0.4 to account for tumor cellularity. We considered RCB < 0.05 cm3 
as exceptional responders (ER) and we grouped incomplete and nonresponders (INR) into a single 
category for RCB > 0.05 cm3. Residual tumor was identified using a combination of routine H&E 
additional immunostains to verify the presence of residual tumor, including anti-NKX 3.1, PIN-4 
cocktail, CAM5.2, and anti-p63. 
 All prostatectomy blocks harboring residual tumor were used for immunostains against EGFR, 
pEGFR, HER2, pHER2, HER3 and pHER3. One biopsy block per case was used for immunostains 
against HER2. Cases with biopsy blocks harboring sufficient remaining tumor material for additional 
IHC: anti-EGFR: 35; anti-pHER2: 31; and anti-pEGFR: 29. 
 A separate cohort comprised of radical prostatectomy specimens from 84 patients (described 
previously in [56]) receiving no prior therapy was used for multiplex staining of HER2, AR and PSA. 
Each block containing tumor tissue was selected from the index lesion of each tumor. 
 Prostate cancer patient-derived organoids were acquired from fresh prostatectomy tissue in patients 
undergoing radical retropubic surgery at Emory St. Joseph Hospital (Atlanta, GA). Tumor tissue was 
identified jointly by the attending surgeon and pathologist at the time of tissue grossing. 
 Frozen prostatectomy specimens (embedded in OCT) from the PCBN were sectioned onto glass 
slides and stained with H&E, or were shipped as ribbon curls in microfuge tubes. After review by a 
genitourinary pathologists (R.T.L.) to confirm the presence of tumor cells, ribbon curls were processed 
using the RNeasy Plus Mini Kit (Qiagen) to extract total RNA. 
 
Tissue processing and immunohistochemistry 
 Diagnostic H&E slides of biopsies fixed in formalin and paraffin-embedded (FFPE) were reviewed 
by two genitourinary pathologists (R.T.L. and H.Y.). Additional immunostains for tissue 
characterization and/or to guide laser capture microdissection (LCM) were performed on 5-µm serial 
sections of tissue as previously described [22]. All IHC assays were performed using validated protocols 
on an PATH FLX autostainer (Biocare Medical). For LCM, additional 5-µm serial sections of tissue 
were cut onto polyethylene naphthalate membrane slides (MicroDissect GmbH), with glass slides cut 
after every five membrane slides for additional H&E and IHC stains to serve as references. Membrane 
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slides were briefly baked, deparaffinized, rehydrated and stained with Paradise stain (ThermoFisher) 
according to the manufacturer’s protocol. Approximately 10,000-50,000 tumor cells per ROI were 
captured from serial sections using an ArcturusXT Ti microscope onto CapSure Macro LCM Caps 
(Thermo Fisher) using the infrared capture and ultraviolet cutting lasers. Adjacent stromal tissue that 
was incidentally captured was ablated using the UV laser. Micrographs of each cap were taken after 
each LCM session and cross-referenced against reference slides by two blinded genitourinary 
pathologists (R.T.L. and H.Y.) to verify the regions captured. RNA was extracted from LCM tissues by 
using a clean scalpel to excise the LCM cap polymer and immerse it in Buffer PKD from the RNeasy 
FFPE Mini Kit (Qiagen). 
 For IHC against EGFR, pEGFR, HER2, pHER2, HER3 and pHER3, glass slides containing tissue 
sections were baked for 30 minutes at 60°C. Following deparaffinization in xylenes and rehydration 
through graded alcohols, antigen retrieval was performed using a NxGen Decloaker (Biocare Medical) 
at 110°C for 15 minutes in Tris-EDTA Buffer (Abcam; ab93684), pH 9.0. Next, a thin border was drawn 
around the edges of each glass slide using a PAP pen. After 10-minute incubations in Background 
Punisher (Biocare; BP974), 300 μL of primary antibody solutions were prepared and incubated with 
tissues at room temperature at 1:100 dilutions into Renoir Red diluent (Biocare Medical; PD904) for 1 h: 
anti-EGFR clone D38B1 (Cell Signaling; 4267), anti-pEGFR clone D7A5 (Cell Signaling; 3777), anti-
HER2 clone 29D8 (Cell Signaling; 2165), anti-pHER2 clone 6B12 (Cell Signaling; 2243), anti-HER3 
clone D22C5 (Cell Signaling; 12708), and anti-pHER3 clone 21D3 (Cell Signaling; 4791). Secondary 
detection was achieved with Mach 4 (Biocare Medical; M4U534H) polymer and/or probe for 30 
minutes. Chromogen development was achieved with Betazoid DAB (Biocare Medical; BDB2004) and 
counterstained with CAT hematoxylin (Biocare Medical; CATHE) diluted 1:2 into distilled water. 
Slides were dehydrated through graded alcohols into xylene, mounted using Permount (Thermo Fisher), 
and digitized using a Carl Zeiss AxioScan.Z1 microscope slide scanner equipped with a Plan-
Apochromat 20× NA 0.8 objective. 
 For multiplex immunofluorescence of AR, PSA and HER2, slides underwent preprocessing, antigen 
retrieval, and blocking as described above. Anti-HER2 clone 29D8 (Cell Signaling; 2165) was diluted 
1:100 in 1× Antibody Diluent/Block (Akoya Biosciences; ARD1001EA) before incubating for 1 h. 
Slides were washed with TBST then incubated with ImmPRESS HRP Goat-anti-Rabbit IgG Polymer 
Reagent (Vector Laboratories; 30125) for 1 h. Slides were washed with TBST then incubated with Opal 
650 (Akoya Biosciences; OP-001005) diluted 1:150 in 1× Plus Amplification Diluent (Akoya 
Biosciences; FP1498) for 1h. The next day, slides were removed and washed in diH2O. Antibodies were 
stripped using HIER with Diva Decloaker (Biocare Medical; DV2004MX) in a NxGen Decloaking 
Chamber at 110°C for 30 m. After cooling, slides were loaded onto the PATH FLX autostainer. Slides 
were washed with TBST, then blocked using Background Punisher for 1 h. AR clone D6F1T (Cell 
Signaling; 5153) was diluted 1:100 in 1× Antibody Diluent/Block (Akoya Biosciences; ARD1001EA) 
before incubating for 1 h. Slides were washed with TBST then incubated with ImmPRESS HRP Goat-
anti-Rabbit IgG Polymer Reagent (Vector Laboratories; 30125) for 1 h. Slides were washed with TBST 
then incubated with Opal 520 (Akoya Biosciences; OP-001001) diluted 1:150 in 1× Plus Amplification 
Diluent (Akoya Biosciences; FP1498) for 1 h. The next day, slides were removed and washed in diH2O. 
Antibodies were stripped using HIER with Diva Decloaker in a NxGen Decloaking Chamber at 110°C 
for 30 m. After cooling, slides were loaded onto the PATH FLX autostainer. Slides were washed with 
TBST, then blocked again using Background Punisher for 1 h. PSA clone D6B1 (Cell Signaling; 5365) 
was diluted 1:50 in Renoir Red Diluent and incubated with tissues for 1 h. After washing with TBST, 
goat anti-Rabbit IgG (H+L) Secondary Antibody, AlexaFluor 555 (ThermoFisher Scientific; A-21428) 
was diluted 1:50 in Renoir Red Diluent and incubated for 1 h. Slides were washed with TBST, then 
removed from the autostainer. Slides were washed with diH2O, then incubated with Vector TrueVIEW 
Autofluorescence Quenching Kid (Vector Laboratories; SP-8400) for 2 m. Slides were washed with 
diH2O, then incubated with 350 nM DAPI (4′,6-Diamidino-2-Phenylindole, Dihydrochloride) 
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(ThermoFisher Scientific; D1306) for 10 m. Slides were washed with diH2O then mounted using 
ProLong Glass Antifade Mountant (Invitrogen; P36980). As controls for efficient and complete antibody 
stripping, additional control slides were processed with each one of the primary antibodies described, 
completing all other steps but omitting the other two secondary antibodies. Slides were then digitized on 
Carl Zeiss AxioScan.Z1 microscope slide scanner equipped with a Plan-Apochromat 20× NA 0.8 
objective equipped with a Colibri 7 flexible light source, and post-processed using ZenBlue (Zeiss). 
 Fully quantitative IHC analyses against AR, PSA, SYP, GR and Ki-67 were generated using 
Definiens software and reported previously [22]. Semi-quantitative IHC analyses against EGFR, p-
EGFR, HER2, p-HER2, HER3 and p-HER3 were performed using the H-scoring approach, which 
considers the proportion of tumor cells per slide that display no (0), low (1), medium (2) or high (3) 
staining intensity. The proportion of cells is multiplied by the intensity factor, for a maximum possible 
score per slide of 300 (100% of cells at score 3). H-scoring was conducted separately for cytosolic and 
membranous staining with distinct scores recorded for invasive vs. intraductal tumor histologies. The 
maximum H-score for each case was used for further comparisons. 
 
Cell culture and immunoblotting 
 LNCaP and 22Rv1 cells were purchased from the American Type Culture Collection (ATCC). 
LAPC-4 cells were a kind gift from Dr. Charles Sawyers. Cells were authenticated by STR profiling 
(Laragen) every six months. LNCaP and 22Rv1 cells were maintained in RPMI-1640 supplemented with 
10% fetal bovine serum, 1% penicillin-streptomycin solution, and 1% L-glutamine. LAPC-4 cells were 
maintained in IMDM supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin solution, 
and 1% L-glutamine. 
 Dose response curves were performed with 22Rv1, LAPC-4 and LNCaP cells for each new lot of 
drug acquired. Abiraterone, enzalutamide, afatinib, erlotinib, dacomitinib, gefitinib, lapatinib, neratinib, 
sunitinib, and vendetanib were acquired from the National Cancer Institute Developmental Therapeutics 
Program Open Chemicals Repository Collection. For each assay, cells were seeded in solid white flat-
bottom tissue culture-treated 96-well plates, at 5000 cells per well in a volume of 100 µl. Blank wells 
were filled with 150 µl of complete media. Unused wells were filled with 75 µl of PBS. Each agent was 
prepared in DMSO (vehicle) in 50 µl at 3× its intended concentration for a final volume per well of 150 
µl. Drug concentrations were tested at 100, 50, 10, 5, 1, 0.1 and 0 µM one day after plating, and cell 
viability was measured after 5 days of treatment using CellTiter-Glo (CTG) 2.0 Cell Viability Assay 
Reagent (Promega; G9243). Prior to measurement, plates were left to equilibrate at room temperature 
for 30 m, 75 µl of CTG reagent was added per well, and read using a Tecan Infinite M200 Pro with 1.5 
mm of orbital shaking for 2 m, 10 m of incubation, and luminescence reading with integration time for 
1000 ms.  
 Cells were treated with each agent at its determined IC50 (or IC20), alone or in combination to 
measure tumor cell viability, RNA levels, or protein levels. For drug treatments in assessing viability, 
cells were seeded as described above for dose-response curves, treated one day after plating, and grown 
for five days prior to incubation with CTG. Representative IC50 values from a set of experiments are 
depicted in Fig. 4B. Viability measurements were performed at least 5 times independently. For RNA 
and protein extraction, cells were seeded in six-well plates at 50,000 cells per well in a volume of 2 ml. 
Cells were grown to 75% confluency prior to the initiation of drug treatment. Cells were grown for a 
total of 5 days, treated for 5, 3, 1, or 0 days, in duplicate for RNA and protein extraction, and were 
performed at least three times independently. RNA was extracted using the RNeasy Plus Mini Kit 
(Qiagen) following the manufacturer’s protocol, scraping cells directly into Buffer RLT Plus. Protein 
was extracted by scraping cells into RIPA buffer (Pierce; 89900) supplemented with Halt Protease and 
Phosphatase Inhibitor Cocktail (Thermo Scientific; 78440). Lysates were incubated on ice for 10 m, 
vortexed, and centrifuged at 21,000 × g for 10 minutes at 4°C. Supernatants were stored at -80°C. 
 Protein lysates were separated by SDS-PAGE on 4–15% Criterion TGX protein polyacrylamide gels 
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(Bio-Rad) and transferred to nitrocellulose membranes via semi-dry transfer. After 1 h blocking in 10% 
nonfat dry milk in TBST, membranes were incubated with the following primary antibodies overnight at 
4°C, all diluted into TBST with 5% BSA: anti-AR clone D6F11, anti-PSA clone D6B1, and anti-actin 
clone C4 (Millipore; MAB1501). Membranes were washed and incubated with HRP-conjugated 
secondary antibodies (1:5000–10000 dilutions) for 1 h, reacted with Clarity Western ECL substrate 
(Bio-Rad; 1705061) and visualized using the ChemiDoc Touch Imaging System (Bio-Rad). 
 
Patient-derived organoids 
 Fresh tumor tissues from prostatectomies were minced and digested in basal medium (Advanced 
DMEM/F12 supplemented with Glutamax, HEPES and antibiotics) containing 5 mg/mL collagenase 
type II, and 10 µM Rho-kinase inhibitor (Y-27632) overnight at 37°C. Erythrocytes were lysed in 1 ml 
of red blood cell lysis buffer for 5 minutes at room temperature, followed by centrifugation at 300 × g. 
The cell pellet was resuspended in growth factor-reduced Matrigel (Corning, 354230) and seeded as 
~20,000 cells in a 40-μl drop in the middle of a 24-well plate. Prostate organoids were cultured in basal 
medium containing: 50× B-27, 10% R-spondin-conditioned medium, 5 ng/mL EGF, 10 ng/mL FGF-10, 
5 ng/mL FGF-2, 1.25 mM N-acetylcysteine, 10 µM Y-27632, 500 nM A-8301, 10 mM nicotinamide, 
100 ng/mL Noggin, 1 µM prostaglandin E2, 10 µM SB202190, and 1 nM dihydrotestosterone. Medium 
was changed every 2-3 days. Organoids appear within 7 days after plating and passaging at a 1:4 
dilution every 1–3 weeks with TrypLE Express containing 10 µM Y-27632 followed by mechanical 
dissociation to single cells.  
 Organoids were plated at a density of 20,000–30,000 cells per well and treated with ABT-373 (10 
µM) and neratinib at 1, 3, and 5 µM for 72 hours. Cells were harvested, spun down, and washed twice 
with 1× cold PBS. Cells were subjected to viability staining with the Pacific Blue Annexin V Apoptosis 
Detection Kit with 7-AAD (BioLegend; 640926) following the manufacturer’s recommendations. 
Samples were acquired on BD FACSymphony A3 instrument and analyzed using FlowJo (version 10) 
software. 
 
Library preparation, sequencing, bioinformatic processing and gene expression profiling 
 Up to 100 ng of RNA extracted from FFPE tissues, up to 1 µg of RNA extracted from frozen tissue 
sections, and 1 µg of RNA from cell lines were used for preparing paired-end Illumina-compatible 
RNA-seq libraries. Tissue-derived RNA was first processed using the NEBNext Globin & rRNA 
Depletion Kit (New England Biolabs), while cell line-derived RNA was processed using polyA capture. 
Enriched RNA was assembled using the NEBNext Ultra II Directional RNA Library Prep Kit for strand-
specific sequencing. All libraries were sequenced on Illumina NovaSeq 6000 S4 flowcells. 
 Paired FASTQ files were processed as previously described [40]. Briefly, reads were trimmed using 
Trimmomatic version 0.36, and gene-level counts were estimated using RSEM version 1.3.2 as a 
wrapper around STAR version 2.7.0f in stranded mode. Gene fusions were identified using defuse 
version 0.8.1. FASTQ pairs of TCGA data were downloaded from the NCI Genomic Data Commons 
and processed using an identical pipeline. Raw counts were normalized using the trimmed mean method 
in edgeR package in R, and used to generate heatmaps with the pheatmap package. 
 Differentially-expressed genes per unit of residual cancer burden (RCB) were derived using the 
variancePartition package, modeling units of RCB as the fixed effect, using the formula ~RCB + 
(1|Patient) with patient as the only random effect, or ~RCB + ERG/PTEN (1|Patient) incorporating ERG 
or PTEN as additional random effects in the linear mixed effect model. Alternatively, AR enrichment 
score for each sample was calculated using the gene set “Hallmark of androgen response” and with the 
GSVA package in ssgsea mode with tau = 0.75. Next, differentially-expressed genes (DEGs) associated 
with AR activity were derived using ~AR + (1|Patient) in variancePartition. For the TCGA and PCBN 
cohorts, DEGs were identified using linear regression models with the DESeq2 package. 
 Gene expression (v.21Q1), drug sensitivity (v.19Q4) and RNAi (Broad/Novartis/Marcotte) viability 
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screen data were downloaded from the Broad Institute DepMap (depmap.org). Gene expression data was 
processed using the ssGSEA module of GenePattern (genepattern.org) to measure HER2 and AR 
activity gene sets from mSigDB. 
 LNCaP single-cell gene expression data was downloaded from the NIH Gene Expression Omnibus 
using accession ID GSE168668. Data was processed using cellranger version 7.2.0 and aligned to 
GRCh38-2020-A. The resulting cells were filtered based on total gene counts, number of unique reads 
and mitochondrial fractions. Next, the data were normalized using computeSumFactors from the scran 
package and integrated using fastMNN from the batchelor backage. Clustering was performed using 
Louvain method with clusterCells from the scran package. K was calculated using clusGap from the 
cluster package. Trajectory analysis was performed on the batch-corrected embedding using the 
slingshot package.  
 Differential gene analysis from treated prostate cancer cell lines over a time course was performed 
with formula “~ day” in voomWithWeights and dream from the variancePartition package. The final 
bias-corrected Z scores were derived by averaging the two replicates from each treatment condition (cell 
line, drug and day). 
 
Statistical analysis 
 Statistical analyses were performed using GraphPad Prism version 10, Microsoft Excel for Mac 
version 16, and R version 4.2.0. Comparisons of single factors based on residual cancer burden were 
performed using linear mixed effect models with up to two random effects. Pathway enrichment was 
filtered and sorted by adjusted P values and bias-corrected Z scores. Associations between factors were 
measured using Spearman correlations. Comparison of cell viabilities was performed using ANOVA 
tests with Bonferroni adjustment for multiple comparisons. 
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FIGURES 
 
Figure 1 
 

 
 
Figure 1. Integrated molecular landscape of prostate tumors prior to neoadjuvant intense 
androgen deprivation therapy. (A) Schematic of workflow in which laser capture microdissection and 
RNA-seq of tumor foci from image-guided baseline biopsies (left) are used to assess gene expression 
differences that track with posttreatment pathologic tumor volumes (right). (B) Distribution of residual 
cancer burden (RCB, one row per patient) plotted on a logarithmic x-axis with a pseudocount (cm3 + 1). 
Green bars represent exceptional responders (ER) and red bars represent incomplete and nonresponders 
(INR) who harbored residual tumor volumes greater than 0.05 cm3. (C) Principal component analysis of 
147 baseline tumor foci transcriptomes. Each dot is colored by patient, with squares representing foci 
from INR patients and circles representing foci from ER patients. (D) Heatmap and oncoprint depicting 
molecular and histologic features of baseline tumors where each column represents one laser capture 
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microdissected tumor focus subjected to whole-transcriptome sequencing. Identical values are given 
IHC profiling performed on a single tissue that was subdivided for sequencing. Black bars at the bottom 
indicate multiple samples from the same patient. Samples are ranked from left-to-right by patient-level 
residual cancer burden (RCB) volumes. (E) Linear mixed-effect model depicting variance in gene 
expression across samples within each patient (by color) vs. RCB (x-axis), showing gene expression 
pattern for positively-correlating genes. (F) Volcano plot depicting differentially-expressed genes 
(DEGs) determined using a linear mixed-effect model using RCB as a fixed effect and each patient as a 
random effect. Horizontal boundary depicts the P = 0.05 (adjusted) cutoff, and vertical boundaries 
demarcate genes with a fold-change of at least ±2. DEGs are quantified as fold-change per unit of post-
treatment tumor volume (in cm3) where genes to the right are more expressed at baseline in tumors with 
higher volumes and genes to the left are less expressed. (G-I) All statistically significant DEGs (Padj < 
0.05) from the linear mixed-effect model were processed with the upstream regulator module of 
Ingenuity Pathway Analysis. The ten most activated and inactivated pathways (with adjusted P values 
less than 0.05) are shown for DEG analyses in which (G) patients were the only random effect, (H) 
patients and ERG status were random effects, and (I) patients and PTEN status were random effects. 
The bias-corrected z score is shown on the bottom x axis and the adjusted P value is shown on the top x 
axis (-log10 transformed). 
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Figure 2 
 

 
 
Figure 2. HER2 protein is expressed at baseline in tumor foci that resist therapy and is retained 
posttreatment. (A) Representative micrographs of anti-HER2 and anti-pHER2 IHC in baseline biopsies 
and residual tumor foci, showing examples from three patients with matched samples. Bar: 50 µm. (B) 
Heatmaps summarizing semi-quantitative analysis of anti-HER2 and anti-pHER2 
immunohistochemistry (IHC) performed on entire sections of biopsies and posttreatment surgical 
specimens. Rows are grouped by patient. (C-F) Density plots summarizing the frequency distribution of 
IHC semi-quantitative analysis, per patient, of baseline biopsies (C-D) or of posttreatment prostatectomy 
specimens (E-F) with antibodies against HER2 (C,E) and pHER2 (D,F). (G-H) Scatter plots showing 
the association of per-patient HER2 (G) or pHER2 (H) baseline H-scores (x-axis) with posttreatment H-
scores (y-axis). Statistical significance determined using Spearman’s rank correlation. Line and gray 
shaded area show the linear regression line and 95% confidence interval for the regression. (I-J) Density 
plots of HER2 (I) and pHER2 (J) baseline semi-quantitative IHC, stratified by pathologic response in 
the final surgical specimens with exceptional responders in green and incomplete/nonresponders in red. 
Statistical significance determined using χ-squared test. Inv: invasive; IDC: intraductal carcinoma; 
memb: membranous; cyto: cytosolic. 
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Figure 3 
 

 
 
Figure 3. Prostate cancer cell lines recapitulate patterns of enzalutamide resistance observed in 
patients. (A-C) Statistically significant DEGs (Padj < 0.05) that were correlated with the “AR 
Hallmarks” mSigDB geneset processed by single-sample GSVA were analyzed with the upstream 
regulator module of Ingenuity Pathway Analysis for (A) our original neoadjuvant ADT plus 
enzalutamide cohort, (B) 123 tumors from the Prostate Cancer Biorepository Network (PCBN) and the 
(C) prostate cancer TCGA. A linear mixed-effect model was employed with the neoadjuvant cohort in 
(A) modeling repeated measures from patients as random effects. The ten most activated and inactivated 
pathways (with adjusted P values less than 0.05) are shown. (D-E) Publicly available data from the 
Broad DepMap is shown, in which AR-positive cell lines are depicted in blue and AR-negative cell lines 
depicted in red. Gene expression were summarized using single-sample GSVA for AR and HER2 
activity signatures from mSigDB (D), and cell death (sensitivity) were plotted to compare matched 
enzalutamide sensitivity or ERBB2 RNAi survival scores (E). (F-J) Publicly accessible single-cell gene 
expression data from LNCaP cells treated with antiandrogen (F-G) were downloaded and normalized 
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together. (G-I) UMAP projections of each treatment condition individually (G), clustered by differential 
expression (H), and overlaid, colored by treatment condition (I). Following trajectory and pseudobulk 
differential expression analysis, statistically significant DEGs (Padj < 0.05) in the “resistant” clusters 
were analyzed with the upstream regulator module of Ingenuity Pathway Analysis. The ten most 
activated and inactivated pathways (with adjusted P values less than 0.05) are shown.
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Figure 4 
 

 
 
Figure 4. HER2 inhibition selects for prostate cancer cells with greater AR activity. (A) Schematic 
depiction of in vitro screening of 22Rv1, LAPC-4 and LNCaP cells with eight different receptor tyrosine 
kinase inhibitors (RTKi). (B) Half-maximal inhibitory concentrations (IC50 values) are shown for each 
RTKi used, per cell line. Values depict the average value derived from at least three dose response 
curves derived for the individual lots of each RTKi that was used. (C) Each cell line was treated with the 
indicated RTKi, abiraterone (ABI), or enzalutamide (ENZ) at the IC50 derived for that lot of drug. 
Charcoal stripped serum (CSS) was used in place of FBS (see methods) in cell culture media. 
Treatments were performed over a 5-day time course and samples were acquired days 0, 1, 3 and 5. 
RNA extracted from each sample (performed in duplicate) was subjected to whole-transcriptome 
sequencing, with differentially expressed genes (correlating with time) processed using the upstream 
regulator module of Ingenuity Pathway Analysis. (D-E) Western blots depicting protein levels of 
LNCaP cells (D) and 22Rv1 cells (E) treated with afatinib (at its empirically determined IC50) for 0–5 
days. Blots shown are representative of at least three independent experiments. Actin is shown as a 
loading control. 
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Figure 5 
 

 
 
Figure 5. Prostate cancer cells expressing high levels of HER2 are distinct from tumor cells with 
high levels of AR activity. (A) Flow cytometry of four human prostate cancer organoids treated with 10 
µM ABT-373 to identify the gates for apoptotic and nonapoptotic cells. The pathologic grade group of 
each of the organoid models (183, 187, 188 and 190) is also shown. (B) Flow cytometry of the same 
four human prostate cancer organoids as in (A), treated with DMSO, 1 µM neratinib, 3 µM neratinib or 
5 µM neratinib for 48 hours. The gates defined in (A) were used to identify the apoptotic and 
nonapoptotic cells. (C) Bar graph showing the proportion of nonapoptotic cells measured in (B). (D) 
LNCaP cells were treated with either enzalutamide or afatinib ± enzalutamide, (at their respective IC20) 
for five days. Cell viability was measured using Cell-Titer Glo. Data shown is the average of two 
experiments. (E) LNCaP cells were treated with enzalutamide, afatinib ± enzalutamide, or neratinib ± 
enzalutamide for five days. Cell viability was measured using Cell-Titer Glo. Data shown is the median 
of at least three replicate experiments. Error bars 95% confidence interval for experiments with at least 5 
replicates. Statistical significance was measured using a repeated-measures ANOVA test with 
Bonferroni adjustment for multiple comparisons. (F) Multiplex immunofluorescent micrographs (taken 
at 20 × magnification) of three representative human prostate tumors stained with HER2 (green), PSA 
(pink) and AR (purple).  
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SUPPLEMENTARY FIGURES 
 
Supplementary Figure 1 
 

 
 
Supplementary Figure 1. Representative micrographs of anti-HER2 IHC. Examples are shown of 
invasive and intraductal morphologies with either membranous or cytosolic staining in baseline biopsy 
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(A) and posttreatment radical prostatectomy (B) specimens. Bar: 50 µm. 
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Supplementary Figure 2 
 

 
 
Supplementary Figure 2. Expression and phosphorylation of EGFR and HER3 are not associated 
with pathologic response. (A) Heatmaps summarizing semi-quantitative analysis of anti-EGFR and 
anti-pEGFR IHC performed on entire sections of biopsies and posttreatment surgical specimens. Rows 
are grouped by patient. (B-E) Density plots summarizing the frequency distribution of IHC semi-
quantitative analysis, per patient, of baseline biopsies (B-C) or of posttreatment prostatectomy 
specimens (D-E) with antibodies against EGFR (B,D) and pEGFR (C,E). (F) Density plots of EGFR 
baseline semi-quantitative IHC, stratified by pathologic response in the final surgical specimens with 
exceptional responders in green and incomplete/nonresponders in red. Statistical significance 
determined using χ-squared test. (G) Heatmaps summarizing semi-quantitative analysis of anti-HER3 
and anti-pHER3 IHC performed on entire sections of posttreatment surgical specimens. (H-I) Density 
plots summarizing the frequency distribution of IHC semi-quantitative analysis, per patient, of 
posttreatment tumors with antibodies against HER3 (H) and pHER3 (I). Inv: invasive; IDC: intraductal 
carcinoma; memb: membranous; cyto: cytosolic. 
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