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Abstract 32 

Background: Diagnosis of mitral regurgitation (MR) requires careful evaluation of 33 

echocardiography with Doppler imaging. This study presents the development and validation of a 34 

fully automated deep learning pipeline for identifying apical-4-chamber view videos with color 35 

Doppler and detection of clinically significant (moderate or severe) mitral regurgitation from 36 

transthoracic echocardiography studies. 37 

Methods: A total of 58,614 studies (2,587,538 videos) from Cedars-Sinai Medical Center (CSMC) 38 

were used to develop and test an automated pipeline to identify apical-4-chamber view videos with 39 

color Doppler across the mitral valve and then assess mitral valve regurgitation severity. The 40 

model was tested on an internal test set of 1,800 studies (80,833 videos) from CSMC and externally 41 

evaluated in a geographically distinct cohort of 915 studies (46,890 videos) from Stanford 42 

Healthcare (SHC). 43 

Results:  In the held-out CSMC test set, the view classifier demonstrated an AUC of 0.998 (0.998 44 

- 0.999) and correctly identified 3,452 of 3,539 MR color Doppler videos (sensitivity of 0.975 45 

(0.968-0.982) and specificity of 0.999 (0.999-0.999) compared with manually curated videos). In 46 

the external test cohort from SHC, the view classifier correctly identified 1,051 of 1,055 MR color 47 

Doppler videos (sensitivity of 0.996 (0.990 – 1.000) and specificity of 0.999 (0.999 – 0.999) 48 

compared with manually curated videos). For evaluating clinically significant MR, in the CSMC 49 

test cohort, moderate-or-severe MR was detected with AUC of 0.916 (0.899 - 0.932) and severe 50 

MR was detected with an AUC of 0.934 (0.913 - 0.953). In the SHC test cohort, the model detected 51 

moderate-or-severe MR with an AUC of 0.951 (0.924 - 0.973) and severe MR with an AUC of 52 

0.969 (0.946 - 0.987). 53 

Conclusions: In this study, we developed and validated an automated pipeline for identifying 54 

clinically significant MR from transthoracic echocardiography studies. Such an approach has 55 

potential for automated screening of MR and precision evaluation for surveillance.  56 
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Introduction 63 

Mitral regurgitation (MR) is one of the most common forms of valve disease, affecting 64 

more than 4 million Americans.1,2,3 Often progressing insidiously and frequently 65 

underrecognized3, both primary MR as well as secondary MR can be initially asymptomatic but 66 

lead to worsening heart failure and mortality.1,4–6,7,8 There has been an increased focus on early 67 

MR diagnosis given advances in surgical and transcatheter treatment options1,9,10. 68 

Echocardiography with color Doppler is the most common method of initial evaluation of MR, 69 

with a holistic assessment combining left atrial size, effective regurgitant orifice area, regurgitant 70 

fraction, regurgitant volume, as well as other key clinical factors to accurately assess disease 71 

severity.11,12 Despite ultrasound technology becoming more widely available, accurate assessment 72 

of MR still requires experienced expert image acquisition and evaluation.  73 

 Recent advances in machine learning offer opportunities to automate time-consuming steps 74 

in the interpretation of medical imaging. Artificial intelligence (AI) has the ability to precisely 75 

phenotype subtle cardiac physiology as well as identify imaging features of disease severity not 76 

recognized by clinicians.13–16 Deep learning has been applied to echocardiography to improve the 77 

precision of common measurements, such as left ventricular ejection fraction13 and wall 78 

thickness15,17,  as well as streamlining assessment of aortic stenosis18, hypertrophic 79 

cardiomyopathy (HCM)15, and cardiac amyloidosis (CA).15,19 With increased ultrasound 80 

availability, AI guidance has been developed for both image acquisition and interpretation13,20. 81 

With the increasing prevalence of MR in an aging population with co-morbid heart failure, AI 82 

could aid in MR screening and surveillance.21–25 83 

In this study, we developed and evaluated a deep learning pipeline’s performance in 84 

automating identification of MR from standard transthoracic echocardiogram studies. We 85 

hypothesized that a deep learning approach can identify color Doppler apical-4-chamber videos 86 

and assess MR severity with high-throughput automation, and this automated pipeline was 87 

evaluated in two geographically distinct cohorts (Figure 1). Combined with other 88 

echocardiography AI algorithms, such an approach can be used for serial surveillance and 89 

screening of mitral regurgitation.  90 

 91 
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Methods 94 

Study Population and Data Source 95 

Cedars-Sinai Medical Center (CSMC) Cohort: A total of 58,614 transthoracic 96 

echocardiogram studies from 38,461 patients receiving care at Cedars-Sinai Medical Center 97 

(CSMC) between October 11, 2011 and June 04, 2022 were used to train and evaluate the deep 98 

learning models. A total of 2,587,538 videos (an average of 44 videos per study after excluding 99 

still images) were initially sourced from Digital Imaging and Communications in Medicine 100 

(DICOM) files and underwent de-identification, view classification, and pre-processing into AVI 101 

videos. 354,117 videos were classified as apical-4-chamber videos using an automated view 102 

classifier, and then manually curated to identify 34,714 videos with color Doppler across the mitral 103 

valve.26 104 

Following view selection, the CSMC cohort included 34,714 videos across 30,453 unique 105 

echocardiogram studies from 22,661 patients, and a subset enriched for moderate and severe MR 106 

were used for training. A total of 20,604 videos from 18,133 studies in the dataset were split on a 107 

patient level into train (80%), validation (10%), and test (10%) cohorts to train a deep neural 108 

network for MR severity classification (Figure 2). MR severity for each study was determined 109 

based on the clinical echocardiogram report determined in a high volume echocardiography lab in 110 

accordance with ASE guidelines.27 When MR was characterized as an intermediate category 111 

(“trace to mild” or “mild to moderate” or “moderate to severe”), videos were placed in the more 112 

severe categories. Both primary and secondary MR were included. Studies with concomitant mitral 113 

stenosis, other prosthetic valves, and heart failure were also included in both training and 114 

validation datasets.  115 

 Stanford Healthcare (SHC) Cohort: The pipeline was evaluated on 915 studies 116 

(containing a total of 46,890 videos) from SHC’s high-volume academic echocardiography lab. 117 

The automated view classification pipeline was compared with manual curation of videos within 118 

those studies to evaluate specificity. All videos identified by the view classifier were used for 119 

downstream MR severity model validation. Model output was compared with MR severity 120 

determined by expert cardiologists from the clinical reports. This study was approved by the 121 

Institutional Review Boards at Cedars-Sinai Medical Center and Stanford Healthcare. The need 122 

for informed consent was waived as the study involved secondary analysis of existing data. 123 
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AI Model Training 125 

Deep learning models were trained using the PyTorch Lightning deep learning framework. 126 

When patients had multiple echocardiogram videos and studies, each video was considered an 127 

independent example during training, with care not to have patient overlap across training, 128 

validation, and test cohorts. Video-based convolutional neural networks (R2+1D) were used for 129 

view classification and MR severity assessment.28 This model architecture was previously used 130 

for other echocardiography tasks and shown to be effective.17 The models were initialized with 131 

random weights and trained using a binary cross entropy loss function for up to 100 epochs, using 132 

an ADAM optimizer, an initial learning rate of 1e-2, and a batch size of 24 on two NVIDIA RTX 133 

3090 GPUs. Early stopping was performed based on the validation loss. 134 

The view classifier was trained using the 34,714 manually curated videos with color 135 

Doppler across the mitral valve as cases and 49,263 other apical-4-chamber videos as controls. 136 

Controls were a combination of videos that did not have color Doppler or had color Doppler 137 

window not focused on the mitral valve (videos focused on the tricuspid valve, intra-atrial septum, 138 

or ventricular septum).  The MR severity model was trained on 6,206 videos without MR, 6,128 139 

videos with mild MR, 6,174 videos with moderate MR and 2,042 videos with severe MR. This 140 

process is summarized in Figure 2.  141 

 142 

Statistical Analysis 143 

Model performance was evaluated using area under the receiver operating characteristic 144 

curve (AUROC) and confusion matrices. F1-score, recall (sensitivity), positive predictive value 145 

(PPV), and negative predictive value (NPV) for both greater than moderate MR and severe MR. 146 

During external validation, the view classifier and MR classifier were evaluated serially as an 147 

automated pipeline. Statistical analysis was performed in Python (version 3.8.0) and R (version 148 

4.2.2). Confidence intervals were computed via bootstrapping with 10,000 samples. Reporting of 149 

study results are consistent with guidelines put forth by CONSORT-AI.29,30  150 

 151 

Model Explainability 152 

The key imaging features identified by the MR severity model were evaluated using 153 

saliency mapping generated using the Integrated Gradients method.31 This method generated a 154 

heatmap for every frame of the video, summarized as a final 2-dimensional heatmap generated by 155 
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using the maximum value along the temporal axis for each pixel location in the video. Pixels 156 

brighter in intensity and closer to yellow were more salient to model predictions, while those darker 157 

in color were less important to the model’s final prediction. When assessing videos with no MR, 158 

heatmaps were obtained by taking the maximum of saliency maps for the moderate and severe 159 

class output neurons for each pixel location (Figure 4). 160 

 161 
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 187 

Results:  188 

Study Population 189 

A total of 58,614 studies from 38,461 patients were used to train the deep learning pipeline. 190 

From 2,587,538 initial videos, a total of 354,117 videos were identified as apical-4-chamber and 191 

subsequently manually curated to identify videos that had color Doppler across the mitral valve. 192 

The manually curated color Doppler videos were used to train a view-classification model and 193 

linked with clinician reports to train the MR severity model. Patient characteristics are presented 194 

in Tables 1 & 2 and are representative of the general CSMC patient population that received 195 

echocardiograms. The data was split on patient level for training and validation and had similar 196 

patient age, ejection fraction, left atrial volume index and proportions of male sex, coronary artery 197 

disease, and atrial fibrillation. 198 

 199 

View Classifier Performance Across Two Institutions 200 

On a test set of 3,109 studies (132,767 videos) from CSMC not seen during model training, 201 

the view classifier identified 3,452 videos (97.5% of manually identified cases). This corresponds 202 

to an of AUC of 0.998 (0.998 – 0.999), and at the Youden Index, with a sensitivity of 0.975 (0.968-203 

0.982) and specificity of 0.999 (0.999-0.999). To evaluate generalization of the view classification 204 

model at a geographically distinct site, we evaluated its performance on 915 studies from SHC. 205 

The view classifier isolated 1,091 videos from a total of 46,890 videos, while manual review 206 

identified 1,055 videos with color Doppler across the mitral valve. The view classifier correctly 207 

identified 1,051 (99.6%) of manually curated videos, with 4 videos not found by the AI pipeline 208 

and 40 false positives. This corresponds to a sensitivity of 0.996 (0.990 – 1.000) and specificity of 209 

0.999 (0.999 – 0.999).  210 

 211 

Mitral Regurgitation Severity Performance Across Two Institutions  212 

The MR severity model showed strong performance in distinguishing MR severity and 213 

identifying clinically significant mitral regurgitation (Figure 3). In the internal CSMC test set not 214 

used during model training, the model demonstrated an AUC of 0.916 (0.899 - 0.932) in detecting 215 

≥ moderate MR and an AUC of 0.934 (0.913 - 0.953) for severe MR. The AI model had an NPV 216 

of 0.954 (0.940 - 0.967) for severe MR and an NPV of 0.863 (0.835 - 0.890) for ≥ moderate MR. 217 
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Further information on MR model performance is presented in Table 3. The MR severity model 218 

performance was similar across institutions. In the SHC cohort, the model identified severe MR 219 

with an AUC of 0.969 (0.946 - 0.987) and ≥ moderate MR with an AUC of 0.951 (0.924 - 0.973). 220 

In this cohort, the model had an NPV of 0.977 (0.962 – 0.990) for severe MR and an NPV of 0.986 221 

(0.974 – 0.995) for ≥ moderate MR. 222 

 223 

Model Interpretation 224 

Notably, saliency maps for our model demonstrate that the model focuses on the clinically 225 

relevant imaging features of mitral regurgitation. Saliency maps from Integrated Gradients were 226 

used to identify regions of interest in each video contributing the most to detection of MR severity 227 

(Figure 4).31 These interpretability techniques demonstrated localization of the activation signal 228 

in the color Doppler window and primarily highlighting the regurgitant jet, indicating that the 229 

model used appropriate, physiologic features of the mitral regurgitation to make predictions. 230 

Frame-by-frame saliency visualizations are shown in Supplemental Videos S1-S4. 231 

 232 
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 249 

Discussion 250 

We developed and validated an automated pipeline for assessing for mitral regurgitation in 251 

echocardiography. From a full transthoracic echocardiogram study, the algorithm automatically 252 

screens for appropriate A4C videos with color Doppler on the mitral valve and then assesses MR 253 

severity. For both severe MR as well as ≥ moderate MR, the model demonstrated strong 254 

performance (> 0.916 AUC and > 0.863 NPV). This automated workflow worked in unselected 255 

external validation studies without preselection or exclusion of other concomitant comorbidities. 256 

Given these characteristics, our deep learning model could aid in the preliminary assessment of 257 

MR, facilitate review of institutional databases, or expand access for screening in low-resource 258 

settings. 259 

 Our algorithm learns features of mitral regurgitation that generalize across variability in 260 

imaging practices in two geographically distinct sites. Many prior echocardiography AI models 261 

primarily focused on black-and-white standard 2D B-mode images, while our study focuses on the 262 

AI assessment of color Doppler videos and utilized a video-based model for the incorporation of 263 

rich temporal information, both crucial for accurate MR assessment. Incorporation of Doppler 264 

information greatly expands the opportunities for AI in echo, particularly in valve disease. In 265 

expert clinical interpretation, a variety of metrics beyond just color Doppler and views are 266 

synthesized together to come up with a holistic assessment of MR severity. Intriguingly, our AI 267 

algorithm generally results in concordant interpretations with the comprehensive clinical approach 268 

while relying only on the A4C view, suggesting there is significant overlapping information as 269 

well as dependence on the A4C view in standard clinical practice. 270 

While promising, the present work carries limitations. Echocardiographic assessment of 271 

MR depends on appropriate images being obtained, with different views potentially maximizing 272 

the visualized regurgitant jet. This algorithm would not overcome incomplete input information 273 

and insufficient images that would result underestimation of MR. Future work could focus on 274 

automatically quantifying parameters like valve leaflet thickness, effective regurgitant orifice area, 275 

regurgitant volume and fraction. 276 

The present work builds upon prior work in the space of echocardiography and AI. Several 277 

recent works have reported strides in computer vision and echocardiography, including automated 278 

view classification32,33, phenotyping of left ventricular hypertrophy15, assessment of LV systolic 279 
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function13, aortic stenosis risk stratification, and detection of complex congenital heart defects.34 280 

Prior work in machine learning applied to MR has primarily focused on structured data and non-281 

deep learning approaches. The combination of our algorithm with previously published works 282 

using AI to guide novices in acquiring imaging could potentially increase access to screening of 283 

MR.20,35 284 

In summary, we introduce a model to screen for and stratify mitral regurgitation severity 285 

from transthoracic echocardiogram videos. To do so, we provide a workflow for isolating mitral 286 

valve color Doppler videos and automation of MR severity assessment. The models were evaluated 287 

to have good performance in internal and external test cohorts. The use of such a model, with a 288 

high AUC, NPV, and generalizability across sites, can open the door for screening of mitral valve 289 

disease in the primary care setting or in low-resource environments. 290 
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Table 1 – View Classifier Demographics 416 
 417  

Train Validation Test 

Videos, n (%) 67,179 (80.0) 8,344 (9.9) 8,454 (10.1) 

Patients, n (%) 30,761 (80.0) 3,848 (10.0) 3,851 (10.0) 

Studies, n (%) 46,882 (80.0) 5,790 (9.9) 5,942 (10.1) 

Male, n (%) 38,367 (57.1) 4,907 (58.8) 4,854 (57.4) 

Hypertension, n (%) 40,982 (61.0) 5,070 (60.8) 5,065 (59.9) 

Coronary Artery Disease, n (%) 29,661 (44.2) 3,670 (44.0) 3,758 (44.5) 

Atrial Fibrillation, n (%) 19,909 (29.6) 2,289 (27.4) 2,498 (29.5) 

Ejection Fraction, mean (SD), % 56.56 (16.2) 57.11 (15.5) 55.85 (16.4) 

Left Atrial Volume Index (LAVI), 
mean (SD), mL/m2 34.71 (15.4) 34.49 (15.4) 34.05 (15.1) 

Race, n (%) 

White 47,110 (70.1) 5,927 (71.0) 5,709 (67.5) 

Black 8,282 (12.3) 972 (11.6) 1,228 (14.5) 

Asian 5,232 (7.8) 579 (6.9) 640 (7.6) 

Other 6,555 (9.8) 866 (10.4) 877 (10.4) 

MR Severity, n (%) 

No MR 24,840 (37.0) 3,107 (37.2) 3,291 (38.9) 

Mild 25,235 (37.6) 3,143 (37.7) 3,104 (36.7) 

Moderate 12,477 (18.6) 1,519 (18.2) 1,518 (18.0) 

Severe 4,627 (6.9) 575 (6.9) 541 (6.4) 
Table 1 - Clinical and demographic characteristics represented in the training, validation, and 418 
internal test data sets for the 83,977 apical-4-chamber videos used to train, validate, and test the 419 
mitral doppler A4C view classifier. Values outside and inside parentheses represent number and 420 
percent, respectively, for categorical variables and mean and standard deviation for continuous 421 
variables. 422 
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Table 2 – Mitral Regurgitation Cohort Demographics 423 
 424  

Train Validation Test 

Videos, n (%) 16,533 (80.2) 2,007 (9.7) 2,064 (10.0) 

Patients, n (%) 11,623 (80.0) 1,450 (10.0) 1,450 (10.0) 

Studies, n (%) 14,565 (80.3) 1,768 (9.8) 1,800 (9.9) 

Male, n (%) 9,628 (58.2) 1,143 (57.0) 1,152 (55.8) 

Hypertension, n (%) 10,087 (61.0) 1,179 (58.7) 1,296 (62.8) 

Coronary Artery Disease, n (%) 7,482 (45.3) 888 (44.2) 963 (46.7) 

Atrial Fibrillation, n (%) 5,414 (32.7) 599 (29.8) 642 (31.1) 

Ejection Fraction, mean (SD), % 54.53 (17.6) 55.26 (17.5) 54.0 (17.9) 

Left Atrial Volume Index 
(LAVI), mean (SD), mL/m2 36.85 (15.8) 36.35 (15.8) 37.44 (16.3) 
 
Race, n (%) 

White 11,567 (70.0) 1,378 (68.7) 1,400 (67.8) 

Black 1,983 (12.0) 277 (13.8) 283 (13.7) 

Asian 1,428 (8.6) 147 (7.3) 192 (9.3) 

Other 1,555 (9.4) 205 (10.2) 189 (9.2) 
 
MR Severity, n (%) 

No MR 4,949 (29.9) 633 (31.5) 624 (30.2) 

Mild 4,990 (30.2) 606 (30.2) 586 (28.4) 

Moderate 4,952 (30.0) 595 (29.6) 627 (30.4) 

Severe 1,642 (9.9) 173 (8.6) 227 (11.0) 
 425 
Table 2 - Clinical and demographic characteristics of the 20,604 apical-4-chamber videos used 426 
to train, validate, and test the MR model. Values outside and inside parentheses represent 427 
number and percent, respectively, for categorical variables and mean and standard deviation for 428 
continuous variables. 429 
  430 
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Table 3 - Model Performance 431 

Site Class AUC PPV NPV Recall F1-Score 

CSMC 

≥ Moderate 
MR 

0.916 

(0.899 - 0.932) 

0.805 

(0.766 - 0.842) 

0.863 

(0.835 - 0.890) 

0.807 

(0.769 - 0.843) 

0.806 

(0.776 - 0.834) 

Severe MR 
0.934 

(0.913 - 0.953) 

0.626 

(0.533 - 0.713) 

0.954 

(0.940 - 0.967) 

0.626 

(0.535 - 0.713) 

0.626 

(0.546 - 0.695) 

Stanford 

≥ Moderate 
MR 

0.951 

(0.924 - 0.973) 

0.509 

(0.427– 0.591) 

0.986 

(0.974 – 0.995) 

0.930 

(0.867 – 0.983) 

0.658 

(0.581 – 0.727) 

Severe MR 
0.969 

(0.946 - 0.987) 

0.674 

(0.537 – 0.809) 

0.977 

(0.962 – 0.990) 

0.729 

(0.580 – 0.860) 

0.701 

(0.581 – 0.800) 

 432 

Table 3 - Model performance across institutions - AUC, PPV, NPV, Recall and F1-score for 433 
MR on an internal test set from CSMC and an external validation set at Stanford. 95% 434 
confidence intervals were obtained by bootstrapping 10,000 samples. “≥ moderate” includes 435 
moderate and severe MR. 436 
 437 

 438 
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 447 
 448 
 449 
Figure 1: Computer Vision Based Mitral Regurgitation (MR) Detection: An automated deep 450 
learning pipeline was trained to detect and stratify mitral regurgitation severity using large-scale 451 
data consisting of apical-4-Chamber (A4C) echocardiogram videos with Color Doppler across 452 
the mitral valve (CSMC). The automated pipeline showed strong and consistent performance in 453 
test sets at CSMC and SHC. These results show that deep learning can accurately detect 454 
clinically significant MR using single-view TTE videos with Doppler information. Deep 455 
learning-based MR detection tools could serve as a part of point-of-care ultrasound screening as 456 
part of clinic visits or in resource limited settings where imaging may be obtained by individuals 457 
with minimal training. 458 
  459 
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  460 
Figure 2: CSMC and Stanford Dataset Isolation. 34,714 Color Doppler A4C videos were 461 
isolated from a larger set of videos from CSMC. A view classifier was trained and used to isolate 462 
A4C Mitral Doppler videos from 915 studies containing 1,055 suitable videos from Stanford 463 
Healthcare. The MR classification model was then benchmarked on an internal test set from 464 
CSMC and an external test set from Stanford Healthcare. 465 
 466 
  467 
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 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

Figure 3: Model Performance Across Severity and Institution – A. Receiver operating 477 
characteristic (ROC) curves for detection of Severe or ≥ Moderate MR at CSMC and Stanford. 478 
“≥ Moderate” included moderate, moderate to severe, and severe MR. 3B and 3C: MR 479 
Classification on test set videos from CSMC and Stanford, respectively. Confusion matrix 480 
colormap values were scaled based on the proportion of actual disease cases in each class that 481 
were predicted in each possible disease category. This was done to allow for relative comparison 482 
of model performance across disease classes (None, Mild, Moderate, and Severe) given class 483 
imbalance. 484 
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 504 
 505 
 506 
Figure 4: Saliency Map Visualization for MR classification models. Echocardiogram videos 507 
with severe MR from CSMC (top left) and Stanford (bottom left) are shown on the left, while 508 
videos with no MR from CSMC (top right) and Stanford (bottom right) are shown on the right. 509 
Saliency maps were computed using the Integrated Gradients method. A final 2-dimensional 510 
heatmap was generated by using the maximum value along the temporal axis for each pixel 511 
location in the video. Pixels brighter in color and closer to yellow were more salient to model 512 
predictions, while those darker in color were less important to the model’s final prediction. 513 
Severe MR was assessed by using the activation function for severe disease to generate a 514 
heatmap. When assessing controls, heatmaps were generated by stacking heatmaps for severe 515 
and moderate classes and taking the maximum between the two at each pixel location. 516 
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