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 27 

Abstract 28 

With hundreds of millions of COVID-19 infections to date, a considerable portion of the population has 29 

developed or will develop long COVID. Understanding the prevalence, risk factors, and healthcare costs 30 
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of long COVID can be of significant societal importance. To investigate the utility of large-scale 31 

electronic health record (EHR) data in identifying and predicting long COVID, we analyzed a sample of 32 

1.23 million participants from the National COVID Cohort Collaborative (N3C), a longitudinal EHR data 33 

repository from 80 sites in the US with over 8 million COVID-19 patients. We characterized the 34 

prevalence of long COVID using a few different types of definitions to illustrate their relative strengths 35 

and weaknesses. Then we developed machine learning models to predict the risk of developing long 36 

COVID using demographic factors and comorbidity in the EHR. The risk factors for long COVID include 37 

patient age; sex; smoking status; and comorbidities characterized by the Charlson Comorbidity Index 38 

(CCI). We were able to predict three types of long COVID with low to moderate levels of accuracy (AUC 39 

0.599 – 0.734). We found that age and CCI were most predictive of long COVID diagnosis. Ongoing 40 

work includes applying the fair machine learning framework to the long COVID predictive models. We 41 

are implementing fairness and bias mitigation methods to model fitting through the following steps, 42 

selecting fairness metrics, preparing data and model, evaluating fairness metrics, applying bias mitigation 43 

methods to the dataset, and comparing model results and fairness metrics before and after the mitigation. 44 

The objective is to achieve equalized odds, a statistical notion that ensures classification algorithms do not 45 

discriminate against protected groups (such as sex and race/ethnicity). Results from the fairness-based 46 

machine learning will be included in the conference presentation. 47 

 48 

1. Introduction 49 

By November 2022, 94% of the US population was estimated to have been infected by SARS-CoV-2 at 50 

least once (Klaassen et al., 2022). This proportion continues to rise as COVID-19 remains as an important 51 

public health threat. Some people recover quickly after the initial infection, while others (between 10% to 52 

30%) continue to experience symptoms even months after the initial infection (Herman et al., 2022). Long 53 

COVID is defined by the World Health Organization (WHO) as persistent symptoms and/or long-term 54 

complications following a probable or confirmed SARS-CoV-2 infection, usually 3 months from acute 55 
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infection and lasting longer than 2 months with no probable alternative diagnosis (Nittas et al., 2022; 56 

World Health Organization, 2021). However, many challenges exist around diagnosing and managing 57 

patients with long COVID and identifying individuals who may have elevated risks of developing long 58 

COVID. Partially because the long-term effects of COVID-19 may exhibit differently for different 59 

people, or because tracking symptoms that can wax and wane over a long period of time can be difficult. 60 

Here we leverage a longitudinal electronic health record (EHR) data repository to test a few definitions of 61 

long COVID and develop a risk prediction model to identify patients at higher risks of developing long 62 

COVID. With hundreds of millions of COVID-19 infections to date, a considerable portion of the 63 

population has developed or will develop long COVID. Understanding the prevalence, risk factors, and 64 

healthcare costs of long COVID can be of significant societal importance. The healthcare sector needs to 65 

better understand the demand for medical care due to long COVID and be prepared to deliver that. Public 66 

health sector needs to be able to identify population segments at elevated risks for long COVID in order 67 

to design and implement targeted intervention strategies. 68 

More than 80 symptoms have been identified in the literature to be potentially associated with long 69 

COVID (Nasserie et al., 2021). Like the initial SARS-CoV-2 infection, long COVID could affect multiple 70 

organs and body systems. The most common symptoms include fatigue, dyspnea, cardiac abnormalities, 71 

cognitive impairment, sleep disturbances, symptoms of post-traumatic stress disorder, muscle pain, 72 

concentration problems, and headache (Crook et al., 2021). In addition to a long list of symptoms, 73 

information on symptom severity, duration, and co-occurrence is generally lacking in the literature. 74 

Several approaches exist among published studies to characterize long COVID: some uses a very liberal 75 

definition of having at least one symptom which result in high percentage of patients estimated to have 76 

long COVID but is likely an overestimate (CDC, 2023), some focuses on the most salient symptoms like 77 

fatigue, headache, dyspnea and anosmia (Sudre et al., 2021), some focuses on symptom clusters to 78 

capture the overlapping symptoms (Global Burden of Disease Long COVID Collaborators, 2022).  79 
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A wide range of prevalence estimates for long COVID may be a result of non-standardized definition, 80 

virulence of different SARS-CoV-2 variants, and population immunity. Prevalence of as high as 80% was 81 

observed in early studies, using a lenient definition of at least one symptom, among patients who were 82 

previously hospitalized (Nasserie et al., 2021). The Centers of Disease Control and Prevention (CDC) 83 

estimated that nearly one in five American adults who have had COVID-19 still have long COVID (CDC, 84 

2022). More recently, the Global Burden of Disease Long COVID Collaborators estimated that 6.2% 85 

individuals have at least one of the three select-reported long COVID symptom clusters (Global Burden 86 

of Disease Long COVID Collaborators, 2022). As a result of the uncertainty around the prevalence of 87 

long COVID, the economic cost of long COVID is hard to fully grasp, but safe to assume it would be an 88 

enormous number. Cutler and Summers estimated the economic costs of long COVID to be $2.6 trillion 89 

in 2020, and later updated it to be $3.7 trillion as a result of higher prevalence of long COVID than 90 

previously assumed (D. Cutler, 2022; D. M. Cutler & Summers, 2020). 91 

The enormity of the economic costs and societal impact of long COVID highlights the necessity to 92 

develop better methods for detecting, treating, and preventing long COVID. In this study, we analyzed 93 

data from the National COVID Cohort Collaborative (N3C), a longitudinal EHR data repository from 80 94 

sites in the US with over 8 million COVID-19 patients (Haendel et al., 2021). We characterize the 95 

prevalence of long COVID using a few different types of definitions to illustrate their relative strengths 96 

and weaknesses. Then we develop machine learning models to predict the risk of developing long COVID 97 

using demographic factors and comorbidity in the EHR. We discuss model performance with a focus on 98 

features with strong predictive power that can be utilized to design early detection or targeted intervention 99 

strategies. We the discuss how EHR data derived risk prediction model can be used to enhance an 100 

individual COVID-19 risk calculator, 19andMe, to support individual and clinical decision-making. 101 

Ongoing work also includes assessing algorithmic bias and mitigating them using techniques including 102 

resampling and reweighting. 103 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 5 

2. Our approach to predicting long COVID 104 

Several features of long COVID make identifying positive cases using claims and EHR data challenging. 105 

First, some symptoms of long COVID may or may not be detectable, depending on which diagnostic test 106 

is used (Mancini et al., 2021). Second, due to early skepticism within the medical profession about the 107 

existence of COVID-19, there have been significant informal, patient-led efforts to report and track the 108 

various symptoms of long COVID (Patient Led Research Collaborative, 2023).  Third, symptoms 109 

occurring during the long COVID episode must be separated from the initial episode of COVID itself, 110 

which may vary in length and severity. Fourth, like other medical conditions, a claims-based definition 111 

must be clinically relevant with respect to disease severity, and account for health conditions a patient 112 

may have had prior to their COVID and long COVID episodes.  113 

Given these challenges, we tested several approaches to defining long COVID using data from the N3C 114 

Enclave. We first defined a six-month lookback & look-forward window around each patients’ index 115 

COVID-19 episode and limited our sample to patients who have healthcare utilization (defined as having 116 

a condition recorded in the N3C database) prior to, and after, these windows. This allowed us to 117 

accurately classify a lack of healthcare utilization during the lookback or look-forward windows as true 118 

non-utilization, as opposed to a patient death, relocation, or otherwise missing data. We then identified all 119 

OMOP concept ID condition codes that appear on a patient’s record between 90 and 180 days following 120 

their index COVID-19 diagnosis. Excluding conditions recorded within 90 days after an initial COVID-121 

19 diagnosis ensured that we do not flag symptoms of COVID-19 as symptoms of long COVID. From the 122 

resulting set of symptoms, we removed any symptoms that appeared on a patient’s record during their 123 

lookback window. A drawback of this approach is that it reduces the likelihood that we detect long 124 

COVID cases among people with chronic conditions or comorbidities, who are actually most likely to 125 

contract long COVID. We additionally removed any symptoms during the look-forward period that do 126 

not appear on the list of 76 conditions in the N3C Long COVID OMOP condition code set. The 127 

remaining symptoms were considered as the patient’s long COVID symptom burden.  128 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 6 

We considered that the N3C long COVID OMOP condition code set contains several potential 129 

redundancies, and that these conditions might be over-reported in claims and EHR data due to upcoding. 130 

For example, the following pairs of symptoms were similar to one another, yet each appeared as an 131 

independent item in the OMOP code set: sleep disturbances and insomnia, nausea and vomiting, body 132 

aches and muscle pain, and fatigue and exercise intolerance. We consolidated these redundancies in a 133 

patient’s look-forward period prior to calculating each patient’s long COVID symptom score. This 134 

reduced the number of long covid symptoms from 76 to 72.  135 

3 symptom cluster approach 136 

Lastly, we built off of the recent literature by calculating a cluster-specific score for each of three 137 

symptom clusters (Cognitive, Respiratory, and Fatigue) (Global Burden of Disease Long COVID 138 

Collaborators, 2022). We created three cluster-specific, binary long COVID definitions based on a cutoff 139 

of at least 3 distinct long COVID symptoms within the relevant cluster. This approach provided a few 140 

advantages: it built off the clinical literature identifying these three symptom clusters as distinct, allowing 141 

us to classify each patient into each subtype without concern for whether a patient exhibits symptoms 142 

from multiple clusters. Second, it allowed us to capture variation in the relationship between patient 143 

demographics and various long COVID subtypes. Third, it allowed us to draw distinctions between more 144 

and less severe symptom clusters of long COVID, and potentially identify predictive targets that capture 145 

high-morbidity or high-cost events.  146 

3. Characteristics of Sample 147 

We used the N3C de-identified “tier 2 access” data set.1 A limitation of our analysis is that the Patient 148 

Severity and Scores dataset, condition occurrence, and drug exposure datasets are frequently updated 149 

                                                                                                                                                                                                                                                                            

1 Tire 2 access is the patient level EHR data where 17 patient identifier variables are removed and longitudinal data 
is data-shifted to safeguard privacy (Haendel et al., 2021). We selected patients for the analysis from the Patient 
Severity and Scores dataset (Release-v70-2022-03-19). The dataset contains patient level information from all sites. 
N3C identifies positive COVID-19 cases through their COVID-19 Phenotype Inclusion Criteria (Pfaff, 2022). 
Though this did not factor into our analysis, another feature of the N3C data is a 1:2 case to control ratio of patients 
with identifies lab-confirmed, suspected, and possible cases of COVID-19 to patients who have been screen and 
tested negative for COVID-19.  In addition, we linked patient ids from the Patient Severity and Scores dataset with 
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within the N3C data enclave and new records being added. Our analysis used the Patient Severity and 150 

Scores dataset version 70 which was released on March 19, 2022. Thus, all patients in our analysis were 151 

diagnosed on or before March 19, 2022. Therefore, our results did not capture recent changes in the 152 

COVID-19 pandemic including the rise in the prevalence of the omicron variant, vaccination, and vaccine 153 

booster doses. 154 

For our analysis, we started with  13,151,716 patients from the Patient Severity and Scores database and 155 

filtered down to the patients with lab confirmed positive cases (3,724,542 patients). Finally, we selected 156 

the patients who had conditions occurrences within the 6 months preceding and proceeding diagnosis of 157 

COVID-19,2 whose COVID-19 visit start date was between September 1, 2020, and September 1, 2021, 158 

and who did not die from COVID-19. This provided us with our final analytic sample of 1,234,119 159 

patients.  160 

We selected covariates based on our literature review of covariates other researchers found were related 161 

to long COVID symptoms (Tsampasian et al., 2023). We identified the following covariates using the 162 

Patient Severity and Scores dataset: age, sex, race, ethnicity, and current or former smoking status. We 163 

categorized the patient’s age at diagnosis into 9 categories (0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 164 

70-79, and 80+ years old) for patients missing age, we imputed age as the median age 41.2 which 165 

translates to the age category 40-49. We categorized sex as male, female, or other. Race was defined as 166 

White, Black or African American, Asian, Native Hawaiian or Other Pacific Islander, Other, and 167 

Missing/Unknown. Ethnicity was defined as Hispanic or Latino, Not Hispanic or Latino, and Ethnicity 168 

Missing or Unknown.  169 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

two additional datasets provided in N3C, the condition occurrence dataset (Release-v70-2022-03-19) and the drug 
exposures dataset (Release-v70-2022-03-19) to provide additional longitudinal information about the patients in the 
database. These condition occurrence dataset records diagnosis, signs, and symptoms of conditions and drug 
exposure dataset records introduction of drugs into the body of the patient overtime (Observational Health Data 
Sciences and Informatics, 2018). 
2 For selecting the patients how has conditions occurrences within 6 months preceding and proceeding diagnosis, we 
used the condition occurrence dataset (Release-v70-2022-03-19)  
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In addition, we identified the following covariates using the OMOP code set ids in the condition 170 

occurrence and drug exposure datasets for the dates prior to the covid diagnosis: COVID-19 vaccination, 171 

pregnancy, hypertension, obesity, immunocompromised, and Charlson Comorbidity Index (CCI) score 172 

(Glasheen et al., 2019). For each patient, if the OMOP codes for the comorbidity’s hypertension, obesity, 173 

immunocompromised, or CCI score appear in the condition occurrence data before the COVID-19 174 

diagnosis, then we categorized the patient as having the respective comorbidity. We considered a patient 175 

vaccinated if a patient received one or more doses of a Pfizer, Moderna, or Johnson and Johnson vaccine 176 

before diagnosis of COVID-19 as recorded in the drug exposure dataset. We considered a patient 177 

pregnant if the condition start date was within a year of COVID-19 diagnosis. See Appendix A1 for full 178 

list of the OMOP codes we used to create the covariates. 179 

Our sample was 56% (n = 692,547) female, 68% (n = 1,031,221) White, 2% (n = 25,083) received at least 180 

one dose of a COVID-19 vaccine, 22% (n = 27,3255) were 60 years old or older, see Table 1 for 181 

additional attributes of the analytic sample.  182 

Several limitations exist in our data. First, the observed conditions dataset only recorded diagnoses, signs, 183 

or symptoms of a condition either observed by a provider or reported by the patient (Blacketer, 2021). 184 

This limitation might have affected the makeup of the sample through: 1) underreporting conditions 185 

because patients might have had conditions treated at another facility not sharing data with N3C, 2) 186 

excluding the healthiest patients because they did not have any reported conditions in the six months 187 

before and after the COVID-19 diagnosis. The vaccination status had a similar limitation where 188 

vaccination data was reported by clinics, pharmacies, or patients (Blacketer, 2021). Due to this limitation, 189 

our sample may have underestimated the vaccination rates if patients received vaccinations at a facility 190 

not sharing data with N3C. The low vaccination rates in our data might have led to a weaker relationship 191 

between vaccination and long COVID symptoms in our findings. Due to our concerns with the 192 

vaccination variable, we choose not to include vaccination in our modeling. 193 
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4. Summary statistics for Cognitive, Fatigue, and Respiratory variations of Long COVID 194 

We examined long COVID by three symptom clusters -- cognitive, fatigue, and respiratory -- as defined 195 

by the Global Burden of Disease Long COVID Collaborators (Global Burden of Disease Long COVID 196 

Collaborators, 2022). We classified patients as being positive for the individual symptom clusters if the 197 

patients had a qualifying symptom present between 3 to 6 months after having a lab confirmed case of 198 

COVID-19 and that symptom was not reported in the 6 months preceding their lab confirmed case of 199 

COVID-19. For a full list of the symptoms and OMOP codes we used as qualifying cognitive, fatigue, 200 

and respiratory long COVID symptoms, see Appendix A2, A3, and A4 respectively. Then we focused our 201 

analysis on the three separate symptom clusters and predicted the risk of a patient having had each 202 

symptom cluster of long COVID systems.  203 

The fatigue long COVID symptom cluster was the most common in our sample with 4.7% (n = 57,483) of 204 

all patients, followed by respiratory cluster with 2.5% (n = 30,668) of our sample, and the cognitive 205 

symptom cluster with only 0.2% (n = 2,937) of the sample (Table 1). In general, for all three symptom 206 

clusters, there was an age gradient where patients in younger age groups have lower rates of symptom 207 

clusters than patients in older groups. Female patients had higher rates (5.7%) of the fatigue symptom 208 

cluster than male patients (3.3%) and there was no difference in rates between the sexes for the cognitive 209 

symptom clusters (female = 0.3%; male = 0.2%) and respiratory (female = 2.6%; male = 2.3%). Black 210 

and White patients had higher prevalence than other race groups for all three symptom clusters. There 211 

was not a meaningful difference in prevalence by ethnicity. Patients who had cognitive, fatigue, and 212 

respiratory symptom clusters had higher average CCI scores than those who did not experience said 213 

symptom clusters. The highest average CCI scores were patients who had cognitive cluster symptoms 214 

(mean = 2.7), compared to fatigue (mean = 1.4) and respiratory (mean = 1.4) symptom clusters. For other 215 

variables we did not observe large differences between groups. 216 
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5. Predictive model for long COVID outcomes 217 

Model training methods 218 

We trained two types of machine learning models (a binary logistic regression model and a binary random 219 

forest model) on all three long COVID clusters separately: respiratory, fatigue, and cognitive. We used a 220 

70-30 train-test split, resulting in 863,883 training observations and 370,236 test observations. To 221 

accommodate for long COVID being a rare outcome in all three of our clusters, we trained all models on 222 

down sampled data and tested them on the original, unbalanced data. To create the down sampled training 223 

data, we took five bootstrapped samples with replacement. Each bootstrapped sample had an equal 224 

number of positive and negative cases, which was also equal to the total number of positive cases in the 225 

original training data.  226 

Model performance 227 

The random forest model outperformed the logistic regression model at predicting the respiratory and 228 

cognitive clusters, but the logistic regression model slightly outperformed the random forest model at 229 

predicting the fatigue outcome (Table 2). In all six models, the AUC remained fairly consistent between 230 

the train and test data, but the model precision (a measure of how often a model’s positive predictions are 231 

correct) dropped quite dramatically between the train and test data. This could be because long COVID 232 

was a rare outcome, or that there is low signal in the data.  233 

Covariates 234 

To measure feature importance, we considered coefficient values for the binary logistic regression models 235 

and impurity-based variable importance scores for the random forest models (Tables 3 and 4). Among our 236 

six models, there were some variations in which covariates were most predictive. The CCI score was the 237 

most important feature in all three clusters for the random forest models. However, for the binary logistic 238 

regression models, all three clusters had different most important features (Table 3). For the respiratory 239 

cluster, the two most important features are belonging to the 0 – 9 age group and being a current or 240 

former smoker. For the fatigue cluster, the two most important features are belonging to the 0 – 9 age 241 
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group and being male. Finally, for the cognitive cluster, the two most important features are being 80 242 

years old or older and belonging to the 70 – 79 age group. 243 

Comparisons with other long COVID predictive models 244 

One challenge in comparing models is that there is not a consistent definition of long COVID that is 245 

universally accepted. The two papers described below offer two alternative definitions of long COVID.  246 

One study also uses data from N3C to predict outcomes of long COVID. The authors consider visiting a 247 

long COVID clinic as an indicator that a patient has long COVID (Pfaff, 2022). This is a narrower 248 

definition of long COVID than our definition in this study. Their XGBoost model results in an AUC of 249 

0.92 for all patients in their sample, 0.90 for hospitalized patients, and 0.85 for non-hospitalized patients. 250 

The simplicity of their measure could explain why their results are better than the results from our 251 

models. However, there are also drawbacks to defining long COVID as a visit to a long COVID clinic. a 252 

long COVID clinic is a very specific type of care and someone’s long COVID symptoms have to be 253 

pretty severe to be referred to a long COVID clinic. Thus, the Pfaff definition undercounts the number of 254 

patients with long COVID especially patients with more mild symptoms of long COVID. 255 

Another study used age, sex, and the number of symptoms a patient experienced in the first week of 256 

infection to classify duration of COVID-19 as either short (less than 10 days) or long (28 days or more, 257 

which is shorter than the WHO recommendation) using k-means clustering (Sudre et al., 2021). The 258 

authors analyzed self-reported data from 4,182 cases of COVID-19 through the COVID Symptom Study 259 

app and used a random forest model and a logistic regression model to predict long COVID, as defined by 260 

having symptoms for 28 days or longer. The random forest model, which included first week symptoms 261 

and other comorbidities, performed moderately well with an AUC of 0.768. The logistic regression model 262 

was much simpler and included only age, sex, and number of symptoms in the first week, with an AUC of 263 

0.767. One key difference between Sudre et al and our model is that Sudre et al included the number of 264 

symptoms in the first week which is likely a proxy for identify which patients had more severe initial 265 

COVID infections, whereas our model had limited variables representing the severity of initial infection. 266 
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6. Apply the fair machine learning framework to the long COVID predictive models 267 

Timely risk assessment of long COVID outcomes can improve patient care and healthcare resource 268 

allocation. However, disparities across different sex, race/ethnicity, and social economic status in 269 

COVID-19 patient outcomes have been well-documented(Kharroubi & Diab-El-Harake, 2022; Webb 270 

Hooper et al., 2020). For example, while males have high risks for severe COVID outcomes such as death 271 

and ICU admission, females have been reported in the literature to have higher risks for long COVID 272 

(Cohen & van der Meulen Rodgers, 2023). In addition, compared to white patients, patients from 273 

racial/ethnic minority groups had significantly different odds of developing long COVID symptoms and 274 

conditions (Khullar et al., 2023).  It is important to carefully examine model fairness across different 275 

population subgroups to achieve optimal and fair clinical decision-making.  276 

We plan to confirm our models achieve similar performances across different sex/race/ethnicity groups by 277 

calculating the performance score using AUROC, F1 score, precision, recall, sensitivity, and specificity 278 

for males/females, different race groups including White, Black or African American, Asian, Native 279 

Hawaiian or Pacific Islander, and Other or Missing/Unknown, and different ethnicity (Hispanic and non-280 

Hispanic) groups. This will allow us to detect if there is any bias in model performance. In addition to 281 

model performance, other fairness metrics will also be evaluated since the outcome (diagnoses codes in 282 

EHR) is not considered “ground truth”. We will also evaluate predictive equality, equal opportunity, and 283 

statistical parity of the model predictions. 284 

If we detect disparity in fairness metrics, we plan to address it using various techniques including 285 

disparate impact remover (a preprocessing technique that edits input values to increase fairness between 286 

groups), reweighting (producing weights for each subgroup for each outcome class to achieve statistical 287 

parity), and resampling (oversampling or under-sampling to achieve statistical parity). We will compare 288 

the effects of different mitigation techniques and discuss their impact on the balance between model 289 

performance and fairness metrics. The method maximizing model predictive performance may be 290 

different from the method achieving the highest fairness metrics. We will discuss the trade-off between 291 
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model performance and fairness in the context of using real-world EHR data to develop predictive models 292 

for long COVID. 293 

Conclusion 294 

Overarching takeaways regarding model performance  295 

In this study, we explored the feasibility to train a predictive model to provide insights into the risk 296 

factors for long COVID. We leveraged a diverse and harmonized electronic health record data source and 297 

applied minimum filters to build a model with high potential to be applied to general population. After 298 

using techniques to handle unbalanced sample, our predictive models achieved moderate performance 299 

accuracy (AUC 0.599 – 0.730 for the random forest models, AUC 0.602 – 0.734 for the logistic 300 

regression models). It was interesting to observe that logistic regression models have comparable 301 

performance to random forest models, potentially because we included relatively limited number of 302 

predictors that are easy to acquire. Other predictive models developed in the past had stronger 303 

performances but they either leveraged clinical factors that can be hard to acquire such as blood oxygen, 304 

blood pH (Bennett et al., 2021), or they limited the population to a small and relatively homogenous 305 

groups of people, such as users of the COVID Symptom Study app or patients visiting a long COVID 306 

clinic (Pfaff, 2022; Sudre et al., 2021). 307 

Comparison with 19&Me severe COVID risk model  308 

Previously we leveraged the same data source (N3C) and machine learning models to build a predictive 309 

model for severe COVID-19 outcomes.  Severe COVID-19 outcome is defined as having a score of 6 or 310 

above using the Clinical Progression Scale (CPS) established by the World Health Organization for 311 

COVID-19 clinical research (Marshall et al., 2020).  In a sample of 864,8080 COVID-19 positive 312 

patients, 15,401 (1.75%) has this outcome.  Many risk factors are related to elevated COVID-19 risk, and 313 

others have published machine learning models that achieve high predictive performance (AUROC = 314 

0.87) using a long list of predictors including demographics (age/sex/race), health conditions 315 

(comorbidities) and clinical characteristics (blood pH, respiratory rate,  oxygen saturation…). We limit 316 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.02.08.24302528doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302528


White Paper: Can longitudinal electronic health record data identify patients at higher risk of developing long COVID?  

DRAFT 05/31/24 Mathematica® Inc. 14 

the predictors to those easily accessible in the 19andMe app (age/sex/race/comorbidities/smoking 317 

status/vaccination status). Since the outcome is highly unbalanced, we used down sampling and up 318 

weighting to handle the sample unbalance. We experimented with different modeling techniques such as 319 

random forest and logistic regression, with and without the downsampling techniques. The best 320 

performing model was the logistic regression with downsampled data (Table 2).  321 

Implications for future work: learnings on N3C data 322 

The N3C is a nationally representative, harmonized data resource that we can leverage for COVID-19 323 

research, among other data sources that our team already have experience with. In addition to the data 324 

tables that we explored in the current work, several other data tables such as visitation occurrence can be 325 

potentially useful for future similar work. In our current work, we can only create a flag variable for 326 

whether or not the patient has certain symptoms, without the ability to rate its severity. Information in the 327 

visitation occurrence table can be helpful because it has visit start and end date, which can then be used to 328 

characterize the severity of the condition. This can be a future area of modeling enhancement. 329 

Machine learning models have utilities in building predictive models for both severe COVID outcomes 330 

and long COVID. The severe COVID model had better performance, partially because of a clear 331 

definition of severe COVID and relative follow-up period.  The model building process could benefit 332 

from close collaborations between data scientists, health service researchers and clinicians. The models 333 

developed in this study may be valuable to both payers to improve their understanding of the risks of their 334 

insured population, and to public health officials to better plan for the resources needed to improve 335 

population health in the aftermaths of COVID-19 pandemic.336 
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Tables 588 

Table 1: Analytic Sample 589 

 Cognitive Symptom Cluster Fatigue Symptom Cluster Respiratory Symptom Cluster 

 Positive N (%) Negative N (%) Positive N (%) Negative N (%) Positive N (%) Negative N (%) 

Total 2,937 (0.2%) 1,231,182 (99.8%) 57,483 (4.7%) 1,176,636 (95.3%) 30,668 (2.5%) 1,203,451 (97.5%) 
Age 60.1 (SD: 17.22) 41.4 (SD: 20.72) 44.1 (SD: 19.2) 41.3 (SD: 20.8) 47.0 (SD: 22) 41.3 (SD: 20.68) 

Age group: 
  

    

0-9 < 20 ‡ 79,370 ¶ 1,217 (1.5%) 78,161 (98.5%) 2,383 (3%) 76,995 (97%) 

10-19 < 45 ‡ 125,311 ¶ 4,841 (3.9%) 120,516 (96.1%) 1,754 (1.4%) 123,603 (98.6%) 

20-29 115 (0.1%) 184,951 (99.9%) 8,904 (4.8%) 176,162 (95.2%) 2,873 (1.6%) 182,193 (98.4%) 

30-39 179 (0.1%) 188,841 (99.9%) 9,583 (5.1%) 179,437 (94.9%) 3,409 (1.8%) 185,611 (98.2%) 

40-49 451 (0.2%) 194,235 (99.8%) 10,029 (5.2%) 184,657 (94.8%) 4,561 (2.3%) 190,125 (97.7%) 

50-59 474 (0.3%) 186,883 (99.7%) 9,173 (4.9%) 178,184 (95.1%) 5,407 (2.9%) 181,950 (97.1%) 

60-69 623 (0.4%) 150,740 (99.6%) 7,393 (4.9%) 143,970 (95.1%) 5,297 (3.5%) 146,066 (96.5%) 

70-79 681 (0.8%) 87,738 (99.2%) 4,597 (5.2%) 83,822 (94.8%) 3,665 (4.1%) 84,754 (95.9%) 

80+ 363 (1.1%) 33,110 (98.9%) 1,746 (5.2%) 31,727 (94.8%) 1,319 (3.9%) 32,154 (96.1%) 

Sex:       

Female 1,751 (0.3%) 690,796 (99.7%) 39,362 (5.7%) 653,185 (94.3%) 18,164 (2.6%) 674,383 (97.4%) 

Male 1,186 (0.2%) 540,035 (99.8%) 18,111‡ (3.3%) 523,112 (96.7%) 12,501‡ (2.3%) 528,718 (97.7%) 

Other 0 (0%) 351 (100%) < 20 ‡ 337 ¶ < 20 ‡ 352 ¶ 

Race:       

White 2,163 (0.3%) 845,108 (99.7%) 41,449 (4.9%) 805,822 (95.1%) 21,293 (2.5%) 825,978 (97.5%) 

Black or African American 412 (0.2%) 172,825 (99.8%) 8,068 (4.7%) 165,169 (95.3%) 5,186 (3%) 168,051 (97%) 

Asian 56 (0.2%) 25,719 (99.8%) 929 (3.6%) 24,846 (96.4%) 619 (2.4%) 25,156 (97.6%) 

Native Hawaiian or Pacific 
Islander 

< 20 ‡ 1,866 ¶  61 (3.3%) 1,805 (96.7%) 38 (2%) 1,828 (98%) 

Other < 20 ‡ 10,393 ¶  470 (4.5%) 9,937 (95.5%) 286 (2.7%) 10,121 (97.3%) 

Missing/Unknown 289 (0.2%) 175,274 (99.8%) 6,506 (3.7%) 169,057 (96.3%) 3,246 (1.8%) 172,317 (98.2%) 
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Ethnicity:       

Hispanic or Latino 295 (0.2%) 167,080 (99.8%) 7,691 (4.6%) 159,684 (95.4%) 3,664 (2.2%) 163,711 (97.8%) 

Not Hispanic or Latino 2,408 (0.3%) 946,774 (99.7%) 45,876 (4.8%) 903,306 (95.2%) 24,966 (2.6%) 924,216 (97.4%) 

Ethnicity Missing or Unknown 234 (0.2%) 117,328 (99.8%) 3,916 (3.3%) 113,646 (96.7%) 2,038 (1.7%) 115,524 (98.3%) 

COVID-19 vaccination:       

Yes 84 (0.3%) 24,999 (99.7%) 1,034 (4.1%) 24,049 (95.9%) 569 (2.3%) 24,514 (97.7%) 

No 2,853 (0.2%) 1,206,183 (99.8%) 56,449 (4.7%) 1,152,587 (95.3%) 30,099 (2.5%) 1,178,937 (97.5%) 

Smoking status:       

Current or former smoker 529 (0.4%) 146,835 (99.6%) 9,472 (6.4%) 137,892 (93.6%) 5,486 (3.7%) 141,878 (96.3%) 

Non-smoker 2,408 (0.2%) 1,084,347 (99.8%) 48,011 (4.4%) 1,038,744 (95.6%) 25,182 (2.3%) 1,061,573 (97.7%) 

Hypertension 29 (0.7%) 4,101 (99.3%) 329 (8.0%) 3,801 (92.0%) 172 (4.2%) 3,958 (95.8%) 

Obesity 590 (0.5%) 115,173 (99.5%) 9,581 (8.3%) 106,182 (91.7%) 5,281 (4.6%) 110,482 (95.4%) 

Immunocompromised < 20 ‡ 138  ¶ < 20 ‡ 129 ¶ < 20 ‡ 128 ¶ 

Pregnant < 20 ‡ 2,488  ¶ 216 (8.7%) 2,276 (91.3%) 56 (2.2%) 2,436 (97.8%) 

CCI Score 2.7 (SD: 3.11) 0.8 (SD: 1.73) 1.4 (SD: 2.35) 0.7 (SD: 1.7) 1.6 (SD: 2.51) 0.7 (SD: 1.71) 

‡ To comply with N3C policy, counts below 20 are displayed as < 20, and in this case, additional values must be skewed by up to 5 to render it 590 
impossible to back-calculate precise counts fewer than 20 for the following categories: Age Group 0-9, Sex Other, Native Hawaiian or Pacific 591 
Islander, Race Other, and Pregnant. 592 

¶ This proportion is one of the two columns that sum up to one. Reporting it would enable the calculation of a cell size < 20. Therefore we mark it 593 
as too small to quantitatively report. 594 

Abbreviations: SD: standard deviation; CCI: Charlson Comorbidity Index595 
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Table 2: Model Performance Results 596 

Long COVID Outcome Model Type Performance Metric Train Sample Test Sample 

Respiratory Logistic AUC 0.616 0.617 

F1 0.596 0.077 

Accuracy 0.616 0.660 

Precision 0.628 0.041 

Sensitivity 0.568 0.572 

Specificity 0.664 0.662 

Random Forest AUC 0.625 0.624 

F1 0.601 0.081 

Accuracy 0.625 0.679 

Precision 0.642 0.043 

Sensitivity 0.565 0.566 

Specificity 0.685 0.682 

Fatigue Logistic AUC 0.604 0.602 

F1 0.607 0.123 

Accuracy 0.604 0.594 

Precision 0.602 0.068 

Sensitivity 0.613 0.611 

Specificity 0.594 0.593 

Random Forest AUC 0.603 0.599 

F1 0.578 0.127 

Accuracy 0.603 0.656 

Precision 0.617 0.072 

Sensitivity 0.545 0.537 

Specificity 0.662 0.661 

Cognitive Logistic AUC 0.723 0.734 

F1 0.717 0.013 

Accuracy 0.723 0.743 

Precision 0.734 0.007 

Sensitivity 0.702 0.725 

Specificity 0.745 0.743 

Random Forest AUC 0.732 0.730 

F1 0.732 0.013 

Accuracy 0.732 0.723 

Precision 0.732 0.006 

Sensitivity 0.732 0.737 

Specificity 0.731 0.723 

Abbreviations: AUC: Area under the curve597 
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Table 3: Coefficient Values for the Binary Logistic Regression Models 598 

Coefficient Cognitive Fatigue Respiratory 

Age 0-9 -1.367 -1.070 0.651 

10-19 -0.988 -0.178 -0.167 

20-29 -0.331 0.002 -0.085 

30-39 Reference Reference Reference 

40-49 0.663 -0.057 0.166 

50-59 0.781 -0.110 0.351 

60-69 0.945 -0.241 0.472 

70-79 1.598 -0.288 0.522 

80+ 1.892 -0.287 0.504 

Sex Female Reference Reference Reference 

Male -0.211 -0.539 -0.176 

Other -0.117 -0.147 -0.196 

Race White Reference Reference Reference 

Black or African 
American 

-0.054 -0.178 0.084 

Asian -0.064 -0.274 0.019 

Native Hawaiian or 
Pacific Islander 

-0.430 -0.462 -0.248 

Other -0.454 0.111 0.052 

Missing/Unknown -0.254 -0.263 -0.277 

Ethnicity Not Hispanic or Latino Reference Reference Reference 

Hispanic or Latino 0.084 0.063 0.016 

Ethnicity Missing or 
Unknown 

-0.006 -0.215 -0.234 

COVID-19 vaccination No Reference Reference Reference 

Yes -0.397 -0.406 -0.338 

Smoking status: Non-smoker Reference Reference Reference 

Current or Former 
smoker 

0.345 0.316 0.386 

Hypertension No Reference Reference Reference 

Yes 0.298 0.130 -0.012 

Obesity No Reference Reference Reference 

Yes 0.431 0.429 0.413 

Immunocompromised No Reference Reference Reference 

Yes 0.214 -0.056 0.092 

Pregnant No Reference Reference Reference 

Yes 0.293 0.286 -0.076 

CCI Score  0.237 0.160 0.166 

Abbreviations: CCI: Charlson Comorbidity Index 599 
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Table 4: Impurity-Based Variable Importance Scores for the Random Forest Models 600 

Variable Importance Score Cognitive Fatigue Respiratory 

Age 0-9 0.057 0.124 0.014 

10-19 0.092 0.008 0.061 

20-29 0.064 0.006 0.060 

30-39 Reference Reference Reference 

40-49 0.003 0.003 0.003 

50-59 0.007 0.002 0.005 

60-69 0.019 0.002 0.033 

70-79 0.124 0.003 0.044 

80+ 0.078 0.002 0.012 

Sex Female Reference Reference Reference 

Male 0.007 0.214 0.008 

Other 0.000 0.000 0.000 

Race White Reference Reference Reference 

Black or African 
American 

0.004 0.003 0.007 

Asian 0.003 0.003 0.001 

Native Hawaiian or 
Pacific Islander 

0.000 0.001 0.001 

Other 0.002 0.001 0.001 

Missing/Unknown 0.010 0.023 0.031 

Ethnicity Not Hispanic or Latino Reference Reference Reference 

Hispanic or Latino 0.006 0.004 0.004 

Ethnicity Missing or 
Unknown 

0.005 0.027 0.019 

COVID-19 vaccination No Reference Reference Reference 

Yes 0.003 0.003 0.003 

Smoking status: Non-smoker Reference Reference Reference 

Current or Former 
smoker 

0.018 0.048 0.061 

Hypertension No Reference Reference Reference 

Yes 0.003 0.002 0.002 

Obesity No Reference Reference Reference 

Yes 0.045 0.128 0.122 

Immunocompromised No Reference Reference Reference 

Yes 0.000 0.000 0.000 

Pregnant No Reference Reference Reference 

Yes 0.001 0.001 0.001 

CCI Score  0.445 0.394 0.507 

Abbreviations: CCI: Charlson Comorbidity Index  601 
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