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 27 

Abstract 28 

With hundreds of millions of COVID-19 infections to date, a considerable portion of the population has 29 

developed or will develop long COVID. Understanding the prevalence, risk factors, and healthcare costs 30 
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of long COVID can be of significant societal importance. To investigate the utility of large-scale 31 

electronic health record (EHR) data in identifying and predicting long COVID, we analyzed a sample of 32 

1.23 million participants from the National COVID Cohort Collaborative (N3C), a longitudinal EHR data 33 

repository from 80 sites in the US with over 8 million COVID-19 patients. We characterized the 34 

prevalence of long COVID using a few different types of definitions to illustrate their relative strengths 35 

and weaknesses. Then we developed machine learning models to predict the risk of developing long 36 

COVID using demographic factors and comorbidity in the EHR. The risk factors for long COVID include 37 

patient age; sex; smoking status; and comorbidities characterized by the Charlson Comorbidity Index 38 

(CCI). We were able to predict three types of long COVID with low to moderate levels of accuracy (AUC 39 

0.599 – 0.734). We found that age and CCI were most predictive of long COVID diagnosis. Ongoing 40 

work includes applying the fair machine learning framework to the long COVID predictive models. We 41 

are implementing fairness and bias mitigation methods to model fitting through the following steps, 42 

selecting fairness metrics, preparing data and model, evaluating fairness metrics, applying bias mitigation 43 

methods to the dataset, and comparing model results and fairness metrics before and after the mitigation. 44 

The objective is to achieve equalized odds, a statistical notion that ensures classification algorithms do not 45 

discriminate against protected groups (such as sex and race/ethnicity). Results from the fairness-based 46 

machine learning will be included in the conference presentation. 47 

 48 

1. Introduction 49 

By November 2022, 94% of the US population was estimated to have been infected by SARS-CoV-2 at 50 

least once (Klaassen et al., 2022). This proportion continues to rise as COVID-19 remains as an important 51 

public health threat. Some people recover quickly after the initial infection, while others (between 10% to 52 

30%) continue to experience symptoms even months after the initial infection (Herman et al., 2022). Long 53 

COVID is defined by the World Health Organization (WHO) as persistent symptoms and/or long-term 54 

complications following a probable or confirmed SARS-CoV-2 infection, usually 3 months from acute 55 
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infection and lasting longer than 2 months with no probable alternative diagnosis (Nittas et al., 2022; 56 

World Health Organization, 2021). However, many challenges exist around diagnosing and managing 57 

patients with long COVID and identifying individuals who may have elevated risks of developing long 58 

COVID. Partially because the long-term effects of COVID-19 may exhibit differently for different 59 

people, or because tracking symptoms that can wax and wane over a long period of time can be difficult. 60 

Here we leverage a longitudinal electronic health record (EHR) data repository to test a few definitions of 61 

long COVID and develop a risk prediction model to identify patients at higher risks of developing long 62 

COVID. With hundreds of millions of COVID-19 infections to date, a considerable portion of the 63 

population has developed or will develop long COVID. Understanding the prevalence, risk factors, and 64 

healthcare costs of long COVID can be of significant societal importance. The healthcare sector needs to 65 

better understand the demand for medical care due to long COVID and be prepared to deliver that. Public 66 

health sector needs to be able to identify population segments at elevated risks for long COVID in order 67 

to design and implement targeted intervention strategies. 68 

More than 80 symptoms have been identified in the literature to be potentially associated with long 69 

COVID (Nasserie et al., 2021). Like the initial SARS-CoV-2 infection, long COVID could affect multiple 70 

organs and body systems. The most common symptoms include fatigue, dyspnea, cardiac abnormalities, 71 

cognitive impairment, sleep disturbances, symptoms of post-traumatic stress disorder, muscle pain, 72 

concentration problems, and headache (Crook et al., 2021). In addition to a long list of symptoms, 73 

information on symptom severity, duration, and co-occurrence is generally lacking in the literature. 74 

Several approaches exist among published studies to characterize long COVID: some uses a very liberal 75 

definition of having at least one symptom which result in high percentage of patients estimated to have 76 

long COVID but is likely an overestimate (CDC, 2023), some focuses on the most salient symptoms like 77 

fatigue, headache, dyspnea and anosmia (Sudre et al., 2021), some focuses on symptom clusters to 78 

capture the overlapping symptoms (Global Burden of Disease Long COVID Collaborators, 2022).  79 
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A wide range of prevalence estimates for long COVID may be a result of non-standardized definition, 80 

virulence of different SARS-CoV-2 variants, and population immunity. Prevalence of as high as 80% was 81 

observed in early studies, using a lenient definition of at least one symptom, among patients who were 82 

previously hospitalized (Nasserie et al., 2021). The Centers of Disease Control and Prevention (CDC) 83 

estimated that nearly one in five American adults who have had COVID-19 still have long COVID (CDC, 84 

2022). More recently, the Global Burden of Disease Long COVID Collaborators estimated that 6.2% 85 

individuals have at least one of the three select-reported long COVID symptom clusters (Global Burden 86 

of Disease Long COVID Collaborators, 2022). As a result of the uncertainty around the prevalence of 87 

long COVID, the economic cost of long COVID is hard to fully grasp, but safe to assume it would be an 88 

enormous number. Cutler and Summers estimated the economic costs of long COVID to be $2.6 trillion 89 

in 2020, and later updated it to be $3.7 trillion as a result of higher prevalence of long COVID than 90 

previously assumed (D. Cutler, 2022; D. M. Cutler & Summers, 2020). 91 

The enormity of the economic costs and societal impact of long COVID highlights the necessity to 92 

develop better methods for detecting, treating, and preventing long COVID. In this study, we analyzed 93 

data from the National COVID Cohort Collaborative (N3C), a longitudinal EHR data repository from 80 94 

sites in the US with over 8 million COVID-19 patients (Haendel et al., 2021). We characterize the 95 

prevalence of long COVID using a few different types of definitions to illustrate their relative strengths 96 

and weaknesses. Then we develop machine learning models to predict the risk of developing long COVID 97 

using demographic factors and comorbidity in the EHR. We discuss model performance with a focus on 98 

features with strong predictive power that can be utilized to design early detection or targeted intervention 99 

strategies. We the discuss how EHR data derived risk prediction model can be used to enhance an 100 

individual COVID-19 risk calculator, 19andMe, to support individual and clinical decision-making. 101 

Ongoing work also includes assessing algorithmic bias and mitigating them using techniques including 102 

resampling and reweighting. 103 
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2. Our approach to predicting long COVID 104 

Several features of long COVID make identifying positive cases using claims and EHR data challenging. 105 

First, some symptoms of long COVID may or may not be detectable, depending on which diagnostic test 106 

is used (Mancini et al., 2021). Second, due to early skepticism within the medical profession about the 107 

existence of COVID-19, there have been significant informal, patient-led efforts to report and track the 108 

various symptoms of long COVID (Patient Led Research Collaborative, 2023).  Third, symptoms 109 

occurring during the long COVID episode must be separated from the initial episode of COVID itself, 110 

which may vary in length and severity. Fourth, like other medical conditions, a claims-based definition 111 

must be clinically relevant with respect to disease severity, and account for health conditions a patient 112 

may have had prior to their COVID and long COVID episodes.  113 

Given these challenges, we tested several approaches to defining long COVID using data from the N3C 114 

Enclave. We first defined a six-month lookback & look-forward window around each patients’ index 115 

COVID-19 episode and limited our sample to patients who have healthcare utilization (defined as having 116 

a condition recorded in the N3C database) prior to, and after, these windows. This allowed us to 117 

accurately classify a lack of healthcare utilization during the lookback or look-forward windows as true 118 

non-utilization, as opposed to a patient death, relocation, or otherwise missing data. We then identified all 119 

OMOP concept ID condition codes that appear on a patient’s record between 90 and 180 days following 120 

their index COVID-19 diagnosis. Excluding conditions recorded within 90 days after an initial COVID-121 

19 diagnosis ensured that we do not flag symptoms of COVID-19 as symptoms of long COVID. From the 122 

resulting set of symptoms, we removed any symptoms that appeared on a patient’s record during their 123 

lookback window. A drawback of this approach is that it reduces the likelihood that we detect long 124 

COVID cases among people with chronic conditions or comorbidities, who are actually most likely to 125 

contract long COVID. We additionally removed any symptoms during the look-forward period that do 126 

not appear on the list of 76 conditions in the N3C Long COVID OMOP condition code set. The 127 

remaining symptoms were considered as the patient’s long COVID symptom burden.  128 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 6 

We considered that the N3C long COVID OMOP condition code set contains several potential 129 

redundancies, and that these conditions might be over-reported in claims and EHR data due to upcoding. 130 

For example, the following pairs of symptoms were similar to one another, yet each appeared as an 131 

independent item in the OMOP code set: sleep disturbances and insomnia, nausea and vomiting, body 132 

aches and muscle pain, and fatigue and exercise intolerance. We consolidated these redundancies in a 133 

patient’s look-forward period prior to calculating each patient’s long COVID symptom score. This 134 

reduced the number of long covid symptoms from 76 to 72.  135 

3 symptom cluster approach 136 

Lastly, we built off of the recent literature by calculating a cluster-specific score for each of three 137 

symptom clusters (Cognitive, Respiratory, and Fatigue) (Global Burden of Disease Long COVID 138 

Collaborators, 2022). We created three cluster-specific, binary long COVID definitions based on a cutoff 139 

of at least 3 distinct long COVID symptoms within the relevant cluster. This approach provided a few 140 

advantages: it built off the clinical literature identifying these three symptom clusters as distinct, allowing 141 

us to classify each patient into each subtype without concern for whether a patient exhibits symptoms 142 

from multiple clusters. Second, it allowed us to capture variation in the relationship between patient 143 

demographics and various long COVID subtypes. Third, it allowed us to draw distinctions between more 144 

and less severe symptom clusters of long COVID, and potentially identify predictive targets that capture 145 

high-morbidity or high-cost events.  146 

3. Characteristics of Sample 147 

We used the N3C de-identified “tier 2 access” data set.1 A limitation of our analysis is that the Patient 148 

Severity and Scores dataset, condition occurrence, and drug exposure datasets are frequently updated 149 

                                                                                                                                                                                                                                                                            

1 Tire 2 access is the patient level EHR data where 17 patient identifier variables are removed and longitudinal data 
is data-shifted to safeguard privacy (Haendel et al., 2021). We selected patients for the analysis from the Patient 
Severity and Scores dataset (Release-v70-2022-03-19). The dataset contains patient level information from all sites. 
N3C identifies positive COVID-19 cases through their COVID-19 Phenotype Inclusion Criteria (Pfaff, 2022). 
Though this did not factor into our analysis, another feature of the N3C data is a 1:2 case to control ratio of patients 
with identifies lab-confirmed, suspected, and possible cases of COVID-19 to patients who have been screen and 
tested negative for COVID-19.  In addition, we linked patient ids from the Patient Severity and Scores dataset with 
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within the N3C data enclave and new records being added. Our analysis used the Patient Severity and 150 

Scores dataset version 70 which was released on March 19, 2022. Thus, all patients in our analysis were 151 

diagnosed on or before March 19, 2022. Therefore, our results did not capture recent changes in the 152 

COVID-19 pandemic including the rise in the prevalence of the omicron variant, vaccination, and vaccine 153 

booster doses. 154 

For our analysis, we started with  13,151,716 patients from the Patient Severity and Scores database and 155 

filtered down to the patients with lab confirmed positive cases (3,724,542 patients). Finally, we selected 156 

the patients who had conditions occurrences within the 6 months preceding and proceeding diagnosis of 157 

COVID-19,2 whose COVID-19 visit start date was between September 1, 2020, and September 1, 2021, 158 

and who did not die from COVID-19. This provided us with our final analytic sample of 1,234,119 159 

patients.  160 

We selected covariates based on our literature review of covariates other researchers found were related 161 

to long COVID symptoms (Tsampasian et al., 2023). We identified the following covariates using the 162 

Patient Severity and Scores dataset: age, sex, race, ethnicity, and current or former smoking status. We 163 

categorized the patient’s age at diagnosis into 9 categories (0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 164 

70-79, and 80+ years old) for patients missing age, we imputed age as the median age 41.2 which 165 

translates to the age category 40-49. We categorized sex as male, female, or other. Race was defined as 166 

White, Black or African American, Asian, Native Hawaiian or Other Pacific Islander, Other, and 167 

Missing/Unknown. Ethnicity was defined as Hispanic or Latino, Not Hispanic or Latino, and Ethnicity 168 

Missing or Unknown.  169 



two additional datasets provided in N3C, the condition occurrence dataset (Release-v70-2022-03-19) and the drug 
exposures dataset (Release-v70-2022-03-19) to provide additional longitudinal information about the patients in the 
database. These condition occurrence dataset records diagnosis, signs, and symptoms of conditions and drug 
exposure dataset records introduction of drugs into the body of the patient overtime (Observational Health Data 
Sciences and Informatics, 2018). 
2 For selecting the patients how has conditions occurrences within 6 months preceding and proceeding diagnosis, we 
used the condition occurrence dataset (Release-v70-2022-03-19)  
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In addition, we identified the following covariates using the OMOP code set ids in the condition 170 

occurrence and drug exposure datasets for the dates prior to the covid diagnosis: COVID-19 vaccination, 171 

pregnancy, hypertension, obesity, immunocompromised, and Charlson Comorbidity Index (CCI) score 172 

(Glasheen et al., 2019). For each patient, if the OMOP codes for the comorbidity’s hypertension, obesity, 173 

immunocompromised, or CCI score appear in the condition occurrence data before the COVID-19 174 

diagnosis, then we categorized the patient as having the respective comorbidity. We considered a patient 175 

vaccinated if a patient received one or more doses of a Pfizer, Moderna, or Johnson and Johnson vaccine 176 

before diagnosis of COVID-19 as recorded in the drug exposure dataset. We considered a patient 177 

pregnant if the condition start date was within a year of COVID-19 diagnosis. See Appendix A1 for full 178 

list of the OMOP codes we used to create the covariates. 179 

Our sample was 56% (n = 692,547) female, 68% (n = 1,031,221) White, 2% (n = 25,083) received at least 180 

one dose of a COVID-19 vaccine, 22% (n = 27,3255) were 60 years old or older, see Table 1 for 181 

additional attributes of the analytic sample.  182 

Several limitations exist in our data. First, the observed conditions dataset only recorded diagnoses, signs, 183 

or symptoms of a condition either observed by a provider or reported by the patient (Blacketer, 2021). 184 

This limitation might have affected the makeup of the sample through: 1) underreporting conditions 185 

because patients might have had conditions treated at another facility not sharing data with N3C, 2) 186 

excluding the healthiest patients because they did not have any reported conditions in the six months 187 

before and after the COVID-19 diagnosis. The vaccination status had a similar limitation where 188 

vaccination data was reported by clinics, pharmacies, or patients (Blacketer, 2021). Due to this limitation, 189 

our sample may have underestimated the vaccination rates if patients received vaccinations at a facility 190 

not sharing data with N3C. The low vaccination rates in our data might have led to a weaker relationship 191 

between vaccination and long COVID symptoms in our findings. Due to our concerns with the 192 

vaccination variable, we choose not to include vaccination in our modeling. 193 
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4. Summary statistics for Cognitive, Fatigue, and Respiratory variations of Long COVID 194 

We examined long COVID by three symptom clusters -- cognitive, fatigue, and respiratory -- as defined 195 

by the Global Burden of Disease Long COVID Collaborators (Global Burden of Disease Long COVID 196 

Collaborators, 2022). We classified patients as being positive for the individual symptom clusters if the 197 

patients had a qualifying symptom present between 3 to 6 months after having a lab confirmed case of 198 

COVID-19 and that symptom was not reported in the 6 months preceding their lab confirmed case of 199 

COVID-19. For a full list of the symptoms and OMOP codes we used as qualifying cognitive, fatigue, 200 

and respiratory long COVID symptoms, see Appendix A2, A3, and A4 respectively. Then we focused our 201 

analysis on the three separate symptom clusters and predicted the risk of a patient having had each 202 

symptom cluster of long COVID systems.  203 

The fatigue long COVID symptom cluster was the most common in our sample with 4.7% (n = 57,483) of 204 

all patients, followed by respiratory cluster with 2.5% (n = 30,668) of our sample, and the cognitive 205 

symptom cluster with only 0.2% (n = 2,937) of the sample (Table 1). In general, for all three symptom 206 

clusters, there was an age gradient where patients in younger age groups have lower rates of symptom 207 

clusters than patients in older groups. Female patients had higher rates (5.7%) of the fatigue symptom 208 

cluster than male patients (3.3%) and there was no difference in rates between the sexes for the cognitive 209 

symptom clusters (female = 0.3%; male = 0.2%) and respiratory (female = 2.6%; male = 2.3%). Black 210 

and White patients had higher prevalence than other race groups for all three symptom clusters. There 211 

was not a meaningful difference in prevalence by ethnicity. Patients who had cognitive, fatigue, and 212 

respiratory symptom clusters had higher average CCI scores than those who did not experience said 213 

symptom clusters. The highest average CCI scores were patients who had cognitive cluster symptoms 214 

(mean = 2.7), compared to fatigue (mean = 1.4) and respiratory (mean = 1.4) symptom clusters. For other 215 

variables we did not observe large differences between groups. 216 
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5. Predictive model for long COVID outcomes 217 

Model training methods 218 

We trained two types of machine learning models (a binary logistic regression model and a binary random 219 

forest model) on all three long COVID clusters separately: respiratory, fatigue, and cognitive. We used a 220 

70-30 train-test split, resulting in 863,883 training observations and 370,236 test observations. To 221 

accommodate for long COVID being a rare outcome in all three of our clusters, we trained all models on 222 

down sampled data and tested them on the original, unbalanced data. To create the down sampled training 223 

data, we took five bootstrapped samples with replacement. Each bootstrapped sample had an equal 224 

number of positive and negative cases, which was also equal to the total number of positive cases in the 225 

original training data.  226 

Model performance 227 

The random forest model outperformed the logistic regression model at predicting the respiratory and 228 

cognitive clusters, but the logistic regression model slightly outperformed the random forest model at 229 

predicting the fatigue outcome (Table 2). In all six models, the AUC remained fairly consistent between 230 

the train and test data, but the model precision (a measure of how often a model’s positive predictions are 231 

correct) dropped quite dramatically between the train and test data. This could be because long COVID 232 

was a rare outcome, or that there is low signal in the data.  233 

Covariates 234 

To measure feature importance, we considered coefficient values for the binary logistic regression models 235 

and impurity-based variable importance scores for the random forest models (Tables 3 and 4). Among our 236 

six models, there were some variations in which covariates were most predictive. The CCI score was the 237 

most important feature in all three clusters for the random forest models. However, for the binary logistic 238 

regression models, all three clusters had different most important features (Table 3). For the respiratory 239 

cluster, the two most important features are belonging to the 0 – 9 age group and being a current or 240 

former smoker. For the fatigue cluster, the two most important features are belonging to the 0 – 9 age 241 
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group and being male. Finally, for the cognitive cluster, the two most important features are being 80 242 

years old or older and belonging to the 70 – 79 age group. 243 

Comparisons with other long COVID predictive models 244 

One challenge in comparing models is that there is not a consistent definition of long COVID that is 245 

universally accepted. The two papers described below offer two alternative definitions of long COVID.  246 

One study also uses data from N3C to predict outcomes of long COVID. The authors consider visiting a 247 

long COVID clinic as an indicator that a patient has long COVID (Pfaff, 2022). This is a narrower 248 

definition of long COVID than our definition in this study. Their XGBoost model results in an AUC of 249 

0.92 for all patients in their sample, 0.90 for hospitalized patients, and 0.85 for non-hospitalized patients. 250 

The simplicity of their measure could explain why their results are better than the results from our 251 

models. However, there are also drawbacks to defining long COVID as a visit to a long COVID clinic. a 252 

long COVID clinic is a very specific type of care and someone’s long COVID symptoms have to be 253 

pretty severe to be referred to a long COVID clinic. Thus, the Pfaff definition undercounts the number of 254 

patients with long COVID especially patients with more mild symptoms of long COVID. 255 

Another study used age, sex, and the number of symptoms a patient experienced in the first week of 256 

infection to classify duration of COVID-19 as either short (less than 10 days) or long (28 days or more, 257 

which is shorter than the WHO recommendation) using k-means clustering (Sudre et al., 2021). The 258 

authors analyzed self-reported data from 4,182 cases of COVID-19 through the COVID Symptom Study 259 

app and used a random forest model and a logistic regression model to predict long COVID, as defined by 260 

having symptoms for 28 days or longer. The random forest model, which included first week symptoms 261 

and other comorbidities, performed moderately well with an AUC of 0.768. The logistic regression model 262 

was much simpler and included only age, sex, and number of symptoms in the first week, with an AUC of 263 

0.767. One key difference between Sudre et al and our model is that Sudre et al included the number of 264 

symptoms in the first week which is likely a proxy for identify which patients had more severe initial 265 

COVID infections, whereas our model had limited variables representing the severity of initial infection. 266 
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6. Apply the fair machine learning framework to the long COVID predictive models 267 

Timely risk assessment of long COVID outcomes can improve patient care and healthcare resource 268 

allocation. However, disparities across different sex, race/ethnicity, and social economic status in 269 

COVID-19 patient outcomes have been well-documented(Kharroubi & Diab-El-Harake, 2022; Webb 270 

Hooper et al., 2020). For example, while males have high risks for severe COVID outcomes such as death 271 

and ICU admission, females have been reported in the literature to have higher risks for long COVID 272 

(Cohen & van der Meulen Rodgers, 2023). In addition, compared to white patients, patients from 273 

racial/ethnic minority groups had significantly different odds of developing long COVID symptoms and 274 

conditions (Khullar et al., 2023).  It is important to carefully examine model fairness across different 275 

population subgroups to achieve optimal and fair clinical decision-making.  276 

We plan to confirm our models achieve similar performances across different sex/race/ethnicity groups by 277 

calculating the performance score using AUROC, F1 score, precision, recall, sensitivity, and specificity 278 

for males/females, different race groups including White, Black or African American, Asian, Native 279 

Hawaiian or Pacific Islander, and Other or Missing/Unknown, and different ethnicity (Hispanic and non-280 

Hispanic) groups. This will allow us to detect if there is any bias in model performance. In addition to 281 

model performance, other fairness metrics will also be evaluated since the outcome (diagnoses codes in 282 

EHR) is not considered “ground truth”. We will also evaluate predictive equality, equal opportunity, and 283 

statistical parity of the model predictions. 284 

If we detect disparity in fairness metrics, we plan to address it using various techniques including 285 

disparate impact remover (a preprocessing technique that edits input values to increase fairness between 286 

groups), reweighting (producing weights for each subgroup for each outcome class to achieve statistical 287 

parity), and resampling (oversampling or under-sampling to achieve statistical parity). We will compare 288 

the effects of different mitigation techniques and discuss their impact on the balance between model 289 

performance and fairness metrics. The method maximizing model predictive performance may be 290 

different from the method achieving the highest fairness metrics. We will discuss the trade-off between 291 
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model performance and fairness in the context of using real-world EHR data to develop predictive models 292 

for long COVID. 293 

Conclusion 294 

Overarching takeaways regarding model performance  295 

In this study, we explored the feasibility to train a predictive model to provide insights into the risk 296 

factors for long COVID. We leveraged a diverse and harmonized electronic health record data source and 297 

applied minimum filters to build a model with high potential to be applied to general population. After 298 

using techniques to handle unbalanced sample, our predictive models achieved moderate performance 299 

accuracy (AUC 0.599 – 0.730 for the random forest models, AUC 0.602 – 0.734 for the logistic 300 

regression models). It was interesting to observe that logistic regression models have comparable 301 

performance to random forest models, potentially because we included relatively limited number of 302 

predictors that are easy to acquire. Other predictive models developed in the past had stronger 303 

performances but they either leveraged clinical factors that can be hard to acquire such as blood oxygen, 304 

blood pH (Bennett et al., 2021), or they limited the population to a small and relatively homogenous 305 

groups of people, such as users of the COVID Symptom Study app or patients visiting a long COVID 306 

clinic (Pfaff, 2022; Sudre et al., 2021). 307 

Comparison with 19&Me severe COVID risk model  308 

Previously we leveraged the same data source (N3C) and machine learning models to build a predictive 309 

model for severe COVID-19 outcomes.  Severe COVID-19 outcome is defined as having a score of 6 or 310 

above using the Clinical Progression Scale (CPS) established by the World Health Organization for 311 

COVID-19 clinical research (Marshall et al., 2020).  In a sample of 864,8080 COVID-19 positive 312 

patients, 15,401 (1.75%) has this outcome.  Many risk factors are related to elevated COVID-19 risk, and 313 

others have published machine learning models that achieve high predictive performance (AUROC = 314 

0.87) using a long list of predictors including demographics (age/sex/race), health conditions 315 

(comorbidities) and clinical characteristics (blood pH, respiratory rate,  oxygen saturation…). We limit 316 
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the predictors to those easily accessible in the 19andMe app (age/sex/race/comorbidities/smoking 317 

status/vaccination status). Since the outcome is highly unbalanced, we used down sampling and up 318 

weighting to handle the sample unbalance. We experimented with different modeling techniques such as 319 

random forest and logistic regression, with and without the downsampling techniques. The best 320 

performing model was the logistic regression with downsampled data (Table 2).  321 

Implications for future work: learnings on N3C data 322 

The N3C is a nationally representative, harmonized data resource that we can leverage for COVID-19 323 

research, among other data sources that our team already have experience with. In addition to the data 324 

tables that we explored in the current work, several other data tables such as visitation occurrence can be 325 

potentially useful for future similar work. In our current work, we can only create a flag variable for 326 

whether or not the patient has certain symptoms, without the ability to rate its severity. Information in the 327 

visitation occurrence table can be helpful because it has visit start and end date, which can then be used to 328 

characterize the severity of the condition. This can be a future area of modeling enhancement. 329 

Machine learning models have utilities in building predictive models for both severe COVID outcomes 330 

and long COVID. The severe COVID model had better performance, partially because of a clear 331 

definition of severe COVID and relative follow-up period.  The model building process could benefit 332 

from close collaborations between data scientists, health service researchers and clinicians. The models 333 

developed in this study may be valuable to both payers to improve their understanding of the risks of their 334 

insured population, and to public health officials to better plan for the resources needed to improve 335 

population health in the aftermaths of COVID-19 pandemic.336 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 15 

Acknowledgements 337 

This work is supported by Mathematica.  338 

N3C Attribution 339 

The analyses described in this manuscript were conducted with data or tools accessed through the 340 
NCATS N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v 1.2-2020-341 
08-25b supported by NCATS Contract No. 75N95023D00001, Axle Informatics Subcontract: NCATS-342 
P00438-B, and [insert additional funding agencies or sources and reference numbers as declared by the 343 
contributors in their form response above]. This research was possible because of the patients whose 344 
information is included within the data and the organizations (https://ncats.nih.gov/n3c/resources/data-345 
contribution/data-transfer-agreement-signatories) and scientists who have contributed to the on-going 346 
development of this community resource [https://doi.org/10.1093/jamia/ocaa196]. 347 

 348 

Disclaimer The N3C Publication committee confirmed that this manuscript msid:1865.948 is in 349 
accordance with N3C data use and attribution policies; however, this content is solely the responsibility of 350 
the authors and does not necessarily represent the official views of the National Institutes of Health or the 351 
N3C program. 352 

 353 

IRB 354 

The N3C data transfer to NCATS is performed under a Johns Hopkins University Reliance Protocol # 355 
IRB00249128 or individual site agreements with NIH. The N3C Data Enclave is managed under the 356 
authority of the NIH; information can be found at https://ncats.nih.gov/n3c/resources. 357 

 358 

Individual Acknowledgements For Core Contributors 359 

We gratefully acknowledge the following core contributors to N3C: 360 

 361 

Adam B. Wilcox, Adam M. Lee, Alexis Graves, Alfred (Jerrod) Anzalone, Amin Manna, Amit Saha, 362 
Amy Olex, Andrea Zhou, Andrew E. Williams, Andrew Southerland, Andrew T. Girvin, Anita Walden, 363 
Anjali A. Sharathkumar, Benjamin Amor, Benjamin Bates, Brian Hendricks, Brijesh Patel, Caleb 364 
Alexander, Carolyn Bramante, Cavin Ward-Caviness, Charisse Madlock-Brown, Christine Suver, 365 
Christopher Chute, Christopher Dillon, Chunlei Wu, Clare Schmitt, Cliff Takemoto, Dan Housman, 366 
Davera Gabriel, David A. Eichmann, Diego Mazzotti, Don Brown, Eilis Boudreau, Elaine Hill, Elizabeth 367 
Zampino, Emily Carlson Marti, Emily R. Pfaff, Evan French, Farrukh M Koraishy, Federico Mariona, 368 
Fred Prior, George Sokos, Greg Martin, Harold Lehmann, Heidi Spratt, Hemalkumar Mehta, Hongfang 369 
Liu, Hythem Sidky, J.W. Awori Hayanga, Jami Pincavitch, Jaylyn Clark, Jeremy Richard Harper, Jessica 370 
Islam, Jin Ge, Joel Gagnier, Joel H. Saltz, Joel Saltz, Johanna Loomba, John Buse, Jomol Mathew, Joni 371 
L. Rutter, Julie A. McMurry, Justin Guinney, Justin Starren, Karen Crowley, Katie Rebecca Bradwell, 372 
Kellie M. Walters, Ken Wilkins, Kenneth R. Gersing, Kenrick Dwain Cato, Kimberly Murray, Kristin 373 
Kostka, Lavance Northington, Lee Allan Pyles, Leonie Misquitta, Lesley Cottrell, Lili Portilla, Mariam 374 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 16 

Deacy, Mark M. Bissell, Marshall Clark, Mary Emmett, Mary Morrison Saltz, Matvey B. Palchuk, 375 
Melissa A. Haendel, Meredith Adams, Meredith Temple-O'Connor, Michael G. Kurilla, Michele Morris, 376 
Nabeel Qureshi, Nasia Safdar, Nicole Garbarini, Noha Sharafeldin, Ofer Sadan, Patricia A. Francis, 377 
Penny Wung Burgoon, Peter Robinson, Philip R.O. Payne, Rafael Fuentes, Randeep Jawa, Rebecca 378 
Erwin-Cohen, Rena Patel, Richard A. Moffitt, Richard L. Zhu, Rishi Kamaleswaran, Robert Hurley, 379 
Robert T. Miller, Saiju Pyarajan, Sam G. Michael, Samuel Bozzette, Sandeep Mallipattu, Satyanarayana 380 
Vedula, Scott Chapman, Shawn T. O'Neil, Soko Setoguchi, Stephanie S. Hong, Steve Johnson, Tellen D. 381 
Bennett, Tiffany Callahan, Umit Topaloglu, Usman Sheikh, Valery Gordon, Vignesh Subbian, Warren A. 382 
Kibbe, Wenndy Hernandez, Will Beasley, Will Cooper, William Hillegass, Xiaohan Tanner Zhang. 383 
Details of contributions available at covid.cd2h.org/core-contributors 384 

 385 

Data Partners with Released Data 386 

The following institutions whose data is released or pending: 387 

 388 

Available: Advocate Health Care Network — UL1TR002389: The Institute for Translational Medicine 389 
(ITM) • Aurora Health Care Inc — UL1TR002373: Wisconsin Network For Health Research • Boston 390 
University Medical Campus — UL1TR001430: Boston University Clinical and Translational Science 391 
Institute • Brown University — U54GM115677: Advance Clinical Translational Research (Advance-392 
CTR) • Carilion Clinic — UL1TR003015: iTHRIV Integrated Translational health Research Institute of 393 
Virginia • Case Western Reserve University — UL1TR002548: The Clinical & Translational Science 394 
Collaborative of Cleveland (CTSC) • Charleston Area Medical Center — U54GM104942: West Virginia 395 
Clinical and Translational Science Institute (WVCTSI) • Children’s Hospital Colorado — 396 
UL1TR002535: Colorado Clinical and Translational Sciences Institute • Columbia University Irving 397 
Medical Center — UL1TR001873: Irving Institute for Clinical and Translational Research • Dartmouth 398 
College — None (Voluntary) Duke University — UL1TR002553: Duke Clinical and Translational 399 
Science Institute • George Washington Children’s Research Institute — UL1TR001876: Clinical and 400 
Translational Science Institute at Children’s National (CTSA-CN) • George Washington University — 401 
UL1TR001876: Clinical and Translational Science Institute at Children’s National (CTSA-CN) • Harvard 402 
Medical School — UL1TR002541: Harvard Catalyst • Indiana University School of Medicine — 403 
UL1TR002529: Indiana Clinical and Translational Science Institute • Johns Hopkins University — 404 
UL1TR003098: Johns Hopkins Institute for Clinical and Translational Research • Louisiana Public 405 
Health Institute — None (Voluntary) • Loyola Medicine — Loyola University Medical Center • Loyola 406 
University Medical Center — UL1TR002389: The Institute for Translational Medicine (ITM) • Maine 407 
Medical Center — U54GM115516: Northern New England Clinical & Translational Research (NNE-408 
CTR) Network • Mary Hitchcock Memorial Hospital & Dartmouth Hitchcock Clinic — None (Voluntary) 409 
• Massachusetts General Brigham — UL1TR002541: Harvard Catalyst • Mayo Clinic Rochester — 410 
UL1TR002377: Mayo Clinic Center for Clinical and Translational Science (CCaTS) • Medical University 411 
of South Carolina — UL1TR001450: South Carolina Clinical & Translational Research Institute (SCTR) 412 
• MITRE Corporation — None (Voluntary) • Montefiore Medical Center — UL1TR002556: Institute for 413 
Clinical and Translational Research at Einstein and Montefiore • Nemours — U54GM104941: Delaware 414 
CTR ACCEL Program • NorthShore University HealthSystem — UL1TR002389: The Institute for 415 
Translational Medicine (ITM) • Northwestern University at Chicago — UL1TR001422: Northwestern 416 
University Clinical and Translational Science Institute (NUCATS) • OCHIN — INV-018455: Bill and 417 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 17 

Melinda Gates Foundation grant to Sage Bionetworks • Oregon Health & Science University — 418 
UL1TR002369: Oregon Clinical and Translational Research Institute • Penn State Health Milton S. 419 
Hershey Medical Center — UL1TR002014: Penn State Clinical and Translational Science Institute • 420 
Rush University Medical Center — UL1TR002389: The Institute for Translational Medicine (ITM) • 421 
Rutgers, The State University of New Jersey — UL1TR003017: New Jersey Alliance for Clinical and 422 
Translational Science • Stony Brook University — U24TR002306 • The Alliance at the University of 423 
Puerto Rico, Medical Sciences Campus — U54GM133807: Hispanic Alliance for Clinical and 424 
Translational Research (The Alliance) • The Ohio State University — UL1TR002733: Center for Clinical 425 
and Translational Science • The State University of New York at Buffalo — UL1TR001412: Clinical and 426 
Translational Science Institute • The University of Chicago — UL1TR002389: The Institute for 427 
Translational Medicine (ITM) • The University of Iowa — UL1TR002537: Institute for Clinical and 428 
Translational Science • The University of Miami Leonard M. Miller School of Medicine — 429 
UL1TR002736: University of Miami Clinical and Translational Science Institute • The University of 430 
Michigan at Ann Arbor — UL1TR002240: Michigan Institute for Clinical and Health Research • The 431 
University of Texas Health Science Center at Houston — UL1TR003167: Center for Clinical and 432 
Translational Sciences (CCTS) • The University of Texas Medical Branch at Galveston — 433 
UL1TR001439: The Institute for Translational Sciences • The University of Utah — UL1TR002538: 434 
Uhealth Center for Clinical and Translational Science • Tufts Medical Center — UL1TR002544: Tufts 435 
Clinical and Translational Science Institute • Tulane University — UL1TR003096: Center for Clinical 436 
and Translational Science • The Queens Medical Center — None (Voluntary) • University Medical 437 
Center New Orleans — U54GM104940: Louisiana Clinical and Translational Science (LA CaTS) Center 438 
• University of Alabama at Birmingham — UL1TR003096: Center for Clinical and Translational Science 439 
• University of Arkansas for Medical Sciences — UL1TR003107: UAMS Translational Research 440 
Institute • University of Cincinnati — UL1TR001425: Center for Clinical and Translational Science and 441 
Training • University of Colorado Denver, Anschutz Medical Campus — UL1TR002535: Colorado 442 
Clinical and Translational Sciences Institute • University of Illinois at Chicago — UL1TR002003: UIC 443 
Center for Clinical and Translational Science • University of Kansas Medical Center — UL1TR002366: 444 
Frontiers: University of Kansas Clinical and Translational Science Institute • University of Kentucky — 445 
UL1TR001998: UK Center for Clinical and Translational Science • University of Massachusetts Medical 446 
School Worcester — UL1TR001453: The UMass Center for Clinical and Translational Science 447 
(UMCCTS) • University Medical Center of Southern Nevada — None (voluntary) • University of 448 
Minnesota — UL1TR002494: Clinical and Translational Science Institute • University of Mississippi 449 
Medical Center — U54GM115428: Mississippi Center for Clinical and Translational Research (CCTR) • 450 
University of Nebraska Medical Center — U54GM115458: Great Plains IDeA-Clinical & Translational 451 
Research • University of North Carolina at Chapel Hill — UL1TR002489: North Carolina Translational 452 
and Clinical Science Institute • University of Oklahoma Health Sciences Center — U54GM104938: 453 
Oklahoma Clinical and Translational Science Institute (OCTSI) • University of Pittsburgh — 454 
UL1TR001857: The Clinical and Translational Science Institute (CTSI) • University of Pennsylvania — 455 
UL1TR001878: Institute for Translational Medicine and Therapeutics • University of Rochester — 456 
UL1TR002001: UR Clinical & Translational Science Institute • University of Southern California — 457 
UL1TR001855: The Southern California Clinical and Translational Science Institute (SC CTSI) • 458 
University of Vermont — U54GM115516: Northern New England Clinical & Translational Research 459 
(NNE-CTR) Network • University of Virginia — UL1TR003015: iTHRIV Integrated Translational health 460 
Research Institute of Virginia • University of Washington — UL1TR002319: Institute of Translational 461 
Health Sciences • University of Wisconsin-Madison — UL1TR002373: UW Institute for Clinical and 462 
Translational Research • Vanderbilt University Medical Center — UL1TR002243: Vanderbilt Institute 463 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 18 

for Clinical and Translational Research • Virginia Commonwealth University — UL1TR002649: C. 464 
Kenneth and Dianne Wright Center for Clinical and Translational Research • Wake Forest University 465 
Health Sciences — UL1TR001420: Wake Forest Clinical and Translational Science Institute • 466 
Washington University in St. Louis — UL1TR002345: Institute of Clinical and Translational Sciences • 467 
Weill Medical College of Cornell University — UL1TR002384: Weill Cornell Medicine Clinical and 468 
Translational Science Center • West Virginia University — U54GM104942: West Virginia Clinical and 469 
Translational Science Institute (WVCTSI)� Submitted: Icahn School of Medicine at Mount Sinai — 470 
UL1TR001433: ConduITS Institute for Translational Sciences • The University of Texas Health Science 471 
Center at Tyler — UL1TR003167: Center for Clinical and Translational Sciences (CCTS) • University of 472 
California, Davis — UL1TR001860: UCDavis Health Clinical and Translational Science Center • 473 
University of California, Irvine — UL1TR001414: The UC Irvine Institute for Clinical and Translational 474 
Science (ICTS) • University of California, Los Angeles — UL1TR001881: UCLA Clinical Translational 475 
Science Institute • University of California, San Diego — UL1TR001442: Altman Clinical and 476 
Translational Research Institute • University of California, San Francisco — UL1TR001872: UCSF 477 
Clinical and Translational Science Institute� NYU Langone Health Clinical Science Core, Data Resource 478 
Core, and PASC Biorepository Core — OTA-21-015A: Post-Acute Sequelae of SARS-CoV-2 Infection 479 
Initiative (RECOVER)� Pending: Arkansas Children’s Hospital — UL1TR003107: UAMS Translational 480 
Research Institute • Baylor College of Medicine — None (Voluntary) • Children’s Hospital of 481 
Philadelphia — UL1TR001878: Institute for Translational Medicine and Therapeutics • Cincinnati 482 
Children’s Hospital Medical Center — UL1TR001425: Center for Clinical and Translational Science and 483 
Training • Emory University — UL1TR002378: Georgia Clinical and Translational Science Alliance • 484 
HonorHealth — None (Voluntary) • Loyola University Chicago — UL1TR002389: The Institute for 485 
Translational Medicine (ITM) • Medical College of Wisconsin — UL1TR001436: Clinical and 486 
Translational Science Institute of Southeast Wisconsin • MedStar Health Research Institute — None 487 
(Voluntary) • Georgetown University — UL1TR001409: The Georgetown-Howard Universities Center 488 
for Clinical and Translational Science (GHUCCTS) • MetroHealth — None (Voluntary) • Montana State 489 
University — U54GM115371: American Indian/Alaska Native CTR • NYU Langone Medical Center — 490 
UL1TR001445: Langone Health’s Clinical and Translational Science Institute • Ochsner Medical Center 491 
— U54GM104940: Louisiana Clinical and Translational Science (LA CaTS) Center • Regenstrief 492 
Institute — UL1TR002529: Indiana Clinical and Translational Science Institute • Sanford Research — 493 
None (Voluntary) • Stanford University — UL1TR003142: Spectrum: The Stanford Center for Clinical 494 
and Translational Research and Education • The Rockefeller University — UL1TR001866: Center for 495 
Clinical and Translational Science • The Scripps Research Institute — UL1TR002550: Scripps Research 496 
Translational Institute • University of Florida — UL1TR001427: UF Clinical and Translational Science 497 
Institute • University of New Mexico Health Sciences Center — UL1TR001449: University of New 498 
Mexico Clinical and Translational Science Center • University of Texas Health Science Center at San 499 
Antonio — UL1TR002645: Institute for Integration of Medicine and Science • Yale New Haven Hospital 500 
— UL1TR001863: Yale Center for Clinical Investigation501 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 19 

References 502 

Bennett, T. D., Moffitt, R. A., Hajagos, J. G., Amor, B., Anand, A., Bissell, M. M., Bradwell, K. R., 503 

Bremer, C., Byrd, J. B., Denham, A., DeWitt, P. E., Gabriel, D., Garibaldi, B. T., Girvin, A. T., 504 

Guinney, J., Hill, E. L., Hong, S. S., Jimenez, H., Kavuluru, R., … National COVID Cohort 505 

Collaborative (N3C) Consortium. (2021). Clinical Characterization and Prediction of Clinical 506 

Severity of SARS-CoV-2 Infection Among US Adults Using Data From the US National COVID 507 

Cohort Collaborative. JAMA Network Open, 4(7), e2116901. 508 

https://doi.org/10.1001/jamanetworkopen.2021.16901 509 

Blacketer, C. (2021, January 11). Chapter 4 The Common Data Model. The Book of OHDSI. 510 

https://ohdsi.github.io/TheBookOfOhdsi/ 511 

CDC. (2022, June 22). Nearly One in Five American Adults Who Have Had COVID-19 Still Have “Long 512 

COVID.” https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/20220622.htm 513 

CDC. (2023, January 4). Long COVID - Household Pulse Survey—COVID-19. 514 

https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm 515 

Cohen, J., & van der Meulen Rodgers, Y. (2023). An intersectional analysis of long COVID prevalence. 516 

International Journal for Equity in Health, 22, 261. https://doi.org/10.1186/s12939-023-02072-5 517 

Crook, H., Raza, S., Nowell, J., Young, M., & Edison, P. (2021). Long covid—Mechanisms, risk factors, 518 

and management. BMJ, 374, n1648. https://doi.org/10.1136/bmj.n1648 519 

Cutler, D. (2022, July 22). The Economic Cost of Long COVID: An Update. 520 

https://scholar.harvard.edu/files/cutler/files/long_covid_update_7-22.pdf 521 

Cutler, D. M., & Summers, L. H. (2020). The COVID-19 Pandemic and the $16 Trillion Virus. JAMA, 522 

324(15), 1495–1496. https://doi.org/10.1001/jama.2020.19759 523 

Glasheen, W. P., Cordier, T., Gumpina, R., Haugh, G., Davis, J., & Renda, A. (2019). Charlson 524 

Comorbidity Index: ICD-9 Update and ICD-10 Translation. American Health & Drug Benefits, 525 

12(4), Article 4. 526 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 20 

Global Burden of Disease Long COVID Collaborators. (2022). Estimated Global Proportions of 527 

Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following 528 

Symptomatic COVID-19 in 2020 and 2021. JAMA, 328(16), 1604–1615. 529 

https://doi.org/10.1001/jama.2022.18931 530 

Haendel, M. A., Chute, C. G., Bennett, T. D., Eichmann, D. A., Guinney, J., Kibbe, W. A., Payne, P. R. 531 

O., Pfaff, E. R., Robinson, P. N., Saltz, J. H., Spratt, H., Suver, C., Wilbanks, J., Wilcox, A. B., 532 

Williams, A. E., Wu, C., Blacketer, C., Bradford, R. L., Cimino, J. J., … N3C Consortium. 533 

(2021). The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and 534 

deployment. Journal of the American Medical Informatics Association: JAMIA, 28(3), 427–443. 535 

https://doi.org/10.1093/jamia/ocaa196 536 

Herman, E., Shih, E., & Cheng, A. (2022). Long COVID: Rapid Evidence Review. American Family 537 

Physician, 106(5), 523–532. 538 

Kharroubi, S. A., & Diab-El-Harake, M. (2022). Sex-differences in COVID-19 diagnosis, risk factors and 539 

disease comorbidities: A large US-based cohort study. Frontiers in Public Health, 10, 1029190. 540 

https://doi.org/10.3389/fpubh.2022.1029190 541 

Khullar, D., Zhang, Y., Zang, C., Xu, Z., Wang, F., Weiner, M. G., Carton, T. W., Rothman, R. L., Block, 542 

J. P., & Kaushal, R. (2023). Racial/Ethnic Disparities in Post-acute Sequelae of SARS-CoV-2 543 

Infection in New York: An EHR-Based Cohort Study from the RECOVER Program. Journal of 544 

General Internal Medicine, 38(5), 1127–1136. https://doi.org/10.1007/s11606-022-07997-1 545 

Klaassen, F., Chitwood, M. H., Cohen, T., Pitzer, V. E., Russi, M., Swartwood, N. A., Salomon, J. A., & 546 

Menzies, N. A. (2022). Changes in population immunity against infection and severe disease 547 

from SARS-CoV-2 Omicron variants in the United States between December 2021 and November 548 

2022 (p. 2022.11.19.22282525). medRxiv. https://doi.org/10.1101/2022.11.19.22282525 549 

Mancini, D. M., Brunjes, D. L., Lala, A., Trivieri, M. G., Contreras, J. P., & Natelson, B. H. (2021). Use 550 

of Cardiopulmonary Stress Testing for Patients With Unexplained Dyspnea Post–Coronavirus 551 

Disease. JACC: Heart Failure, 9(12), 927–937. https://doi.org/10.1016/j.jchf.2021.10.002 552 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 21 

Marshall, J. C., Murthy, S., Diaz, J., Adhikari, N. K., Angus, D. C., Arabi, Y. M., Baillie, K., Bauer, M., 553 

Berry, S., Blackwood, B., Bonten, M., Bozza, F., Brunkhorst, F., Cheng, A., Clarke, M., Dat, V. 554 

Q., de Jong, M., Denholm, J., Derde, L., … Zhang, J. (2020). A minimal common outcome 555 

measure set for COVID-19 clinical research. The Lancet Infectious Diseases, 20(8), e192–e197. 556 

https://doi.org/10.1016/S1473-3099(20)30483-7 557 

Nasserie, T., Hittle, M., & Goodman, S. N. (2021). Assessment of the Frequency and Variety of 558 

Persistent Symptoms Among Patients With COVID-19: A Systematic Review. JAMA Network 559 

Open, 4(5), e2111417. https://doi.org/10.1001/jamanetworkopen.2021.11417 560 

Nittas, V., Gao, M., West, E. A., Ballouz, T., Menges, D., Wulf Hanson, S., & Puhan, M. A. (2022). Long 561 

COVID Through a Public Health Lens: An Umbrella Review. Public Health Reviews, 43, 562 

1604501. https://doi.org/10.3389/phrs.2022.1604501 563 

Observational Health Data Sciences and Informatics. (2018). COVID-19 Clinical Data Warehouse Data 564 

Dictionary Based on OMOP Common Data Model Specifications Version 5.3. National Center 565 

for Advancing Translational Sciences (NCATS). 566 

https://ncats.nih.gov/files/OMOP_CDM_COVID.pdf 567 

Patient Led Research Collaborative. (2023). About the Patient-Led Research Collaborative. Patient Led 568 

Research Collaborative – for Long COVID. https://patientresearchcovid19.com/ 569 

Pfaff, E. R. (2022, March 11). Latest Phenotype [GitHub]. National-COVID-Cohort-Collaborative. 570 

https://github.com/National-COVID-Cohort-571 

Collaborative/Phenotype_Data_Acquisition/wiki/Latest-Phenotype 572 

Sudre, C. H., Murray, B., Varsavsky, T., Graham, M. S., Penfold, R. S., Bowyer, R. C., Pujol, J. C., 573 

Klaser, K., Antonelli, M., Canas, L. S., Molteni, E., Modat, M., Jorge Cardoso, M., May, A., 574 

Ganesh, S., Davies, R., Nguyen, L. H., Drew, D. A., Astley, C. M., … Steves, C. J. (2021). 575 

Attributes and predictors of long COVID. Nature Medicine, 27(4), Article 4. 576 

https://doi.org/10.1038/s41591-021-01292-y 577 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 22 

Tsampasian, V., Elghazaly, H., Chattopadhyay, R., Debski, M., Naing, T. K. P., Garg, P., Clark, A., 578 

Ntatsaki, E., & Vassiliou, V. S. (2023). Risk Factors Associated With Post−COVID-19 579 

Condition: A Systematic Review and Meta-analysis. JAMA Internal Medicine. 580 

https://doi.org/10.1001/jamainternmed.2023.0750 581 

Webb Hooper, M., Nápoles, A. M., & Pérez-Stable, E. J. (2020). COVID-19 and Racial/Ethnic 582 

Disparities. JAMA, 323(24), 2466–2467. https://doi.org/10.1001/jama.2020.8598 583 

World Health Organization. (2021, October 6). A clinical case definition of post COVID-19 condition by 584 

a Delphi consensus, 6 October 2021. https://www.who.int/publications-detail-redirect/WHO-585 

2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 586 

587 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 23 

Tables 588 

Table 1: Analytic Sample 589 

 Cognitive Symptom Cluster Fatigue Symptom Cluster Respiratory Symptom Cluster 

 Positive N (%) Negative N (%) Positive N (%) Negative N (%) Positive N (%) Negative N (%) 

Total 2,937 (0.2%) 1,231,182 (99.8%) 57,483 (4.7%) 1,176,636 (95.3%) 30,668 (2.5%) 1,203,451 (97.5%) 
Age 60.1 (SD: 17.22) 41.4 (SD: 20.72) 44.1 (SD: 19.2) 41.3 (SD: 20.8) 47.0 (SD: 22) 41.3 (SD: 20.68) 

Age group: 
  

    

0-9 < 20 ‡ 79,370 ¶ 1,217 (1.5%) 78,161 (98.5%) 2,383 (3%) 76,995 (97%) 

10-19 < 45 ‡ 125,311 ¶ 4,841 (3.9%) 120,516 (96.1%) 1,754 (1.4%) 123,603 (98.6%) 

20-29 115 (0.1%) 184,951 (99.9%) 8,904 (4.8%) 176,162 (95.2%) 2,873 (1.6%) 182,193 (98.4%) 

30-39 179 (0.1%) 188,841 (99.9%) 9,583 (5.1%) 179,437 (94.9%) 3,409 (1.8%) 185,611 (98.2%) 

40-49 451 (0.2%) 194,235 (99.8%) 10,029 (5.2%) 184,657 (94.8%) 4,561 (2.3%) 190,125 (97.7%) 

50-59 474 (0.3%) 186,883 (99.7%) 9,173 (4.9%) 178,184 (95.1%) 5,407 (2.9%) 181,950 (97.1%) 

60-69 623 (0.4%) 150,740 (99.6%) 7,393 (4.9%) 143,970 (95.1%) 5,297 (3.5%) 146,066 (96.5%) 

70-79 681 (0.8%) 87,738 (99.2%) 4,597 (5.2%) 83,822 (94.8%) 3,665 (4.1%) 84,754 (95.9%) 

80+ 363 (1.1%) 33,110 (98.9%) 1,746 (5.2%) 31,727 (94.8%) 1,319 (3.9%) 32,154 (96.1%) 

Sex:       

Female 1,751 (0.3%) 690,796 (99.7%) 39,362 (5.7%) 653,185 (94.3%) 18,164 (2.6%) 674,383 (97.4%) 

Male 1,186 (0.2%) 540,035 (99.8%) 18,111‡ (3.3%) 523,112 (96.7%) 12,501‡ (2.3%) 528,718 (97.7%) 

Other 0 (0%) 351 (100%) < 20 ‡ 337 ¶ < 20 ‡ 352 ¶ 

Race:       

White 2,163 (0.3%) 845,108 (99.7%) 41,449 (4.9%) 805,822 (95.1%) 21,293 (2.5%) 825,978 (97.5%) 

Black or African American 412 (0.2%) 172,825 (99.8%) 8,068 (4.7%) 165,169 (95.3%) 5,186 (3%) 168,051 (97%) 

Asian 56 (0.2%) 25,719 (99.8%) 929 (3.6%) 24,846 (96.4%) 619 (2.4%) 25,156 (97.6%) 

Native Hawaiian or Pacific 
Islander 

< 20 ‡ 1,866 ¶  61 (3.3%) 1,805 (96.7%) 38 (2%) 1,828 (98%) 

Other < 20 ‡ 10,393 ¶  470 (4.5%) 9,937 (95.5%) 286 (2.7%) 10,121 (97.3%) 

Missing/Unknown 289 (0.2%) 175,274 (99.8%) 6,506 (3.7%) 169,057 (96.3%) 3,246 (1.8%) 172,317 (98.2%) 
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Ethnicity:       

Hispanic or Latino 295 (0.2%) 167,080 (99.8%) 7,691 (4.6%) 159,684 (95.4%) 3,664 (2.2%) 163,711 (97.8%) 

Not Hispanic or Latino 2,408 (0.3%) 946,774 (99.7%) 45,876 (4.8%) 903,306 (95.2%) 24,966 (2.6%) 924,216 (97.4%) 

Ethnicity Missing or Unknown 234 (0.2%) 117,328 (99.8%) 3,916 (3.3%) 113,646 (96.7%) 2,038 (1.7%) 115,524 (98.3%) 

COVID-19 vaccination:       

Yes 84 (0.3%) 24,999 (99.7%) 1,034 (4.1%) 24,049 (95.9%) 569 (2.3%) 24,514 (97.7%) 

No 2,853 (0.2%) 1,206,183 (99.8%) 56,449 (4.7%) 1,152,587 (95.3%) 30,099 (2.5%) 1,178,937 (97.5%) 

Smoking status:       

Current or former smoker 529 (0.4%) 146,835 (99.6%) 9,472 (6.4%) 137,892 (93.6%) 5,486 (3.7%) 141,878 (96.3%) 

Non-smoker 2,408 (0.2%) 1,084,347 (99.8%) 48,011 (4.4%) 1,038,744 (95.6%) 25,182 (2.3%) 1,061,573 (97.7%) 

Hypertension 29 (0.7%) 4,101 (99.3%) 329 (8.0%) 3,801 (92.0%) 172 (4.2%) 3,958 (95.8%) 

Obesity 590 (0.5%) 115,173 (99.5%) 9,581 (8.3%) 106,182 (91.7%) 5,281 (4.6%) 110,482 (95.4%) 

Immunocompromised < 20 ‡ 138  ¶ < 20 ‡ 129 ¶ < 20 ‡ 128 ¶ 

Pregnant < 20 ‡ 2,488  ¶ 216 (8.7%) 2,276 (91.3%) 56 (2.2%) 2,436 (97.8%) 

CCI Score 2.7 (SD: 3.11) 0.8 (SD: 1.73) 1.4 (SD: 2.35) 0.7 (SD: 1.7) 1.6 (SD: 2.51) 0.7 (SD: 1.71) 

‡ To comply with N3C policy, counts below 20 are displayed as < 20, and in this case, additional values must be skewed by up to 5 to render it 590 
impossible to back-calculate precise counts fewer than 20 for the following categories: Age Group 0-9, Sex Other, Native Hawaiian or Pacific 591 
Islander, Race Other, and Pregnant. 592 

¶ This proportion is one of the two columns that sum up to one. Reporting it would enable the calculation of a cell size < 20. Therefore we mark it 593 
as too small to quantitatively report. 594 

Abbreviations: SD: standard deviation; CCI: Charlson Comorbidity Index595 
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Table 2: Model Performance Results 596 

Long COVID Outcome Model Type Performance Metric Train Sample Test Sample 

Respiratory Logistic AUC 0.616 0.617 

F1 0.596 0.077 

Accuracy 0.616 0.660 

Precision 0.628 0.041 

Sensitivity 0.568 0.572 

Specificity 0.664 0.662 

Random Forest AUC 0.625 0.624 

F1 0.601 0.081 

Accuracy 0.625 0.679 

Precision 0.642 0.043 

Sensitivity 0.565 0.566 

Specificity 0.685 0.682 

Fatigue Logistic AUC 0.604 0.602 

F1 0.607 0.123 

Accuracy 0.604 0.594 

Precision 0.602 0.068 

Sensitivity 0.613 0.611 

Specificity 0.594 0.593 

Random Forest AUC 0.603 0.599 

F1 0.578 0.127 

Accuracy 0.603 0.656 

Precision 0.617 0.072 

Sensitivity 0.545 0.537 

Specificity 0.662 0.661 

Cognitive Logistic AUC 0.723 0.734 

F1 0.717 0.013 

Accuracy 0.723 0.743 

Precision 0.734 0.007 

Sensitivity 0.702 0.725 

Specificity 0.745 0.743 

Random Forest AUC 0.732 0.730 

F1 0.732 0.013 

Accuracy 0.732 0.723 

Precision 0.732 0.006 

Sensitivity 0.732 0.737 

Specificity 0.731 0.723 

Abbreviations: AUC: Area under the curve597 
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Table 3: Coefficient Values for the Binary Logistic Regression Models 598 

Coefficient Cognitive Fatigue Respiratory 

Age 0-9 -1.367 -1.070 0.651 

10-19 -0.988 -0.178 -0.167 

20-29 -0.331 0.002 -0.085 

30-39 Reference Reference Reference 

40-49 0.663 -0.057 0.166 

50-59 0.781 -0.110 0.351 

60-69 0.945 -0.241 0.472 

70-79 1.598 -0.288 0.522 

80+ 1.892 -0.287 0.504 

Sex Female Reference Reference Reference 

Male -0.211 -0.539 -0.176 

Other -0.117 -0.147 -0.196 

Race White Reference Reference Reference 

Black or African 
American 

-0.054 -0.178 0.084 

Asian -0.064 -0.274 0.019 

Native Hawaiian or 
Pacific Islander 

-0.430 -0.462 -0.248 

Other -0.454 0.111 0.052 

Missing/Unknown -0.254 -0.263 -0.277 

Ethnicity Not Hispanic or Latino Reference Reference Reference 

Hispanic or Latino 0.084 0.063 0.016 

Ethnicity Missing or 
Unknown 

-0.006 -0.215 -0.234 

COVID-19 vaccination No Reference Reference Reference 

Yes -0.397 -0.406 -0.338 

Smoking status: Non-smoker Reference Reference Reference 

Current or Former 
smoker 

0.345 0.316 0.386 

Hypertension No Reference Reference Reference 

Yes 0.298 0.130 -0.012 

Obesity No Reference Reference Reference 

Yes 0.431 0.429 0.413 

Immunocompromised No Reference Reference Reference 

Yes 0.214 -0.056 0.092 

Pregnant No Reference Reference Reference 

Yes 0.293 0.286 -0.076 

CCI Score  0.237 0.160 0.166 

Abbreviations: CCI: Charlson Comorbidity Index 599 
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Table 4: Impurity-Based Variable Importance Scores for the Random Forest Models 600 

Variable Importance Score Cognitive Fatigue Respiratory 

Age 0-9 0.057 0.124 0.014 

10-19 0.092 0.008 0.061 

20-29 0.064 0.006 0.060 

30-39 Reference Reference Reference 

40-49 0.003 0.003 0.003 

50-59 0.007 0.002 0.005 

60-69 0.019 0.002 0.033 

70-79 0.124 0.003 0.044 

80+ 0.078 0.002 0.012 

Sex Female Reference Reference Reference 

Male 0.007 0.214 0.008 

Other 0.000 0.000 0.000 

Race White Reference Reference Reference 

Black or African 
American 

0.004 0.003 0.007 

Asian 0.003 0.003 0.001 

Native Hawaiian or 
Pacific Islander 

0.000 0.001 0.001 

Other 0.002 0.001 0.001 

Missing/Unknown 0.010 0.023 0.031 

Ethnicity Not Hispanic or Latino Reference Reference Reference 

Hispanic or Latino 0.006 0.004 0.004 

Ethnicity Missing or 
Unknown 

0.005 0.027 0.019 

COVID-19 vaccination No Reference Reference Reference 

Yes 0.003 0.003 0.003 

Smoking status: Non-smoker Reference Reference Reference 

Current or Former 
smoker 

0.018 0.048 0.061 

Hypertension No Reference Reference Reference 

Yes 0.003 0.002 0.002 

Obesity No Reference Reference Reference 

Yes 0.045 0.128 0.122 

Immunocompromised No Reference Reference Reference 

Yes 0.000 0.000 0.000 

Pregnant No Reference Reference Reference 

Yes 0.001 0.001 0.001 

CCI Score  0.445 0.394 0.507 

Abbreviations: CCI: Charlson Comorbidity Index  601 
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