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Abstract1

Differential diagnosis of dementia, with its overlapping symptomatology, remains a significant challenge in2

neurology. Here we present an algorithmic framework employing state-of-the-art techniques such as trans-3

formers as well as self-supervised frameworks and harnessing a broad array of data including demographics,4

person-level and family medical history, medication use, neuropsychological exams, functional evaluations,5

and multimodal neuroimaging to identify the etiologies contributing to dementia in individuals. The study6

utilized 9 independent, geographically diverse datasets, including the National Alzheimer’s Coordinating7

Center with 45, 349 participants, the Alzheimer’s Disease Neuroimaging Initiative encompassing 1, 8218

participants, and the Frontotemporal Lobar Degeneration Neuroimaging Initiative comprising 253 partic-9

ipants. Additionally, the Parkinson’s Progression Marker Initiative with 198 participants, the Australian10

Imaging, Biomarker and Lifestyle Flagship Study of Ageing cohort including 661 participants, the Open11

Access Series of Imaging Studies dataset with 491 participants, and the 4 Repeat Tauopathy Neuroimaging12

Initiative comprising 80 participants were used. The study also included two in-house datasets: one from the13

Lewy Body Dementia Center for Excellence at Stanford University with 182 participants, and another from14

the Framingham Heart Study including 1, 651 individuals. Our model traverses the intricate spectrum of15

dementia by mirroring real-world clinical settings, aligning diagnoses with similar management strategies,16

and delivering robust predictions, even in the face of incomplete data. On the testing cohort, our model17

achieved a micro-averaged area under the receiver operating characteristic curve (AUROC) of 0.93, and18

a micro-averaged area under precision-recall curve (AUPR) of 0.87, in classifying individuals with normal19

cognition, mild cognitive impairment and dementia. Also, the micro-averaged AUROC was 0.95 and micro-20

averaged AUPR was 0.68 in differentiating 10 distinct dementia etiologies, defined through a consensus21

among a team of neurologists. One key strength lies in our model’s capability to address mixed dementias, a22

prevalent challenge in clinical practice, and the incorporation of interpretability techniques further unveiled23

vital disease-specific patterns. On a randomly selected subset (n = 100), our model differentiated true24

positive and true negative cases across 12 out of 13 categories (p < 0.01), as opposed to the neurologists’25

expertise in identifying 9 out of these 13 categories (p < 0.01). Furthermore, the model’s correlations with26

different proteinopathies were substantiated through postmortem analyses. This included a significant asso-27

ciation with the global Alzheimer’s disease neuropathologic change (ADNC) score (p < 0.001), and notable28

correlations with TDP-pathology, the presence of old microinfarcts, arteriosclerosis, and Prion disease (all29

with p < 0.05). Our framework has the potential to be integrated as a screening tool for dementia in various30

clinical settings and drug trials, with promising implications for person-level management.31
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Research in context1

Systematic review: Previous studies have demonstrated that models utilizing multimodal data can differenti-2

ate individuals across the dementia spectrum, identifying those with normal cognition (NC), mild cognitive3

impairment (MCI), and dementia (DE). Some studies have also ventured beyond this tripartite classification,4

aiming to differentiate Alzheimer’s disease (AD) from other forms of non-AD dementia. Majority of these5

investigations have approached the task as a binary classification, primarily focusing on the distinction be-6

tween AD and other dementia types. Also, limited studies have effectively tackled the intricate challenge of7

diagnosing mixed dementia, which is a common and complex issue encountered in clinical practice.8

Methods and findings: Employing multimodal data from 9 distinct cohorts, encompassing 50, 686 partici-9

pants, we developed an algorithmic framework that leverages transformers and self-supervised learning to10

facilitate differential dementia diagnoses. This model adeptly classifies individuals into 13 curated diagnos-11

tic categories, each tailored to reflect real-world clinical needs. These categories comprehensively cover the12

cognitive spectrum, ranging from NC, MCI to DE, and extend to 10 distinct dementia types. Our model13

demonstrates the capability to accurately diagnose dementia, even with incomplete data, and efficiently14

manage cases involving multiple co-occurring dementia conditions, a common occurrence in clinical prac-15

tice. It has shown commendable performance, surpassing expert clinical assessments, and its predictions16

have been corroborated by postmortem data, particularly in relation to various proteinopathies.17

Interpretation: Our work provides a robust and adaptable framework for comprehensive dementia screening18

for drug trials and in various clinical settings, ranging from primary care to memory clinics.19
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Dementia is one of the most pressing health challenges of our time. With nearly 10 million new cases1

reported annually, this syndrome, characterized by a progressive decline in cognitive function severe enough2

to impede daily life activities, continues to present considerable clinical and socio-economic challenges. In3

2017, the World Health Organization’s global action plan on the public health response to dementia high-4

lighted the prompt and precise diagnosis of dementia as a pivotal strategic objective.1 As such, diagnostic5

precision in the varied landscape of dementia remains an unmet need, even as the demands for such pre-6

cision escalate with the aging global population and the imperative for better participant screening in drug7

trials. The clinical presentation of different dementia forms often overlaps, further compounded by the het-8

erogeneity in findings on magnetic resonance imaging (MRI) scans. The necessity for improvements in the9

field becomes ever more pressing considering the projected shortage of specialists including neurologists,10

neuropsychologists and geriatric care providers,2–4 emphasizing the urgency to innovate and evolve our11

diagnostic tools. While Alzheimer’s disease (AD) is a leading cause, other forms such as vascular demen-12

tia (VD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) are also prevalent, and often13

co-occur in most individuals. The significant intersection of symptoms among these disorders and other14

dementia etiologies, amplified by the varying intensity of symptom manifestation, frequently complicates15

the process of differential diagnosis.516

The imperative for enhanced diagnostic accuracy in AD and related neurodegenerative disorders is17

becoming increasingly critical in the context of significant advancements in medical diagnostics. While18

recent regulatory approvals have facilitated the transition of cerebrospinal fluid (CSF) biomarkers and ad-19

vanced imaging techniques like positron emission tomography (PET) from research environments to broader20

clinical applications, the development and potential clinical integration of blood-based biomarkers remain21

an area of active research.6, 7 However, accessibility to these diagnostic tools remains constrained, not only22

in remote and economically developing regions but also in urban healthcare centers, as exemplified by pro-23

longed waiting periods for specialist consultations. This challenge is compounded by a global shortage of24

specialists, such as behavioral neurologists and neuropsychologists, leading to overreliance on cognitive25

assessments that may not be culturally appropriate due to the lack of formal training programs in neuropsy-26

chology in many parts of the world. The recent advent of disease-modifying therapies marks a significant27

shift in the treatment landscape for AD,8, 9 further highlighting the necessity of early and accurate risk strat-28

ification in both primary care and general neurology settings. While conventional methods like clinical29

evaluations, neuropsychological testing, and MRI remain central to antemortem differential dementia di-30

agnosis, their effectiveness heavily relies on the diminishing pool of specialist clinicians. This situation31

underscores an urgent need for the healthcare system, particularly in primary care, to evolve and adapt to32

the rapidly changing dynamics of dementia diagnosis and treatment.33

Machine learning holds promising potential for enhancing the accuracy and efficiency of dementia34

diagnosis.10–12 While most previous research leveraging these advanced frameworks has concentrated on35

neuroimaging data,13, 14 few have ventured to combine imaging with non-imaging data,15 such as demo-36

graphics, medical histories, and neuropsychological assessments to distinguish cognitively normal (NC)37

individuals from those with mild cognitive impairment (MCI) and dementia. AD being the most preva-38

lent type of dementia, has naturally been the primary focus of much of this research. Few studies have39

also attempted to discern neuroimaging signatures unique to AD by contrasting them with other dementia40

etiologies.16–22 Recently, we proposed a nuanced approach to stratify individuals based on cognitive status41

and discern likely AD cases from other non-AD dementia types.23 These investigations, coupled with other42

studies,24–26 have begun to illuminate the complex matrix of factors contributing to dementia. Moreover,43

the challenge of differential diagnosis in dementia is further compounded by the inherent limitations in ex-44

isting dementia risk scoring systems.27–29 Research indicates that individualized assessments based on these45
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generic scores frequently lead to significant error rates, thus diminishing their effectiveness in accurately46

identifying individuals suitable for targeted dementia prevention strategies.30 These observations highlight47

the critical need for innovative solutions in differential dementia diagnosis, emphasizing the integration of48

diverse data sets to surpass the limitations of traditional risk assessment methods.49

In this study, we propose a multimodal machine learning framework, harnessing a diverse array of50

data, including demographics, personal and family medical history, medication use, neuropsychological51

tests, functional evaluations, and multimodal neuroimaging to perform differential dementia diagnosis. The52

model incorporates state-of-the-art techniques such as transformers and self-supervised learning, enabling53

it to navigate the spectrum of dementia conditions with improved performance. Our model for differen-54

tial dementia diagnosis reflects real-world scenarios, with diagnostic categories designed for clinical rele-55

vance, aligning diagnoses with similar management strategies to aid neurologists and other practitioners in56

screening and treatment planning. The model’s robustness is demonstrated through rigorous validation on57

independent, geographically diverse datasets, achieving parity with expert clinical diagnoses in comparative58

analysis. By employing advanced interpretability methods, our model elucidates disease-specific patterns59

critical for differential diagnosis, contributing significantly to our understanding of heterogeneous dementia60

phenotypes. The fidelity of these patterns was confirmed by postmortem data, underscoring our model’s61

ability to dissect the intricate pathophysiology of dementia. Our algorithmic framework opens new avenues62

for dementia screening in various clinical settings, with significant implications for person-level manage-63

ment. This study underscores the potential of AI-driven tools in healthcare, paving the way for improved64

diagnostic accuracy, efficient resource utilization, and better outcomes.65
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Results1

Glossary 1
Acronym Description
NC Normal cognition
MCI Mild cognitive impairment
DE Dementia
AD Alzheimer’s disease including Down syndrome
LBD Lewy body dementia including dementia with Lewy bodies and Parkinson’s disease

dementia
VD Vascular dementia, vascular brain injury, and vascular dementia including stroke
PRD Prion disease including Creutzfeldt-Jakob disease
FTD Frontotemporal lobar degeneration and its variants, including primary progressive

aphasia, corticobasal degeneration and progressive supranuclear palsy, and with or
without amyotrophic lateral sclerosis

NPH Normal pressure hydrocephalus
SEF Systemic and environmental factors including infectious diseases (HIV included),

metabolic, substance abuse / alcohol, medications, systemic disease, and delirium
PSY Psychiatric conditions including schizophrenia, depression, bipolar disorder, anxi-

ety, and post-traumatic stress disorder
TBI Moderate/severe traumatic brain injury, repetitive head injury, and chronic trau-

matic encephalopathy
ODE Other dementia conditions including neoplasms, multiple systems atrophy, Hunt-

ington’s disease, seizures, etc.

2

Leveraging the power of routinely gathered clinical data, our model provides a nuanced approach to3

differential dementia diagnosis. This framework assigns individuals to one or more of the thirteen diagnostic4

categories (refer to Glossary 1), which were meticulously defined through consensus among a team of ex-5

pert neurologists. This practical and intuitive categorization is designed with clinical management pathways6

in mind, thereby echoing real-world scenarios. For instance, we have grouped dementia with Lewy bodies7

and Parkinson’s disease dementia under the comprehensive category of Lewy body dementia (LBD). This8

classification stems from an understanding that the care for these conditions often follows a similar path,9

typically overseen by a multidisciplinary team of movement disorder specialists. In the context of vascular10

dementia (VD), we included individuals who exhibited symptoms of a stroke, possible or probable VD, or11

vascular brain injury. This encompassed cases with symptomatic stroke, cystic infarct in cognitive networks,12

extensive white matter hyperintensity, and/or executive dysfunction, where these conditions were identified13

as the primary contributors to the observed cognitive impairment. The inclusion criteria were based on14

the expectation that such patients would typically receive care from clinicians specializing in stroke and15

vascular diseases. Likewise, we have considered various psychiatric conditions - such as schizophrenia,16

depression, bipolar disorders, anxiety, and post-traumatic stress disorder - under one category (PSY), ac-17

knowledging that their management predominantly falls within the realm of psychiatric care providers. By18

aligning diagnostic categories with practical clinical care pathways, our model serves not only to demystify19

6
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an individual’s condition but also to direct efficient and appropriate clinical management strategies. The20

result is a scientifically robust tool that is also intuitively aligned with the real-world scenarios encountered21

in clinical care.22

Our model’s development and testing leveraged a robust variety of data, encompassing thousands of23

individuals from population-level studies, community, clinical as well as research cohorts (Table 1, Table S124

& Fig. 1). This broad, diverse set of data serves as a testament to our study’s core strength, and the ensuing25

results speak to the model’s strong accuracy and generalizability. The model accurately classified cognitive26

status across the full spectrum of clinical diagnosis tasks. Across three categories - normal cognition (NC),27

mild cognitive impairment (MCI), and dementia (DE) - our model achieved high performance as shown via28

accuracy (Acc.), sensitivity (Se.), specificity (Sp.), Matthews correlation coefficient (MCC), as well as the29

area under the receiver operating characteristic (AUC) and area under precision-recall (AP) curves (Fig. 2a).30

Further, the model delivered striking results across AD, LBD, VD, PRD, FTD, NPH, SEF, PSY, TBI, and31

ODE, reaffirming the model’s high performance and reliability in diagnosing various forms of dementia.32

With these compelling metrics, we present robust empirical evidence of our model’s ability to tackle differ-33

ential dementia diagnosis efficiently and effectively. Also, the utility of our model is notably demonstrated34

in its robustness and adaptability to various datasets acquired via different protocols at multiple institutions35

(Fig. 2a). An example of this is found in our tests on data from the National Alzheimer’s Coordinating36

Center (NACC) cohort that was not used during model training. The model continued to exhibit its robust37

performance on external cohorts, including the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and38

the Framingham Heart Study (FHS), substantiating its consistency across diverse datasets. Despite the fact39

that the ADNI and FHS datasets comprised of a limited set of factors (Table S2), the model effectively40

accomplished all classification tasks. The model’s ability to deliver reliable predictions with constrained41

data sets suggests that its performance, already robust under conditions of incomplete information, could be42

further optimized with access to more comprehensive datasets. To further evaluate the model’s resilience43

to incomplete data, we artificially introduced varying levels of data missingness in the NACC cohort and44

assessed the impact on its predictive performance. By selectively removing portions of the data from the45

NACC cohort, we aimed to test our model’s predictive performance under various constraints. As depicted46

in the chord diagram (Fig. 2b), even when confronted with missing data elements — whether it be MRI47

results, UPDRS, GDS, NPI-Q, FAQ, NP tests or other parameters — our model consistently produced high,48

reliable scores. This reinforces not only its predictive stability but also its potential applicability in diverse49

clinical scenarios where complete datasets might be unattainable.50

We applied two-dimensional t-distributed stochastic neighbor embedding (tSNE) to evaluate the dis-51

tribution of our model’s predictions within the cognitive spectrum encompassing NC, MCI and DE as de-52

picted in Fig. 2c. The visualization distinctly segregates the cognitive states using color codes: a densely53

populated blue pathway denotes NC, indicating a homogeneous assemblage of individuals with normal cog-54

nitive health. The points coded in yellow for MCI exhibit a sparser distribution, symbolizing a transitional55

and more varied cohort positioned between NC and DE. The pink stream earmarks DE, forming a dense56

aggregation that likely corresponds to individuals diagnosed with dementia. This graphical representation57

proves critical for distilling complex, multi-dimensional datasets into a comprehensible two-dimensional58

space, thus providing a graphical synopsis of how individual-level multimodal data processed via our mod-59

eling framework can demarcate these cognitive conditions.60

Shapley analysis 31 was employed to determine feature importance on the NACC test set. The process61

began by categorizing cases according to their labels, focusing exclusively on those with correct predictions62

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.08.24302531doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302531
http://creativecommons.org/licenses/by/4.0/


for Shapley value calculations. This approach yielded feature-specific Shapley values for the chosen cases,63

illuminating each feature’s role in influencing the model’s final decision on the NC, MCI and DE cases, re-64

spectively (Figs. 2d-f). These features were arranged based on their mean impact, quantified by the average65

magnitude of their respective Shapley values. Additionally, the computation of Shapley values incorporated66

considerations for data missingness; Shapley values of the features that were unavailable were assigned a67

constant value of zero. The Shapley value distribution for each feature indicates the magnitude and direc-68

tion of the feature’s impact on the model’s prediction, with higher absolute Shapley values signifying greater69

influence. For NC, key features included cognitive status based on neuropsychological exam, MoCA and70

MMSE scores, memory-related tasks (like naming vegetables and animals), and daily functionality ques-71

tions. For MCI, similar cognitive and memory-related features were found to be impacting, in addition to72

questions about daily living activities and independence levels. For DE, the model placed high importance73

on cognitive status based on neuropsychological exams, the difficulty with daily tasks, and medication usage74

for AD symptoms. Across all conditions, the plots show that certain features (e.g., cognitive status based75

on neuropsychological exam) consistently have a higher impact on the model’s predictions, as indicated by76

larger Shapley values. The distribution of Shapley values for each feature — spread across a spectrum from77

high to low impact — provides insights into the heterogeneity of feature influence on the prediction of each78

cognitive state. The consistency of cognitive assessments in predicting across all cognitive states suggests79

their fundamental role in the model’s decision-making process. Conversely, the variability in the impact of80

daily functionality and memory-related tasks underscores the nuanced differences in their relevance to each81

cognitive state. Overall, the Shapley value plots offered a detailed and quantifiable visualization of how each82

feature contributes to the model’s predictions, which could be crucial for understanding and improving the83

model’s interpretability and accuracy in a clinical setting.84

The receiver operating characteristic (ROC) and precision-recall (PR) curves reflected strong model85

performance across different averaging methods (Figs. 2g-h). On the test cohort, comprising the NACC86

dataset (unused in training) along with ADNI and FHS data, our model demonstrated strong classification87

abilities for NC, MCI, and DE, achieving a micro-averaged AUROC of 0.93 and a micro-averaged AUPR88

of 0.87. Additionally, the macro-averaged metrics showed an AUROC of 0.91 and a AUPR value of 0.80.89

The weighted-average AUROC and AUPR values further underscored the model’s efficacy, standing at 0.9290

and 0.84, respectively. Of note, the micro-average approach consolidates true positives, true negatives, false91

positives, and false negatives from all classes into a unified curve, providing a global performance metric.92

In contrast, the macro-average calculates individual ROC/PR curves for each class before computing their93

unweighted mean, disregarding potential class imbalances. The weighted-average, while similar in approach94

to macro-averaging, assigns a weight to each class’s ROC/PR curve proportionate to its representation in the95

dataset, thereby acknowledging class prevalence. The slight variations observed in the AUROC and AUPR96

values between the averaging methods might reflect the influence of class distribution and prevalence in97

the performance metric calculations. Overall, the micro-averaging method performed slightly better, which98

could be due to the fact that it takes the class imbalance into account by weighting the performance by the99

number of samples in each class.100

We conducted a comparison between the model’s predicted probability scores and the clinical de-101

mentia ratings (CDR) available for all participants in the NACC testing, and ADNI cohorts (Figs. 2i & 2j).102

Remarkably, despite not incorporating CDR scores as input during model training, our predictions exhibited103

a strong correlation with CDR scores. In the analysis of the NACC dataset, the model’s predictions exhib-104

ited increasing heterogeneity as a function of ascending Clinical Dementia Rating (CDR), with statistically105

significant divergences manifest across the spectrum of cognitive impairment (p < 0.0001). Notably, this106

pattern did not hold between CDR scores of 2.0 and 3.0, where no significant statistical difference was dis-107
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cerned. The ADNI dataset revealed a statistically significant demarcation (p < 0.0001) in model-predicted108

probabilities between the baseline CDR rating and higher gradations. This underscores the model’s sensi-109

tivity to incremental exacerbations in clinical dementia assessments. For the FHS dataset (Fig. 2k), which110

substitutes a consensus panel’s diagnostic categorization (normal, impaired, and dementia) for CDR scores,111

a marked statistical significance (p < 0.0001) was evident in the model’s predicted probabilities across these112

diagnostic strata, with the exception of the distinction between normal cognition and impairment. This sug-113

gests a nuanced challenge for the model in discriminating between the initial stages of cognitive decline.114

Collectively, these findings illuminate the model’s robust capacity to delineate differential cognitive states,115

showcasing its potential as a discerning tool for identifying levels of cognitive impairment across diverse116

clinical datasets.117

Our methodology for conducting differential diagnosis led to the simultaneous prediction of probabil-118

ities associated with multiple potential causes of dementia, as visually represented in Fig. 3. To delve deeper119

into the intricate nature of real-world clinical scenarios, where persons frequently exhibit symptoms suggest-120

ing the coexistence of multiple dementia types, we created a comprehensive visualization,32 which depicts121

probabilities that reflect co-occurring conditions. These plots provided a valuable tool for understanding the122

complex landscape of dementia diagnoses, where a substantial number of cases involve a combination of123

contributing factors. The box-and-whisker plot on the joint probabilities is particularly informative in illus-124

trating the range and variability of the model’s predictions. For instance, the uppermost row corresponds125

to non-dementia cases. Here, the model’s predictions are expressed as joint probabilities — the product of126

individual probabilities for each condition, symbolized as p(AD = 0) × p(PSY = 0) × p(ODE = 0) ×127

p(SEF = 0)×p(LBD = 0)×p(V D = 0)×p(PRD = 0)×p(FTD = 0)×p(NPH = 0)×p(TBI = 0).128

The bottom row highlights cases that include the combination of AD, PSY, ODE and SEF, where the model’s129

predictions are expressed as p(AD = 1) × p(PSY = 1) × p(ODE = 1) × p(SEF = 1) × p(LBD =130

0)×p(V D = 0)×p(PRD = 0)×p(FTD = 0)×p(NPH = 0)×p(TBI = 0). This level of quantification131

underscores the model’s capacity to gauge the intricacies of dementia presentations that are multifactorial132

in nature, highlighting its utility in complex clinical assessments. Taken together, these findings demon-133

strate that our model effectively identified instances where multiple etiologies were at play, reflecting its134

ability to navigate the challenging task of recognizing mixed causes of dementia. This accomplishment un-135

derscores the significant contribution of our research, particularly in addressing the diagnostic complexities136

encountered in clinical practice when individuals present with overlapping symptoms indicative of multiple137

dementia types.138

Similar to the Shapley value illustrations shown in Figs. 2d-f, we observed that Shapley value anal-139

yses revealed distinct feature importance across various dementia types (Figs. 4a-j). For instance, features140

such as ‘cognitive status based on neuropsychological exams’, ‘level of independence’, and ‘difficulty in141

performing daily activities’ were influential across several dementia categories. Such consistency of certain142

features across various dementia types underscores their potential as universal markers of neurodegenera-143

tion. Moreover, the analysis identified several features that are emblematic of well-known etiologies un-144

derlying dementia, as well as factors that are widely recognized as influential in driving the progression of145

specific diseases. In predicting AD, factors like the presence of ApoE alleles and the use of FDA-approved146

medication for AD symptoms emerged as influential. For LBD, a prior diagnosis of Parkinson’s disease, the147

presence of gait disorders, and speech difficulties were among the key predictors. VD prediction was driven148

by the history of stroke, the impact of cerebrovascular disease on cognitive impairment, and the occurrence149

of multiple infarcts. Presence of depression or dysphoria in the last month as well as GDS score were signif-150

icant for predicting psychiatric conditions (PSY). These plots collectively demonstrate the model’s reliance151

on a mix of features, reflecting the multifaceted nature of dementia disorders and the complexity of their152
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prediction. Additionally, the ROC and PR curves reflected strong model performance on the model’s overall153

assessment on identifying dementia etiologies across different averaging methods (Figs. 4k-l). Our model154

attained impressive results, with micro-averaged values of AUROC and AUPR at 0.95 and 0.68, respectively.155

In macro-averaged terms, the AUROC and AUPR stood at 0.91 and 0.34. Moreover, the weighted-average156

values for AUROC and AUPR were 0.94 and 0.72, respectively.157

Etiology-specific model probability scores revealed significant correlations with neuropathological158

evidence found in common dementia types. The composite violin and box plots in Fig. 5 illustrate the159

distribution and probability distributions and median tendencies for each cohort indicating that with in-160

creasing neuropathological severity, there is a corresponding elevation in the likelihood of neurodegener-161

ation according to the model. The first three plots (Figs. 5a-c) compare baseline stages of Thal phase for162

Aβ plaques (Thal), Braak stage for neurofibrillary degeneration (Braak) and density of neocortical neu-163

ritic plaques (CERAD) against progressive Thal, Braak and CERAD stages (A1-A3, B1-B3 and C1-C3,164

respectively). Each demonstrated an upward shift in the median probability of AD and an expansion of165

the interquartile range as the stages advance, with statistical significance (p < 0.001 for Thal stage and166

p < 0.0001 for Braak and CERAD stages, respectively). Also, we rejected the null hypothesis of there be-167

ing no significant differences in model-predicted AD probabilities between semi-quantitative scores of Thal,168

Braak and CERAD scores (Fig. S2). Furthermore, by contrasting individuals without AD against those with169

varying degrees of NIA-AA Alzheimer’s disease neuropathologic change (ADNC), which unifies the Thal,170

Braak and CERAD scores (Fig. 5d), we observed a similar shift towards higher AD probabilities in the latter171

group (p < 0.001). Collectively, these plots illustrate a clear trend where advancing stages of AD-related172

neurodegeneration are associated with increased probabilities of AD. Finally, we rejected the null hypothe-173

sis of there being no significant differences in FTD probability between the presence or absence of TDP-43174

pathology (p < 0.05), VD probability between the presence or absence of old microinfarcts (p < 0.05) and175

arteriosclerosis (p < 0.05), as well as PRD probability between the presence or absence of Prion disease176

(p < 0.05)(Figs. 5e-h). The results are consistent with the well-documented association between TDP-43177

protein aggregation and its prevalence in FTD as well as other neurodegenerative diseases.33, 34 Additionally,178

the clear linkage between cerebrovascular pathologies and the incidence of VD is reinforced by our data.179

Crucially, these outcomes highlight the capability of our AI-driven framework to align model-generated180

probability scores with a range of neuropathological states beyond AD, supporting its potential utility in181

broader neurodegenerative disease research.182

The incorporation of independent confidence scores for diagnostic tasks improved the model’s inter-183

pretability, and facilitated comparison of model performance with the clinicians. Neurologists reviewed 100184

randomly selected cases, including various dementia subtypes, with comprehensive data including demo-185

graphics, medical history, neuropsychological tests, and multi-sequence MRI scans. The Shapiro-Wilk test186

revealed non-normal distributions in the confidence scores, both from the model and the experts. Conse-187

quently, the Brunner-Munzel test was applied to compare the differences between these sets of confidence188

scores. Pearson correlation analysis was used to measure the interrater reliability among the confidence189

scores assigned by different evaluators. Notably, in instances where the diagnosis was confirmed (true pos-190

itives), the neurologists’ confidence scores across categories such as NC, MCI, DE, AD, LBD, VD, FTD,191

NPH, and PSY were statistically significant in comparison to cases deemed non-diagnostic (true negatives)192

(p < 0.01) (Fig. 6a). Similarly, the model’s probabilities in true positive cases across an extended range of193

conditions — including those aforementioned plus PRD, SEF, and TBI — were statistically significant when194

contrasted with true negatives (p < 0.01). However, for certain etiologies, including PRD, SEF, TBI, and195

ODE, there was no apparent statistical distinction in the confidence ratings provided by neurologists between196

true positive and true negative cases. This absence of statistical significance was also observed in the model’s197
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predicted probabilities for ODE between true positive and true negative cases. Several potential explana-198

tions may elucidate this inconsistency. Despite providing neurologists with comprehensive information,199

including demographics, medical history, medication usage, neuropsychological test results, functional as-200

sessments, and multimodal neuroimaging data for all cases, this information might have been insufficient to201

confirm the impact of these etiologies. Additionally, the model’s limitations could be attributed to a smaller202

training dataset specific to certain etiologies and a potential deficiency in the breadth of features needed for203

the identification of etiology-specific contributions, especially concerning ODE. Pearson correlation coef-204

ficients offered a comprehensive overview of the interrelationships among the neurologists and the model205

across a spectrum of neurological conditions (Fig. 6b). NC was distinguished by the highest correlation co-206

efficient between the model-predicted probabilities and mean neurologist confidence scores (0.92 ± 0.02),207

indicating robust, consistent associations in this group. DE showed notable correlations (0.89 ± 0.02). In208

contrast, MCI, AD, LBD, VD, FTD and PSY exhibited modest correlations, highlighting the potential het-209

erogeneity within these disorders. The lower correlations observed on certain etiologies (PRD, NPH, SEF,210

TBI and ODE) underscore the diverse and complex nature of these conditions compounded by the lack of211

extensive features to tease out their unique signatures. These observations underscore the model’s potential212

in complementing neurologist expertise, yet also highlights the complexities and limitations in accurately213

diagnosing more diverse and less represented conditions.214

In a separate assessment, neuroradiologists evaluated a randomly selected set of 70 clinically diag-215

nosed dementia cases, concentrating on MRI findings and demographic information. They provided ratings216

for atrophy and pathological changes within specific brain regions, including the temporal lobes, frontal217

lobe, insula, limbic systems, fusiform gyrus, and overall brain considerations (Fig. S3). The calculated218

pairwise Pearson correlation coefficients, representing interrater reliability among seven neuroradiologists,219

revealed a moderate overall agreement with a mean coefficient of (0.39 ± 0.02). Radiologists were mostly220

in agreement on the whole brain-level assessments related to the presence of hyperintensities (0.67± 0.03)221

and identifying prior infarcts (0.59 ± 0.08). Within the temporal lobe, the highest concordance was found222

in ratings of the anterior temporal lobe (0.68 ± 0.09), while the posterior temporal lobe showed the least223

agreement (0.18 ± 0.17). An interesting pattern emerged, indicating a trend towards greater agreement in224

assessments of the right-sided brain regions compared to the left-sided ones. We stratified cases based on225

expert consensus on atrophy and pathological changes and compared the distributions of etiology-specific226

model probability scores between the groups (Fig. S4). We found that the presence of infarcts, widely rec-227

ognized as a diagnostic marker for VD,35 was associated with an increase in model probabilities of VD.228

The presence of infarcts was also associated with elevated model probabilities for TBI. This association can229

be attributed to common secondary injuries in TBI, such as cranial hypoperfusion, subsequent ischemia,230

post-traumatic cerebral infarctions, and encephalomalacia.36–40 Furthermore, atrophy in the anterior cingu-231

late gyrus was linked with higher model probabilities for FTD, supporting its recognized predictive value232

for behavioral variant FTD.41–43 Overall, these observations suggest the model’s ability to mirror expert ra-233

diological evaluations, particularly in recognizing key brain changes indicative of different dementia types.234
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Discussion1

The key contributions of our study are highlighted as follows. By leveraging a transformer architecture as2

the backbone and using principles of self-supervised learning, we developed an algorithmic framework that3

can process flexible combinations of multimodal data and perform differential diagnosis of dementia. This4

approach allows it to effectively navigate the spectrum of cognitive states, assigning probability scores to5

normal cognition (NC), mild cognitive impairment (MCI), and dementia (DE), as well as to the specific eti-6

ologies underlying DE. Unlike our previous work,15, 23 a unique capability of our model is its adeptness in7

quantifying co-existing dementia conditions within individuals. The model’s robustness was further estab-8

lished through its training and validation across a diverse set of independent cohorts, demonstrating its broad9

applicability. Additionally, our model can identify key features associated with various cognitive states and10

dementia etiologies, providing insights that align with established pathologies. In a comparative evaluation11

on a randomly selected case subset, our model’s proficiency in distinguishing true positive and true neg-12

ative cases notably surpassed that of neurologist-level assessments. These results underscore our model’s13

significant potential in enhancing the precision and efficacy of diagnosing dementia-related disorders.14

Our modeling framework encompasses a diverse set of elements, each with unique strengths. For15

instance, the backbone transformer architecture, serving as the foundation, excels at learning long-range de-16

pendencies in data, a crucial asset for tasks like medical diagnosis and prediction. Furthermore, our model17

integrates feature-specific embedding modules, facilitating the absorption of richer representations from18

various data types, including nominal, ordinal, numerical features, and complex imaging data. Notably,19

our framework’s capability to handle diverse MRI sequences is an advantage. SwinUNETR, a fusion of U-20

shaped network design with Swin transformer encoder and CNN-based decoder connected through skip con-21

nections, efficiently generates image embeddings. These embeddings, when integrated into our backbone22

transformer, empower the processing of multimodal data for differential dementia diagnosis. Moreover,23

the backbone transformer framework has the potential for extension to incorporate text data from electronic24

health records and emerging digital data types, such as voice recordings as well as sensor data from wearable25

technologies.26

Accommodating the intricacies of dementia, our model assigns distinct probabilities to each potential27

diagnosis. We note this as a key contribution in our work because these values present a nuanced frame-28

work for clinicians to create a rank-ordered list of plausible etiologies. In essence, the model processes29

available multimodal data and outputs probabilities that outline the person’s primary condition and account30

for the multifactorial and often overlapping nature of dementias. The visualizations that we generated were31

instrumental in quantifying the variability and distribution of the model’s predictions, facilitating an un-32

derstanding of the likelihood of various diagnostic intersections. Effectively, our model acknowledges and33

characterizes the complexity of mixed dementias, a clinical scenario frequently encountered in practice,34

and often confirmed via postmortem evidence.44–46 Such capability fosters a detailed understanding of the35

person’s condition, but also operationalizes the process of differential diagnosis and could facilitate clinical36

uptake of software-based assistive tools.37

The utility of our modeling framework is founded on its robust processing of diverse input types and38

its adept handling of incomplete datasets, properties that are essential for clinicians requiring immediate and39

accurate diagnostic information in environments with variable data availability. For example, when a gen-40

eral practitioner records clinical observations and cognitive test results for an elderly person with possible41

cognitive decline, our model can calculate a probability score indicative of MCI or DE. This function facili-42
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tates early medical intervention and more informed decisions regarding specialist referrals. At a specialized43

memory clinic, the addition of extensive neuroimaging data and in-depth neuropsychological battery to the44

model may increase the precision of the diagnosis, which, in turn, enhances the formulation of individual45

management strategies with a revised probability score. Such capacity to tailor its output to the scope of46

input data exemplifies our modeling framework’s role in different healthcare settings, including those where47

swift and resource-efficient diagnosis is paramount. The generation of specific, quantifiable probability48

scores by the model augments its utility, establishing it as a useful component in the healthcare delivery pro-49

cess. Displaying diagnostic accuracy using varied training data — ranging from demographic information50

to clinical signs, neuroimaging findings, and neurological test results — the model’s versatility facilitates its51

adaptation to varied clinical operations without necessitating a fundamental overhaul of existing workflows.52

Consequently, our model fosters a seamless transition across the different levels of dementia care, enabling53

general practitioners to perform preliminary cognitive screenings and specialists to conduct thorough exami-54

nations. Its inclusive functionality assures an accessible and comprehensive tool ensuring fail-safe operation55

in early detection, continuous monitoring, and the fine-tuning of differential diagnoses, thereby elevating the56

standard of dementia care.57

Shapley value analysis served as an indispensable interpretive mechanism in our study, elucidating the58

specific variables’ influence on our deep learning model’s predictions and bridging computational forecasts59

with clinical implications. By quantifying the influence of individual factors on the outcomes for NC,60

MCI, and DE as well as for the dementia etiologies, Shapley values not only bolster the transparency of61

our models but also reinforce the validity of our approach by aligning with established medical evidence.62

Such corroboration with recognized diagnostic standards was crucial for embedding machine learning into63

healthcare, ensuring trust in its predictive capabilities and foundational logic. Additionally, through model-64

specific associations with postmortem data, our study robustly validated the alignment of our model with65

dementia-related neurodegeneration. In essence, our model’s capacity to link probability predictions with66

semi-quantitative postmortem scores paves the way for the integration of deep learning methodologies with67

well-established clinical evidence.68

While our study has the potential to advance the field of differential dementia diagnosis, it does69

have certain limitations that warrant consideration. Our model was developed and validated on multiple70

cohorts from numerous studies, and its full generalizability across diverse populations and clinical settings71

remains to be determined. Moving forward, we see potential in evaluating the model’s efficacy across the72

care continuum, encompassing primary care facilities, geriatric and general neurology practices, family73

medicine, and specialized clinics in tertiary medical centers. The datasets used in our study predominantly74

feature AD cases, which could potentially introduce a bias towards better recognition of this particular75

dementia subtype. Although we incorporated various dementia etiologies, the imbalanced representation76

might affect the model’s generalizability and sensitivity towards less frequent types. Also, we chose to77

amalgamate mild, moderate, and severe dementia cases into a single category. We acknowledge that this78

categorization method might not completely reflect the nuanced individual staging practiced in specific79

healthcare settings, where varying degrees of dementia severity carry distinct implications for treatment and80

management strategies. Our focus was primarily on differential diagnosis rather than disease staging, which81

motivated this decision. Future enhancements to our model could potentially include disease staging as an82

additional dimension, thereby augmenting its granularity and relevance.83

The evidence collected from this study signals a convergence between advanced computational meth-84

ods and the nuanced task of differential diagnosis in dementia, crucial for scenarios with scarce resources and85
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the multifaceted realm of mixed dementia, a condition frequently encountered yet diagnostically complex.86

Our adaptable model efficiently integrates multimodal data, showing strong performance across diverse set-87

tings. Future validations, encompassing a wider demographic and geographical expanse, will be pivotal88

to substantiate the model’s robustness and enhance its diagnostic utility in dementia care. Our pragmatic89

investigation accentuates the potential of neural networks to refine the granularity of diagnostic evaluations90

in neurocognitive disorders.91
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Methods1

Study population We collected demographics, personal and family history, laboratory results, findings2

from the physical/neurological exams, medications, neuropsychological tests, and functional assessments as3

well as multi-sequence magnetic resonance imaging (MRI) scans from 9 distinct cohorts, totaling 50, 6864

participants. There were 19, 462 participants with normal cognition (NC), 9, 209 participants with mild5

cognitive impairment (MCI), and 22, 015 participants with dementia (DE). We further identified 10 primary6

and contributing causes of dementia: 17, 298 participants with Alzheimer’s disease (AD), 2, 003 partici-7

pants with dementia with Lewy bodies and Parkinson’s disease dementia (LBD), 2, 032 participants with8

vascular brain injury or vascular dementia including stroke (VD), 114 participants with Prion disease in-9

cluding Creutzfeldt-Jakob disease (PRD), 3, 076 participants with frontotemporal lobar degeneration and its10

variants, which includes corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), and11

with or without amyotrophic lateral sclerosis (FTD), 138 participants with normal pressure hydrocephalus12

(NPH), 808 participants suffering from dementia due to infections, metabolic disorders, substance abuse13

including alcohol, medications, delirium and systemic disease - a category termed as systemic and external14

factors (SEF), 2, 700 participants suffering from psychiatric diseases including schizophrenia, depression,15

bipolar disorder, anxiety, and post-traumatic stress disorder (PSY), 265 participants with dementia due to16

traumatic brain injury (TBI), and 1, 234 participants with dementia due to other causes which include neo-17

plasms, multiple systems atrophy, essential tremor, Huntington’s disease, and seizures (ODE).18

The cohorts include the National Alzheimer’s Coordinating Center (NACC) dataset (n = 45, 349),47
19

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (n = 1, 821),48 the frontotemporal lo-20

bar degeneration neuroimaging initiative (NIFD) dataset (n = 253),49 the Parkinson’s Progression Marker21

Initiative (PPMI) dataset (n = 198),50 the Australian Imaging, Biomarker and Lifestyle Flagship Study22

of Ageing (AIBL) dataset (n = 661),51 the Open Access Series of Imaging Studies-3 (OASIS) dataset23

(n = 491),52 the 4 Repeat Tauopathy Neuroimaging Initiative (4RTNI) dataset (n = 80),53 and three24

in-house datasets maintained by the Lewy Body Dementia Center for Excellence at Stanford University25

(LBDSU) (n = 182),54 and the Framingham Heart Study (FHS) (n = 1, 651).55 Since its inception in 1948,26

FHS has been dedicated to identifying factors contributing to cardiovascular disease, monitoring multiple27

generations from Framingham, Massachusetts. Over time, the study has pinpointed major cardiovascular28

disease risk factors and explored their effects, while also investigating risk factors for conditions like de-29

mentia and analyzing the relationship between physical traits and genetics. Additional details on the study30

population are presented in Tables 1 & S1.31

Inclusion and exclusion criterion Individuals from each cohort were eligible for study inclusion if32

they were diagnosed with normal cognition (NC), mild cognitive impairment (MCI), or dementia (DE). We33

used the National Alzheimer’s Coordinating Center (NACC) dataset,47 which is based on the Uniform Data34

Set (UDS) 3.0 dictionary,56 as the baseline for our study. To ensure data consistency, we organized the data35

from the other cohorts according to the UDS dictionary. For individuals from the NACC cohort who had36

multiple clinical visits, we initially prioritized the visits at which the person received the diagnostic label37

of dementia. We then selected the visit with the most data features available prioritizing the availability of38

neuroimaging information. If multiple visits met all the above criteria, we chose the most recent visit among39

them. This approach maximized the sample sizes of dementia cases, as well as ensured that each individual40

had the latest record included in the study while maximizing the utilization of available neuroimaging and41

non-imaging data. We included participants from the 4RTNI dataset53 with frontotemporal lobar degenera-42
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tion (FTD)-related disorders like progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS). For43

other cohorts (NIFD,49 PPMI,50 LBDSU,54 AIBL,51 ADNI,48 and OASIS52), participants were included if44

they had at least one MRI scan within 6 months of an officially documented diagnosis. From the FHS,55 we45

utilized data from the Original Cohort (Gen 1) enrolled in 1948, and the Offspring Cohort (Gen 2) enrolled46

in 1971. For these participants, we selected available data including demographics, history, clinical exam47

scores, neuropsychological test scores, and MRI within 6 months of the date of diagnosis. We did not ex-48

clude cases based on the absence of features (including imaging) or diagnostic labels. Instead, we employed49

our innovative model training approach to address missing features or labels (See below).50

Data processing and training strategy Various non-imaging features (n=391) corresponding to sub-51

ject demographics, medical history, laboratory results, medications, neuropsychological tests, and functional52

assessments were included in our study. We combined data from 4RTNI, AIBL, LBDSU, NACC, NIFD,53

OASIS, and PPMI to train the model. We used a portion of the NACC dataset for internal testing, while the54

ADNI, and FHS cohorts served for external validation (Tables 1, S1, S2, & S3). We used a series of steps55

such as standardizing the data across all cohorts and formatting the features into numerical or categorical56

variables before using them for model training. We used stratified sampling at the person-level to create57

the training, validation, and testing splits. As we pooled the data from multiple cohorts, we encountered58

challenges related to missing features and labels. To address these issues and enhance the robustness of our59

model against data unavailability, we incorporated several strategies such as random feature masking and60

masking of missing labels (see below).61

Our investigation harnessed the potential of multi-sequence magnetic resonance imaging (MRI) vol-62

umetric scans sourced from diverse cohorts (Table S3). The majority of these scans encompassed a range of63

sequences, including T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), susceptibility-weighted64

imaging (SWI), and fluid attenuated inversion recovery (FLAIR). The collected imaging data were stored65

in the NIFTI file format, categorized by participant and the date of their visit. The MRI scans underwent66

a singular pre-processing step, which involved skull stripping using SynthStrip,57 a computational tool de-67

signed for extracting brain voxels from various image types. No registration procedures were applied to the68

resulting scans. To ensure the purity of the dataset, we excluded calibration, localizer, and 2D scans from69

the downloaded data before initiating model training.70

Backbone architecture Our modeling framework harnesses the power of the transformer architecture71

to interpret and process a vast array of diagnostic parameters, including person-level demographics, medical72

history, neuroimaging, functional assessments, and neuropsychological test scores. Each of these distinct73

features is initially transformed into a fixed-length vector using a modality-specific strategy, forming the74

initial layer of input for the transformer model. Following this, the transformer acts to aggregate these75

vector inputs, decoding them into a series of predictions. A distinguishing strength of this framework lies76

in its integration of the transformer’s masking mechanism,58, 59 strategically deployed to emulate missing77

features. This capability enhances the model’s robustness and predictive power, allowing it to adeptly handle78

real-world scenarios characterized by incomplete data.79

Multimodal data embeddings Transformers use a uniform representation for all input tokens, typi-80

cally in the form of fixed-length vectors. However, the inherent complexity of medical data, with its variety81
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of modalities, poses a challenge to this requirement. Therefore, medical data needs to be adapted into a82

unified embedding that our transformer model can process. The data we accessed falls into three primary83

categories: numerical data, categorical data, and imaging data. Each category requires a specific method of84

embedding. Numerical data typically encompasses those data types where values are defined in an ordinal85

manner that holds distinct real-world implications. For instance, chronological age fits into this category, as86

it serves as an indicator of the aging process. To project numerical data into the input space of the trans-87

former, we employed a single linear layer to ensure an appropriate preservation of the structure inherent to88

the original data space. Categorical data encompasses those inputs that can be divided into distinct cate-89

gories yet lack any implicit order or priority. An example of this is gender, which can be categorized as90

‘male’or ‘female’. We utilized a lookup table to translate categorical inputs into corresponding embeddings.91

It’s noteworthy that this approach is akin to a linear transformation when the data is one-hot vectorized,92

but is computationally efficient, particularly when dealing with a vast number of categories. Imaging data,93

which includes MRI scans in medical applications, can be seen as a special case of numerical data. How-94

ever, due to their high dimensionality and complexity, it is difficult to compress raw imaging data into a95

significantly lower-dimensionality vector using a linear transformation, while still retaining essential infor-96

mation. We leveraged the advanced capabilities of modern deep learning architectures to extract meaningful97

imaging embeddings (see below). Once these embeddings were generated, they were treated as numerical98

data, undergoing linear projection into vectors of suitable length, thus enabling their integration with other99

inputs to the transformer.100

Imaging feature extraction We harnessed the Swin UNETR (Fig. S1),60, 61 a three-dimensional (3D)101

transformer-based architecture, to extract embeddings from a multitude of brain MRI scans, encompassing102

various sequences including T1-weighted (T1w), T2-weighted (T2w), diffusion-weighted (DWI), susceptibility-103

weighted (SWI), and fluid-attenuated inversion recovery (FLAIR) imaging sequences. The Swin UNETR104

model consists of a Swin Transformer encoder, designed to operate on 3D patches, seamlessly connected105

to a convolutional neural network (CNN)-based decoder through multi-resolution skip connections. Com-106

mencing with an input volume X ∈ RH×W×D, the encoder segmented X into a sequence of 3D tokens107

with dimensions H
H′ × W

W ′ × D
D′ , and projected them into a C-dimensional space via an embedding layer.108

It employed a patch size of 2 × 2 × 2 with a feature dimension of 2 × 2 × 2 × 1 and an embedding space109

dimension of C = 48. The Swin UNETR encoder was subsequently interconnected with a CNN-based110

decoder at various resolutions through skip connections, collectively forming a ‘U-shaped’ network. This111

decoder amalgamated the encoder’s outputs at different resolutions, conducted upsampling via deconvolu-112

tions, ultimately generating a reconstruction of the initial input volume. The pre-trained weights were the113

product of self-supervised pre-training of the Swin UNETR encoder, primarily conducted on 3D volumes114

encompassing the chest, abdomen, and head/neck.60, 61
115

The process of obtaining imaging embeddings began with several transformations applied to the MRI116

scans. These transformations included resampling the scans to standardized pixel dimensions, foreground117

cropping, and spatial resizing, resulting in the creation of sub-volumes with dimensions of 128 × 128 ×118

128. Subsequently, these sub-volumes were input into the Swin UNETR model, which in turn extracted119

encoder outputs sized at 768 × 4 × 4 × 4. These extracted embeddings underwent downsampling via a120

learnable embedding module, consisting of four convolutional blocks, to align with the input token size of121

the downstream transformer. As a result, the MRI scans were effectively embedded into one-dimensional122

vectors, each of size 128. These vectors were then combined with non-imaging features and directed into123

the downstream transformer for further processing. The entire process utilized a dataset comprising 11, 438124

MRI volumes, which were allocated for model training, validation, and testing (Table S3).125
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Random feature masking To enhance the robustness of the backbone transformer in handling data126

incompleteness, we leveraged the masking mechanism 58, 59 to emulate arbitrary missing features during127

training. The masking mechanism, when paired with the attention mechanism, effectively halts the informa-128

tion flow from a given set for input tokens, ensuring that certain features are concealed during prediction. A129

practical challenge arises when considering the potential combinations of input features, which increase ex-130

ponentially. With hundreds of features in play, capturing every potential combination is intractable. Inspired131

by the definition of Shapley values, we deployed an efficient strategy for feature dropout. Given a sample132

with feature set S, S is randomly permuted as σ; simultaneously, an integer i is selected independently from133

the range [1, |S|]. Subsequent to this, the features σi+1, σi+2, . . . , σ|S| are masked out from the backbone134

transformer. It’s noteworthy that the dropout process was applied afresh across different training batches or135

epochs to ensure that the model gets exposed to a diverse array of missing information even within a single136

sample.137

Handling missing labels The backbone transformer was trained by amalgamating data from multiple138

different cohorts, each focused on distinct etiologies, which introduced the challenge of missing labels139

in the dataset. While most conventional approaches involve discarding records with incomplete output140

labels during training, we chose a more inclusive strategy to maximize the utility of the available data.141

Our approach framed the task as a multi-label classification problem, introducing thirteen separate binary142

heads, one for each target label. With this design, for every training sample, we generated a binary mask143

indicating the absence of each label. We then masked the loss associated with samples lacking specific144

labels before backpropagation. This method ensured optimal utilization of the dataset, irrespective of label145

availability. The primary advantage of this approach lies in its adaptability. By implementing this label-146

masking strategy, our model can be evaluated against datasets with varying degrees of label availability,147

granting us the flexibility to address a wide spectrum of real-world scenarios.148

Loss function Our model was trained by minimizing the loss function (L) composed of two loss terms:149

“Focal Loss (FL)” 62 (LFL) and “Ranking Loss (RL)” (LRL), along with the standard L2 regularization term.150

FL is a variant of standard cross-entropy loss that addresses the issue of class imbalance. It assigns low151

weight to easy (well-classified) instances and employs a balance parameter. This loss function was used for152

each of the diagnostic categories (a total of 13, see Glossary 1). Therefore, our LFL term was:153

LFL =
1

N

N∑
k=1

13∑
i=1

−yk,iαi(1− pk,i)
γ log(pk,i)− (1− yk,i)(1− αi)(pk,i)

γ log(1− pk,i),

where N was the batch size (i.e., N = 64), and other parameters and variables were as defined. The154

focusing parameter γ was set to 2, which had been reported to work well in most of the experiments in the155

original paper.62 Moreover, αi ∈ [0, 1] was the balancing parameter that influenced the weights of positive156

and negative instances. It was was set as the square of the complement of the fraction of samples labeled157

as 1, varying for each i due to the differing level of class imbalance across diagnostic categories (refer to158

Table 1). The FL term did not take inter-class relationships into account. To address these relationships159

in our overall loss function, we also incorporated the RL term that induced loss if the sigmoid outputs for160

diagnostic categories labeled as 0 were not lower than those labeled as 1 by a predefined margin of ϵ, for161

any training sample k. We defined the RL term for any pair of diagnostic categories i and j, as follows:162

L(i,j)
RL (pk,yk) = max(0, (pk,i − pk,j)(yk,j − yk,i) + ϵ),

18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.08.24302531doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302531
http://creativecommons.org/licenses/by/4.0/


Overall, the RL term was:163

LRL =
1

N

N∑
k=1

13∑
i=1

13∑
j=i+1

L(i,j)
RL (pk,yk).

Combining all terms, our overall loss function (L) was:164

L = LFL + λLRL + β∥w∥2,

where λ and β were the weights that controlled the importance of LRL and the L2 regularization terms,165

respectively. The training was done using the mini-batch strategy with the AdamW optimizer,63 an improved166

version of the Adam optimizer,64 with a learning rate of 0.0005 for a total of 256 epochs. Additionally, we167

utilized a cosine learning rate scheduler with warm restarts,65 initiating the first restart after 64 batches and168

extending the restart period by a factor of 2 for each subsequent restart. The values of ϵ, λ, and β were169

determined to be ϵ = 0.25, λ = 0.025, and β = 0.01, respectively, based on an evaluation of the overall170

model performance on the validation set. During training, the model performance was evaluated on the171

validation set at the end of each epoch, and the model with the highest performance was selected.172

Interpretability analysis The primary goal of interpretability analysis is to demystify machine learning173

models by providing clear insights into how various features influence predictions. At the heart of this field174

lies the Shapley value,31 originally a game theory concept, now repurposed to evaluate feature significance175

in machine learning models. In this context, each instance is considered a unique ‘game’, where features176

act as players contributing to the outcome. The model’s output is analogous to the game’s payoff, with177

the Shapley value quantifying each feature’s contribution towards this outcome. Calculating exact Shapley178

values necessitates evaluating the model with every possible combination of missing features. Given the179

extensive size of our input features, this process becomes computationally prohibitive. To address this180

challenge, we employed the permutation sampling method for Shapley value estimation.66 This approach181

involves randomly sampling permutations of the features and approximating the contribution of each feature182

to the prediction by averaging its marginal contributions across these permutations. It significantly reduces183

computational load while still providing a reasonable estimate of the Shapley values.184

Head-to-head expert validation We evaluated our model’s predictive power against the diagnostic185

acumen of clinicians who are directly involved in dementia diagnosis and care. A group of neurologists and186

neuroradiologists were invited to participate in diagnostic tasks using a select subset of NACC cases (see187

‘Data processing and training strategy’). Neurologists were presented with 100 cases – 15 cases each of188

NC and MCI, and 7 cases each of the dementia subtypes. The data encompassed person-level demograph-189

ics, medical history, social history, neuropsychological tests, functional assessments, and multi-sequence190

MRI scans where possible (i.e., T1-weighted, T2-weighted, FLAIR, DWI and SWI sequences). They were191

asked to provide their diagnostic impressions. Similarly, neuroradiologists were provided with the same192

multi-sequence MRI scans, along with details on age, gender, race, and education status from 70 clinically193

diagnosed DE cases. They were tasked with providing diagnostic impressions concerning the origin of de-194

mentia (Refer to Glossary 1). Additionally, neuroradiologists completed a REDCap questionnaire to rate195

atrophy and pathological changes in each brain sub-region on a scale from 0 to 3, with higher scores indi-196

cating more severe degeneration, and the presence or absence of specific disease markers such as infarcts.197

Case samples and questionnaires supplied to the neurologists and neuroradiologists can be found in the198

Supplementary Information.199
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Neuropathologic validation The model’s predictive capacity for various dementia etiologies was sub-200

stantiated through alignment with neuropathological evaluations sourced from the NACC, FHS and ADNI201

cohorts (Table S4). We included participants who conformed to the study’s inclusion criteria, had undergone202

MRI scans no more than three years prior to death, and for whom neuropathological data were available.203

Standardization of data was conducted in accordance with the Neuropathology Data Form Version 10 pro-204

tocols from the National Institute on Aging.67 We pinpointed neuropathological indicators that influence the205

pathological signature of each dementia subtype, such as arteriolosclerosis, the presence of neurofibrillary206

tangles and amyloid plaques, cerebral amyloid angiopathy, and markers of tauopathy. These indicators were207

carefully chosen to reflect the complex pathological terrain that defines each form of dementia. To examine208

the Thal phase for amyloid plaques (A score), subjects were categorized into two groups: one encompassing209

Phase 0, indicative of no amyloid plaque presence, and a composite group merging Phases 1-5, reflect-210

ing varying degrees of amyloid pathology. The model’s predictive performance was then compared across211

these groupings. For the Braak stage of neurofibrillary degeneration (B score), we consolidated stages I-VI212

into a single collective, representing the presence of AD-type neurofibrillary pathology, whereas stage 0213

was designated for cases devoid of AD-type neurofibrillary degeneration. With respect to the density of214

neocortical neuritic plaques, assessed by the (CERAD or C score), individuals without neuritic plaques con-215

stituted one group, while those with any manifestation of neuritic plaques—sparse, moderate, or frequent216

(C1-C3)—were aggregated into a separate group for comparative analysis of the model’s predictive out-217

comes. The Thal, Braak, and CERAD scores were integrated into a composite ABC score, delineating the218

National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria for AD neuropathological change219

(ADNC).68 This summation resulted in two distinct groups for analysis: one encapsulating cases with no220

neuropathological evidence of Alzheimer’s disease, and another amalgamating cases classified across the221

spectrum of low, intermediate, and high ADNC. Furthermore, to evaluate the model’s concordance with222

non-AD pathologies, we analyzed the association between the model-generated probabilities and the pres-223

ence or absence of TDP-43 pathology, old microinfarcts, arteriosclerosis, and Prion disease.224

Statistical analysis We used one-way ANOVA and the χ2 test for continuous and categorical vari-225

ables, respectively to assess the overall differences in the population characteristics between the diagnostic226

groups across the study cohorts. We applied the Kruskal-Wallis H-test for independent samples and subse-227

quently conducted post-hoc Dunn’s testing with Bonferroni correction to evaluate the relationship between228

clinical dementia rating scores and the model-predicted probabilities, as well as the relationship between229

neuropathologic scores and the model-predicted probabilities. We opted for non-parametric tests because230

the Shapiro-Wilk test indicated significant deviations from normality. For comparing model predictions231

with expert-driven assessments, we used the Brunner Munzel test to identify statistically significant in-232

creases in the mean disease probability scores between the levels of scoring categories. We conducted a233

Shapiro-Wilk test on the distributions of the true negative and true positive cases for each etiology. The234

Brunner-Munzel test was then used to compare the expert and model confidence scores for the true negative235

and true positive cases for each etiology. To evaluate the interrater reliability of label-specific confidence236

scores, we performed pairwise Pearson correlation analyses between clinicians’ scores and those gener-237

ated by the model.69 We calculated the average correlation coefficient across pairs and determined its 95%238

confidence interval. In addition, we assessed the correlation between the aggregated confidence score of239

neurologists and the model’s score for each diagnostic label. Using a bootstrapping approach with resam-240

pling, we created 1, 000 iterations of the consensus score from the pool of individual neurologist scores. We241

then calculated the Pearson correlation for each iteration against the model’s scores, from which we derived242

the average correlation coefficient and its 95% confidence interval. All statistical analyses were conducted243

at a significance level of 0.05.244
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Performance metrics We generated receiver operating characteristic (ROC) and precision-recall (PR)245

curves from predictions on both the NACC test data and other datasets. From each ROC and PR curve,246

we further derived the area under the curve values. Also, we evaluated the model’s accuracy, sensitivity,247

specificity, and Matthews correlation coefficient, with the latter being a balanced measure of quality for248

classes of varying sizes in a binary classifier. We also gauged inter-expert consensus using Cohen’s kappa249

(κ), which measures the degree to which two experts agree on a diagnosis. For each subgroup task, we250

computed the average pairwise κ as a comprehensive measure of agreement between the expert clinicians.251

Computational hardware and software All MRI and non-imaging data were processed on a worksta-252

tion equipped with an Intel i9 14-core 3.3 GHz processor and 4 NVIDIA RTX 2080Ti GPUs. Our software253

development utilized Python (version 3.7.7) and the models were developed using PyTorch (version 1.5.1).254

We used several other Python libraries to support data analysis, including pandas (version 1.0.3), scipy (ver-255

sion 1.3.1), tensorboardX (version 1.9), torchvision (version 0.6), and scikit-learn (version 0.22.1). Training256

the model on a single Quadro RTX8000 GPU on a shared computing cluster had an average runtime of 7257

minutes per epoch, while the inference task took less than a minute per instance. All clinicians reviewed258

MRIs using 3D Slicer (version 4.10.2) and logged their findings in REDCap (version 11.1.3).259

Data and code availability Data from ADNI, AIBL, NACC, NIFD, OASIS, PPMI and 4RTNI can be260

downloaded from publicly available resources. Data from FHS and LBDSU can be obtained upon request,261

subject to institutional approval. The Python scripts used in this study can be found on the Kolachalama262

Laboratory’s GitHub page (https://github.com/vkola-lab).263
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Dataset (group) Age
mean ± std

Male gender
(percentage)

Education in years
mean ± std

Race (White; Black; Asian; American
Indian; Pacific; Multi-race)

CDR
mean ± std

NACC
NC [n = 17242] 71.25 ± 11.16 6009, 34.85% 15.83 ± 2.98ˆ (13266, 2541, 528, 109, 10, 575)ˆ 0.05 ± 0.15
MCI [n = 7582] 73.72 ± 9.81 3615, 47.68% 15.16 ± 3.45ˆ (5708, 1185, 231, 53, 5, 276)ˆ 0.45 ± 0.18
AD [n = 16131] 76.0 ± 10.31 7234, 44.85% 14.52 ± 3.74ˆ (13161, 1702, 354, 92, 10, 458)ˆ 1.2 ± 0.73
LBD [n = 1913] 75.01 ± 8.55 1365, 71.35% 15.12 ± 3.63ˆ (1659, 128, 39, 17, 0, 37)ˆ 1.29 ± 0.78
VD [n = 1919] 80.32 ± 8.76 947, 49.35% 14.15 ± 4.22ˆ (1394, 332, 67, 2, 1, 68)ˆ 1.22 ± 0.74
PRD [n = 114] 60.07 ± 10.36 62, 54.39% 14.8 ± 3.33ˆ (93, 5, 5, 0, 1, 1)ˆ 1.95 ± 0.95
FTD [n = 2898] 65.86 ± 9.36 1603, 55.31% 15.45 ± 3.09ˆ (2664, 69, 73, 4, 5, 39)ˆ 1.2 ± 0.83
NPH [n = 138] 79.1 ± 9.24 69, 50.0% 15.0 ± 3.28ˆ (119, 10, 4, 0, 0, 4)ˆ 1.18 ± 0.71
SEF [n = 808] 76.3 ± 11.15 413, 51.11% 14.6 ± 3.77ˆ (646, 95, 15, 5, 2, 31)ˆ 1.11 ± 0.7
PSY [n = 2700] 73.74 ± 10.78 1102, 40.81% 14.13 ± 4.12ˆ (2163, 238, 59, 14, 5, 87)ˆ 1.1 ± 0.64
TBI [n = 265] 72.87 ± 11.23 192, 72.45% 14.42 ± 4.13ˆ (212, 27, 3, 2, 1, 11)ˆ 1.11 ± 0.69
ODE [n = 1234] 72.94 ± 12.14 654, 53.0% 14.5 ± 3.78ˆ (1046, 93, 28, 5, 4, 36)ˆ 1.2 ± 0.76
p-value <1.0e-200 <1.0e-200 <1.0e-200 8.341e-145 <1.0e-200

NIFD
NC [n = 124] 63.21 ± 7.27 56, 45.16% 17.48 ± 1.87ˆ (89, 0, 0, 0, 0, 3)ˆ 0.03 ± 0.12ˆ
FTD [n = 129] 63.66 ± 7.33 75, 58.14% 16.18 ± 3.29ˆ (109, 1, 1, 0, 0, 4)ˆ 0.82 ± 0.54ˆ
p-value 6.266e-01 5.246e-02 2.606e-04 6.531e-01 4.333e-28

PPMI
NC [n = 171] 62.74 ± 10.12 109, 63.74% 15.82 ± 2.93 (163, 3, 2, 0, 0, 1)ˆ N.A.
MCI [n = 27] 68.04 ± 7.32 22, 81.48% 15.52 ± 3.08 (24, 1, 1, 0, 0, 1) N.A.
p-value 1.006e-02 1.115e-01 6.194e-01 2.910e-01 N.A.

AIBL
NC [n = 480] 72.45 ± 6.22 203, 42.29% N.A. N.A. 0.03 ± 0.12
MCI [n = 102] 74.73 ± 7.11 53, 51.96% N.A. N.A. 0.47 ± 0.14
AD [n = 79] 73.34 ± 7.77 33, 41.77% N.A. N.A. 0.93 ± 0.54
p-value 5.521e-03 1.887e-01 N.A. N.A. 4.542e-158

OASIS
NC [n = 424] 71.34 ± 9.43 164, 38.68% 15.79 ± 2.62ˆ (53, 18, 1, 0, 0, 0)ˆ 0.0 ± 0.02
MCI [n = 27] 75.04 ± 7.25 14, 51.85% 15.19 ± 2.76 (4, 1, 0, 0, 0, 0)ˆ 0.52 ± 0.09
AD [n = 32] 77.44 ± 7.42 20, 62.5% 15.19 ± 2.8 (8, 1, 0, 0, 0, 0)ˆ 0.86 ± 0.44
LBD [n = 4] 74.75 ± 5.67 4, 100.0% 16.0 ± 2.83 N.A. 1.0 ± 0.0
FTD [n = 4] 64.25 ± 8.61 3, 75.0% 16.5 ± 2.96 (4, 0, 0, 0, 0, 0) 1.25 ± 0.75
p-value 7.789e-04 3.239e-03 5.507e-01 8.735e-01 2.855e-169

LBDSU
NC [n = 134] 68.77 ± 7.62 61, 45.52% 17.27 ± 2.47ˆ N.A. N.A.
MCI [n = 35] 70.16 ± 8.41 26, 74.29% 16.6 ± 2.58 N.A. N.A.
LBD [n = 13] 73.42 ± 7.81 8, 61.54% 16.77 ± 2.15 N.A. N.A.
p-value 1.033e-01 7.863e-03 3.243e-01 N.A. N.A.

4RTNI
NC [n = 12] 68.08 ± 4.92 5, 41.67% 15.45 ± 2.57ˆ (12, 0, 0, 0, 0, 0) 0.0 ± 0.0
MCI [n = 31] 67.61 ± 7.0 11, 35.48% 16.68 ± 4.02 (25, 1, 2, 0, 1, 1)ˆ 0.55 ± 0.15
FTD [n = 37] 69.14 ± 7.43 20, 54.05% 16.46 ± 4.21 (31, 1, 0, 0, 1, 2)ˆ 1.27 ± 0.55
p-value 6.691e-01 2.992e-01 6.843e-01 7.620e-01 5.700e-16

ADNI
NC [n = 481] 74.26 ± 6.0 235, 48.86% 16.34 ± 2.67 (432, 36, 8, 1, 0, 3)ˆ 0.0 ± 0.0ˆ
MCI [n = 971] 72.84 ± 7.71 572, 58.91% 15.94 ± 2.81 (903, 34, 15, 2, 2, 12)ˆ 0.5 ± 0.04
AD [n = 369] 74.91 ± 7.84 203, 55.01% 15.18 ± 2.97 (343, 15, 7, 0, 0, 4) 0.77 ± 0.26
p-value 2.565e-06 1.364e-03 1.872e-08 1.132e-01 <1.0e-200

FHS *
NC [n = 394] 74.9 ± 10.22ˆ 206, 52.28% N.A. (394, 0, 0, 0, 0, 0) 0.0 ± 0.0
MCI [n = 434] 79.92 ± 8.8ˆ 203, 46.77% N.A. (434, 0, 0, 0, 0, 0) 0.49 ± 0.07
AD [n = 687] 82.99 ± 7.87ˆ 211, 30.71% N.A. (687, 0, 0, 0, 0, 0) 2.04 ± 0.88
LBD [n = 73] 79.34 ± 9.37ˆ 46, 63.01% N.A. (73, 0, 0, 0, 0, 0) 1.84 ± 0.84
VD [n = 113] 81.74 ± 7.3ˆ 48, 42.48% N.A. (113, 0, 0, 0, 0, 0) 1.85 ± 0.8
FTD [n = 8] 85.67 ± 5.91ˆ 4, 50.0% N.A. (8, 0, 0, 0, 0, 0) 2.0 ± 0.87
p-value 1.316e-31 7.905e-14 N.A. 1.0 <1.0e-200

Table 1: Study population. Nine independent datasets were used for this study, including ADNI, NACC, NIFD, PPMI, OASIS, LBDSU, 4RTNI,
and FHS. Data from NACC, NIFD, PPMI, OASIS, LBDSU, and 4RTNI were used for model training. Data from ADNI, FHS, and a held-out set
from NACC were used for model testing. The p-value for each dataset indicates the statistical significance of inter-group differences per column.
We used one-way ANOVA and χ2 tests for continuous and categorical variables, respectively. Please refer to Glossary 1 for more information on
the acronyms. Here N.A. denotes not available. The symbol ˆ indicates that data was not available for some subjects.
∗ Due to the absence of CDR scores in the FHS dataset, we used the following definition: 0.0 - normal cognition, 0.5 - cognitive impairment, 1.0 -
mild dementia, 2.0 - moderate dementia, 3.0 - severe dementia.
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Figure 1: Data, model architecture and modeling strategy. (a) Our model for differential dementia diagnosis was developed using diverse
data modalities, including individual-level demographics, health history, neurological testing, physical/neurological exams, and multi-sequence
MRI scans. These data sources whenever available were aggregated from nine independent cohorts: 4RTNI, ADNI, AIBL, FHS, LBDSU, NACC,
NIFD, OASIS, and PPMI (Tables 1 & S1). For model training, we merged data from NACC, AIBL, PPMI, NIFD, LBDSU, OASIS and 4RTNI.
We employed a subset of the NACC dataset for internal testing. For external validation, we utilized the ADNI and FHS cohorts. (b) A transformer
served as the scaffold for the model. Each feature was processed into a fixed-length vector using a modality-specific embedding strategy and fed
into the transformer as input. A linear layer was used to connect the transformer with the output prediction layer. (c) A distinct portion of the
NACC dataset was randomly selected to enable a comparative analysis of the model’s performance against practicing neurologists. Furthermore,
we conducted a direct comparison between the model and a team of practicing neuroradiologists using a random sample of cases with confirmed
dementia from the NACC testing cohort. For both these evaluations, the model and clinicians had access to the same set of multimodal data. Finally,
we assessed the model’s predictions by comparing them with pathology grades available from the NACC, ADNI, and FHS cohorts.
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Figure 2: Model performance on individuals along the cognitive spectrum. (a) Radar plot illustrating the performance of the model on
individuals with normal cognition (NC), mild cognitive impairment (MCI), and dementia (DE) is shown. We present a range of metrics including
mean values along with their standard deviations, for model accuracy, sensitivity, specificity, precision, area under the receiver operating charac-
teristic curve, area under the precision-recall curve, F1-score, and Matthews correlation coefficient. (b) Chord diagram indicating varied levels of
model performance in the presence of missing data. The inner concentric circles represent various scenarios in which particular test information
was either omitted (masked) or included (unmasked). The three outer concentric rings depict the model’s performance as measured by the area
under the receiver operating characteristic curve (AUROC) for the NC, MCI and DE labels. (c) Two-dimensional t-distributed stochastic neighbor
embeddings obtained from the penultimate layer of the model are shown. The legend in the lower-left corner indicates the color coding representing
NC, MCI and DE, respectively. (d, e, f) Beeswarm plots visualize Shapley values for subjects classified as NC, MCI, and DE, respectively. (g, h)
The receiver operating characteristic (ROC) and precision-recall (PR) curves are presented, with their respective micro-average, macro-average, and
weighted-average calculations based on the labels for NC, MCI, and DE. These averaging techniques consolidated the model’s performance across
the spectrum of cognitive states. (i, j, k) Raincloud plots with overlying violin and box diagrams are shown to denote the distribution of clinical
dementia rating scores (horizontal axis) versus model-predicted probability of dementia (vertical axis), on the NACC, ADNI and FHS cohorts,
respectively. For (a,g,h), cases from the NACC testing, ADNI and FHS were used. Significance levels are denoted as ‘ns’ (not significant) for
p ≥ 0.05; * for p < 0.05; ** for p < 0.01; *** for p < 0.001; and **** for p < 0.0001 based on Kruskal-Wallis H-test for independent samples
followed by post-hoc Dunn’s testing with Bonferroni correction.
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Figure 3: Model assessment on mixed dementias. Visualization of the distribution and model-predicted probabilities of various etiological
categories found within the NACC testing dataset. The left segment enumerates both single and co-occurring diagnostic categories, offering a tally
of each condition’s frequency within the dataset. In the center, a logarithmic scale is used to delineate the overlap among these categories, shedding
light on their relative commonality and the extent of their coexistence. This method grants a refined perspective on the prevalence of comorbid
conditions. Additionally, the legend in the upper right interprets the counts within the central panel, providing a reference for the logarithmic data
representation. The panel on the far right features a box-and-whisker plot, delineating the spread and central tendency of the model’s predicted
probabilities for each combination of diagnostic categories.
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Figure 4: Model assessment on dementia etiologies. (a-j) Beeswarm plots illustrating Shapley values for subjects classified with AD, LBD,
VD, PRD, FTD, NPH, SEF, PSY, TBI, and ODE are depicted. Adjacent to plot (j) is a colorbar that delineates the range of feature values for these
conditions. (k, l) Receiver operating characteristic (ROC) and precision-recall (PR) curves are provided, utilizing micro-average, macro-average,
and weighted-average methods across all the dementia diagnostic labels. These averages were computed to synthesize the performance metrics
across all the dementia etiologies.
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Figure 5: Neuropathological validation. Array of violin plots with integrated box plots, delineating the probability distributions as predicted
by the model for different neuropathological grades. The analysis encompasses data from three distinct cohorts: the Framingham Heart Study
(FHS), the National Alzheimer’s Coordinating Center (NACC), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI), each denoted by
unique markers (triangles, circles, and diamonds, respectively). Statistical significance is encoded using asterisks, determined by Dunn-Bonferroni
post-hoc test: one asterisk (*) for a p-value less than 0.05; two asterisks (**) for p-values less than 0.01; three asterisks (***) for p-values less than
0.001; and four asterisks (****) for p-values less than 0.0001, reflecting increasing levels of statistical significance.
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Figure 6: Neurologist-level validation. (a) Comparison between model-predicted probability scores and the assessments provided by prac-
ticing neurologists is shown. For the analysis, neurologists were given 100 randomly selected cases encompassing individual-level demographics,
health history, neurological tests, physical as well as neurological examinations, and multi-sequence MRI scans. The neurologists were then tasked
with assigning confidence scores for NC, MCI, DE, and the 10 dementia etiologies: AD, LBD, VD, PRD, FTD, NPH, SEF, PSY, TBI, and ODE
(see Glossary 1). In the visual representation, the boxplot in blue indicates the distribution of confidence scores for true negative cases, while the
boxplot in red signifies true positive cases. The symbol ‘+’ represents true positive cases, and ‘x’ denotes true negative cases. Significance levels are
denoted as: ns (not significant) for p ≥ 0.05; * for p < 0.05; ** for p < 0.01; *** for p < 0.001; and **** for p < 0.0001. These levels were
determined using pairwise comparisons via the Brunner-Munzel test. (b) The figure presents the Pearson correlation coefficient across different
diagnostic categories, comparing assessments from the neurologists (n = 12) and the model, marked as ‘M’. Each diagnostic category from NC
to ODE includes a matrix reflecting correlation coefficient values between individual neurologists and the model. Shades of green signify positive
correlation, indicating agreement between the model and neurologists, whereas magenta shades suggest negative correlations, indicating potential
discrepancies in assessments. The mean pairwise Pearson correlation coefficient for each etiology is presented along with a 95% confidence inter-
val. The symbol ‘X’ denotes rater pairs where the Pearson correlation was not calculable, due to one or both raters giving label-specific confidence
scores with no variance. The heatmap at the bottom shows the Pearson correlation coefficients between model probabilities and mean neurologist
confidence scores for each label.
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