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Abstract17

Influenza A has two main clades, with stronger cross-immunity to reinfection within than be-18

tween clades. Here, we explore the implications of this heterogeneity for proposed cross-protective19

influenza vaccines that may offer broad, but not universal, protection. While the development20

goal for the breadth of human influenza A vaccine is to provide cross-clade protection, vaccines in21

current development stages may provide better protection against target clades than non-target22

clades. To evaluate vaccine formulation and strategies, we propose a novel perspective: a vaccine23

population-level target product profile (PTPP). Under this perspective, we use dynamical mod-24

els to quantify the epidemiological impacts of future influenza A vaccines as a function of their25

properties. Our results show that the interplay of natural and vaccine-induced immunity could26

strongly affect seasonal clade dynamics. A broadly protective bivalent vaccine could lower the27

incidence of both clades and achieve elimination with sufficient vaccination coverage. However,28

a univalent vaccine at low vaccination rates could permit a resurgence of the non-target clade29

when the vaccine provides weaker immunity than natural infection. Moreover, as a proxy for30

pandemic simulation, we analyze the invasion of a variant that evades natural immunity. We find31

that a future vaccine providing sufficiently broad and long-lived cross-clade protection at a suffi-32

ciently high vaccination rate, could prevent pandemic emergence and lower the pandemic burden.33

This study highlights that as well as effectiveness, breadth and duration should be considered in34

epidemiologically informed TPPs for future human influenza A vaccines.35
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1 Introduction37

Seasonal epidemics and occasional pandemics of human influenza A viruses cause substantial public38

health burden. Although vaccination is an important approach to mitigate this burden [3], current39

influenza A vaccines have significant limitations. First, they need to be evaluated annually for updates,40

due to the rapid turnover of antigenic variants. Second, existing vaccines can have low efficacy and41

narrow specificity (therefore cannot pre-emptively target potential pandemic influenza variants [14,42

24, 15]). In addition, the frequent update of current vaccines may worsen vaccine hesitancy of43

individuals and increase the economic burden of vaccine purchases [2]. To tackle this challenge, there44

have been great efforts to develop a new generation of broadly-protective influenza vaccines [16, 22,45

17, 1, 15]. However, there remain challenges in establishing broad protection. For example, a vaccine46

that targets one clade (e.g., clade 1) of human influenza A by raising stem-targeted antibodies might47

provide limited cross-protection to the other clade (e.g., clade 2) [17]. Widespread use of such a48

vaccine could have complex effects on influenza epidemiology where both clade 1 and 2 are already49

endemic, in ways that are not yet fully understood.50

Here we construct a compartmental model to quantify vaccine impacts on seasonal influenza dy-51

namics and potential pandemic invasions. The model incorporates host immunological history and52

clade co-existence. We model cross-clade interactions using H1N1 and H3N2 as respective represen-53

tatives of H1 and H3 clades, choosing model parameters to match the broad behaviour of human54

influenza A in the USA in recent seasons. We assume the vaccine provides clade-level protection, i.e.,55

strong cross-protection within one clade of influenza A but weaker cross-protection between clades.56

We focus on the impact of vaccinal immunity strength and duration on 1) seasonal strain dynamics57

of endemic infections and 2) immune escape at inter- and intra-clade levels, mimicking pandemic58

emergence. We can frame these variables by extending the standard notion of the Target Product59

Profile (TPP), which typically focuses on vaccine benefits to the individual, such as effectiveness.60

Although the TPP is an essential tool, we argue that its value for future influenza vaccines could61

be strengthened by considering the population-level processes (beyond vaccine effectiveness) more62

explicitly.63

2 Methods64

2.1 Mathematical model65

When modelling human influenza strain dynamics, incorporating sufficient antigenic variation comes66

at the cost of complex host immune history. History-based models [27] take the host view, to track host67

infection history by different strains without including large variations in antigenicity. In contrast,68

while not including host immune history, status-based models [12] take the pathogen view, to track69

their impacts on hosts’ future infections by all other strains. To balance the complexity of antigenic70

variation and host immune history, we focus on the clade level of the influenza A virus phenotype71

and include relevant host immune history. We use i = 1 and i = 2 to represent the ’H1’ and72
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’H3’ clades, respectively. We construct our model (Figure 1), based on a previous 2-strain SIRS73

model on pertussis [19, 20] that incorporates host immune history. Our model allows immunity to74

reduce susceptibility against subsequent infections, and we refer to the proportional reduction in75

susceptibility as the strength of cross-immunity (using θ for infection-induced immunity, and τ for76

vaccine-induced immunity).77

Hosts acquire immunity either via natural infection or vaccination. In the example of H1, we78

define transmission rate as β1. Following natural infection, strain-transcending immunity is induced79

first, i.e., short-term immunity against all clades, which can potentially shape the genetic diversity80

of seasonal human influenza [10]. This immunity wanes at rate σT . After it wanes, the host can get81

infected by another clade with reduced susceptibility (β2(1− θ1)); or immunity can further wane (at82

rate σ1), making the host fully susceptible to infections from both clades. After the host is infected83

with both clades, they are fully protected against all infections until immunity wanes. This immunity84

can wane (at rate σ2), making the host susceptible to the second clade again.85

Hosts acquire vaccinal immunity via vaccination at rate ρ. This immunity wanes at rate σV . We86

assume that vaccinal immunity can further enhance infection-induced immunity, and the resulting87

cross-immunity is modelled as a product of infection and vaccinal immunity. For example, a host88

recovered from H1 primary infection who is vaccinated has reduced susceptibility against H3 of89

β2(1− θ1)(1− τ1). We ignore the vaccine’s boosting effect on homotypic immunity when the host has90

already acquired ’perfect’ immunity (100% susceptibility reduction) against the clade via infection.91

Regarding vaccine breadth, we model the following three vaccine scenarios:92

• Bivalent vaccine. The vaccine reduces susceptibility against both clades proportionally by τ1 and93

τ2, respectively. The duration of vaccinal immunity is 1
σV

. The vaccination rate is ρ1 = ρ2 = ρ.94

A bivalent vaccine is the ultimate goal of broadly-protective vaccine development; however,95

during initial development stages, it is likely that the vaccines would be univalent [17]:96

• Univalent H1 vaccine. The vaccine fully reduces susceptibility against H1 clade (τ2 = 1) and97

partially against H3 clade (τ1 < 1). The duration of the immunity is 1
σV

= 1
σV1

; the vaccination98

rate is ρ = ρ1.99

• Univalent H3 vaccine. The vaccine fully reduces susceptibility against H3 clade (τ1 = 1) and100

partially against H1 clade (τ2 < 1). The duration of the immunity is 1
σV

= 1
σV2

. The vaccination101

rate is ρ = ρ2.102

In each scenario, the strength and duration of the vaccinal immunity is same as that of infection-103

induced immunity (k1 =
τ1,2
θ1,2

= 1, k2 =
σ1,2

σV1,2
= 1). In further analysis, we vary k1 or k2 to be 0.5 or104

2 to explore the vaccine’s impacts on seasonal epidemics (Figure 2 and 3).105

In addition, our model is seasonally forced because seasonality is a frequent characteristic of non-106

pandemic human influenza incidence [6]. The transmission rate β1(t) and β2(t) is determined by a107

standard sinusoidal function [9, 7]:108

βi(t) = R
(i)
0 (γi + µ)(1 + a cos(2πt)) (1)
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where i = 1, 2 represents H1 or H3 clade, R
(i)
0 is the basic reproductive number of the clade i, γ is109

the recovery rate, µ is the birth rate and a is amplitude of the sinusoidal forcing. All parameters in110

the model and the sources of their values are listed in Table S2.111

The model (Figure 1) is described by the ordinary differential equations in Supplementary ma-112

terials S1.2. We set the initial conditions by assuming a 0.1% prevalence for H1 and H3 infections113

separately (therefore 0.2% in total). We assume that the remaining 99.8% of the population is fully114

susceptible. We then run deterministic simulations by numerically integrating the model for 100 years115

at semiweekly time steps to allow the system to reach its endemic phase. Subsequent analyses are116

based on this endemic phase reached from the initial condition. Sensitivity tests show that different117

initial conditions would have negligible effect on our results (Figure S1 and S2).118

Figure 1: Model diagram. Births and deaths at rate µ per capita are not shown. The dashed lines show waning of immunity.

The solid lines show infection, vaccination, or recovery. Each squared compartment can have up to four equal-sized ’sub-

squares’ representing infection or immunity status. The left top sub-square represents primary infection; the right top is

secondary infection. The infection is either of H1 clade (pink) or H3 clade (blue). The bottom two sub-squares denote

strain-transcending immunity (yellow) and vaccinal immunity (green). Definitions of all compartments are in Table S1 and all

parameters in Table S2. The ordinary differential equations of the model are in Supplementary S1.2

2.2 Model calibration119

To ensure that the model captures subtype dynamics broadly consistent with that observed in temper-120

ate regions, we use influenza surveillance data during the 2004/2005-2018/2019 seasons in the USA.121
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We use data on subtypes H1N1 and H3N2 to represent H1 and H3 clades. We omit the pandemic122

period (2008-2009, 2009-2010 and 2010-2011 seasons), shown as grey area in Figure S3. In order123

to capture broad features of influenza A epidemiology in the USA, we match model simulations to124

summary statistics of human influenza A incidence rates in the USA (Figure S3) as listed below: the125

auto-correlation and coefficient of variation of subtype incidence and cross-correlation between sub-126

type incidence. Key transmission parameters (Table S2) are drawn from a previous human influenza127

disease-dynamic modeling study focusing on Hong Kong [26].128

The incidence rate (Figure S3) is estimated by combining influenza-like illness (ILI) surveillance129

data and laboratory-confirmed subtyping data as in the equation below, which is adapted from a130

previous study [8].131

Weekly incidence rate of subtype x = Outpatient ratio (Ratio of ILI patients among all hospital132

visits) * Ratio of influenza positive sample among all testings * Ratio of subtype x among all positive133

samples134

where x =H1N1 or H3N2, and we used the ILI surveillance data weighted by the state population.135

Outpatient illness surveillance data and viral surveillance data were downloaded from FluView (US136

Centers for Disease Control and Prevention, CDC [11]). Viral surveillance data were collected from137

the US World Health Organization (WHO) Collaborating Laboratories and National Respiratory and138

Enteric Virus Surveillance System (NREVSS) laboratories [23].139

Given the crudeness of the available data, we do not aim to capture detailed incidence in each140

season. Instead, we aim to match high-level patterns in the data, particularly in relation to the141

dominance patterns of the subtypes through time. We adjust values of three parameters: infection-142

induced cross-immunity strength (θ1 and θ2) and amplitude of sinusoidal seasonal forcing function143

(a) (to adjust the incidence). The incidence at each time step is calculated as the new infections144

with the focal clade regardless of the hosts’ immune statuses. The optimization metric is the sum145

of the absolute distance between simulation and data [11] of three summary statistics, including I)146

correlation between H1 and H3 seasonal incidence, II) coefficient of variation of H1 (and H3) seasonal147

incidence, III) auto-correlation of H1 (and H3) seasonal incidence. We run deterministic simulations148

by numerically integrating the model for 2000 years at semi-weekly time steps. We then calculated149

the statistics for every 12-year period (the first 800 years were removed as burn-in) and obtained a150

distribution of summary statistics. The optimization metric distribution across the parameter space151

(Figure S4) shows that when the seasonal forcing is weak, i.e., a = 0.04, the distances between152

simulation and data are the smallest, which is consistent with previous studies [9, 7]. For further153

analysis, we use the best parameter set θ1 = 0.8, θ2 = 0.5, a = 0.04 that gives the minimal distance154

across the parameter space (Figure S5). For sensitivity test, we choose a moderately-fit parameter set155

θ1 = 0.55, θ2 = 0.35, a = 0.04 that is more common across different a than other parameters (Figure156

S6). The results show that both parameter sets well match the dominance patterns of the subtypes157

in the data (Figure S7 and S8).158
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2.3 Invasion analysis of antigenic variants159

To test the impact of the strength and duration of vaccinal immunity on pandemic emergence, we160

model a scenario where the population is exposed to (for simplicity) only one clade and is vaccinated161

against this clade. We simulate the model for 600 years at semi-weekly time steps to reach the162

endemicity of this clade. Then, a pandemic variant that fully escapes natural immunity is introduced163

to the population. We explore a range of basic reproduction numbers of the pandemic variant (R
(1)
0 )164

holding the endemic strain’s R
(2)
0 at 1.6, where i) R

(1)
0 = 1, ii) 1 < R

(1)
0 < R

(2)
0 , iii) R

(1)
0 = R

(2)
0 , and165

iv) R
(1)
0 = 2R

(2)
0 . To test the vaccine impact, we vary the vaccination rate from 0 to 2% per week,166

the susceptibility reduction of the vaccine against the pandemic variant from 0 to 100% and vaccine167

immunity duration from 0.5, 1, 2, 4, 8 to 16 years. Using species invasion analysis similar to a previous168

study [20], we analyze the growth rate of the pandemic variant in the population as shown in the169

equation S7 (See Supplementary materials S1.3). We then numerically integrate the equations S1 to170

obtain deterministic dynamics of the system following the introduction of the pandemic variant with171

an incidence of one-millionth of the population size. The pandemic variant approximately follows172

exponential growth at the initial stage of invasion; therefore, we quantify the initial growth rate as173

the difference between the logarithm of the pandemic variant’s incidence on the third day and that on174

the second day, divided by the time difference (1 day). To quantify the persistence of the pandemic175

variant, we use trough depth, i.e., the minimal incidence of the pandemic variant after its initial peak.176

3 Results177

3.1 Impacts on seasonal epidemics of vaccinal immunity breadth, strength178

and duration179

For each vaccinal immunity breadth scenario (see Methods), we explore a range of different strengths180

(Figure 2) and durations of vaccine-induced cross-protection (Figure 3) relative to infection-induced181

immunity. The robustness of the results is confirmed using not only the best-fitting parameters set,182

but also alternative, moderately-fitting parameter sets (Figure S9 and S10).183

A bivalent vaccine (top row in Figure 2 and 3) would eliminate both clades without the potential184

of an incidence increase. The vaccination rates required to eliminate H1 and H3 are lower when the185

vaccinal immunity is stronger or longer. Due to higher R0, the H3 clade requires a higher vaccination186

rate to eliminate. When the vaccine targets one clade (either H1 or H3 clade, bottom two rows in187

Figure 2), providing the same or weaker immunity than natural infection (the left and middle columns188

in Figure 2), low vaccination rates could lead to an increase in the incidence of the non-target clade.189

The peak of the incidence occurs at the vaccination rate that eliminates the target clade. In contrast,190

when the vaccine-induced cross-immunity is stronger than natural immunity, the incidence of the191

off-target clade always decreases with the vaccination rate (the right column in Figure 2). The reason192

for this contrast lies in the interplay of natural and vaccinal cross-immunity:193

• When the vaccination rate is 0, the cross-immunity is completely infection-induced.194
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• Before the target clade is eliminated, the cross-immunity comprises vaccinal and natural immu-195

nity that is stronger than vaccinal immunity alone.196

• When the target clade is eliminated, the cross-immunity against the non-target clade is com-197

pletely vaccine-induced.198

Therefore, depending on the relative strength of vaccinal and natural immunity, the combined strength199

of vaccinal and natural cross-immunity becomes either stronger or weaker with the increase in vacci-200

nation rate.201

Similarly, when the strength of vaccinal immunity is the same as infection-induced immunity, the202

H1 or H3 vaccine could eliminate the target clade at a low vaccination rate (bottom two rows in Figure203

3). However, the incidence of the non-target clade could increase slightly at low vaccination rates. The204

shorter the duration of vaccine immunity compared to the infection immunity, the higher the minimum205

vaccination rate required to prevent any incidence increase of non-target clade. Additionally, when206

vaccine-induced immunity duration is twice as long as infection-induced immunity, the vaccination207

rate required for eliminating one clade and reaching the incidence plateau of the other clade is208

correspondingly reduced to 50% (Figure 3).209

3.2 Impacts on pandemic emergence and persistence of vaccinal immunity210

breadth, strength and duration211

How might vaccinal cross-immunity strength and duration collectively impact the emergence of a212

pandemic variant in a vaccinated population? As a simple representation of pandemic emergence,213

we assume the population is exposed to only one endemic clade, e.g., H3 clade (i.e., i = 2), and is214

vaccinated by the vaccine targeting H3 clade. Then it is exposed to a pandemic variant. We made215

a pessimistic assumption that H3 infection does not induce cross-immunity against the pandemic216

variant. The analytical result (Supplementary materials S1.3) shows that even when the pandemic217

variant has a lower basic reproductive number than the endemic strain, i.e., R1
0 < R2

0, the pandemic218

can still emerge in the population, depending on the vaccine characteristics. Results in Figure 4 show219

how the initial growth rate of the pandemic variant depends on vaccine characteristics, including220

vaccination rate and immunity strength and duration. First, the boundary of pandemic emergence221

(shown with the red curve) moves towards less susceptibility reduction by the vaccine, for lower222

values of R1
0 (Figure 4). In line with intuition, this indicates that the threshold of vaccine cross-223

immunity strength to prevent the pandemic is strongly dependent on the basic reproductive number224

of the pandemic variant. In addition, longer vaccine-induced cross-immunity duration lowers the225

vaccination rate threshold and vaccinal immunity strength level for preventing pandemic emergence.226

Following introduction, the pandemic variant can either 1) fail to emerge, 2) emerge and co-exist227

with the endemic strain, or 3) emerge and eliminate the endemic strain. Under limited vaccinal228

protection, the endemic and pandemic strains co-exist (corresponding colored areas in Figure 5 and229

S11 under the same vaccine characteristics). Vaccination characteristics and fitness of the pandemic230

strain decide the emergence of the pandemic strain (Figure 5 and S12). Any of the following vaccine231
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Figure 2: Average weekly incidence of H1 and H3 subtypes per 1000 population (y axis) vaccinated by vaccines with different

target clades (rows) and immunity strengths (columns, defined as k1 =
τi
θi

), with changes of vaccination rate (%) per week (x

axis). The results are calibrated with the best-fitting parameters (θ1 = 0.8, θ2 = 0.5, a = 0.04). Other parameter values are

in Table S2
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Figure 3: Average weekly incidence of H1 and H3 subtypes per 1000 population (y axis) vaccinated by vaccines with different

target clades (rows) and immunity durations (columns, defined as k2 =
σi
σV

), with changes of vaccination rate (%) per week

(x axis). The parameters are same as in 2.
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Figure 4: Emergence of a pandemic variant with the basic reproduction number R1
0 (column), which is measured by initial

growth rate coloured by greens (failure of emergence) and yellow-to-reds (emergence), under vaccination of different immunity

strength (y axis), duration (row) and vaccination rate ρ (%) per week (x axis). In these simulations, the pandemic variant

completely escapes natural cross-immunity (θ2 = 0), the average infection-acquired immunity period is 2.7 years, the average

infectious period is 3.03 days, and the average life span is 75 years. The initial growth rate is defined as the incidence growth

of the pandemic variant between the second and third day of the invasion.

characteristics could more easily prevent the emergence of the pandemic variant: higher vaccination232

rate, longer immunity duration and more susceptibility reduction against the pandemic variant (Figure233

5). Interestingly, at the same vaccination rate, more susceptibility reduction could increase the234

incidence during the trough following invasion (Figure S12). This could be because stronger cross-235

immunity against the pandemic variant allows slower spread of the variant at the beginning. Due236

to the demographic stochasticity, when the trough depth is lower than 10−6, the pandemic variant237

could still become extinct (e.g., Figure S12) in a very large city. Therefore, we define the pandemic238

persistence threshold (orange curve in Figure 5) as 10−6. Additionally, the result suggests that the239

pandemic invasion trough depth might have a non-monotonic relationship with vaccine strength and240

vaccination rate. This non-monotonic relationship on persistence has been shown in other studies241

[18].242

4 Discussion243

While TPPs of a vaccine are rightly informed by individual-level factors such as safety and efficacy244

against a symptomatic endpoint, the population-level epidemiological impacts of vaccines are less245

considered. By quantifying the potential epidemiological impacts, our work illustrates how TPPs246
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Figure 5: Persistence of the pandemic variant 5 years after its emergence, measured by trough depth of its incidence ((the

minimal incidence), under vaccination of different immunity strength (y axis), duration (row) and vaccination rate ρ (%) per

week (x axis), with different basic reproduction number R1
0 (column). The grey area is when the pandemic variant fails to

emerge. The black curves indicate the transition between persistence and failure in the emergence of the pandemic variant.

Other parameters are same as those in Figure 4.

could be complemented with population-level effectiveness, breadth, and immunity duration. What247

indicators would be important in such population-level TPPs? Based on our analysis, Table 1 lists248
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some important characteristics, as well as some that should be addressed in future studies.249

Table 1: Population-level Target Product Profiles (PTPPs) for broadly-protective human influenza A vaccines

Vaccine characteristic Preferred Study sources

Breadth
Complementary vaccines for all clades (in

the absence of universal protection)
This study

Strength*
No weaker than infection-induced immu-

nity
This study

Duration*
No shorter than infection-induced immu-

nity
This study

Immunity type
Susceptibility-reduction (preferred to in-

fectiousness reduction)
This study and [5]

Dose regimen Annual vaccination [21]

Vaccination rate
High rate (the sufficient rate depends on

the vaccination strategy)
This study

Vaccination accept-

ability and achievable

coverage

/ Future studies

Interaction of vaccine

immunity with prior

immunity

/ Future studies

Evolutionary impacts

on seasonal influenza

viruses

/

Future studies

building on exist-

ing literature ([4])

* In practice, the strength and duration of the vaccine are usually correlated [14].

250

Specifically, our results show how the interplay between natural and vaccine-induced cross-immunity251

affects both clade dynamics and pandemic emergence. In this process, both vaccine immunity strength252

and cross-immunity strength are important. Notably, when a broadly protective vaccine provides lim-253

ited protection against a non-target clade, this clade might cause a larger epidemic at low vaccination254

rates, than in the absence of vaccination. In contrast, the bivalent vaccine scenario never permits a255

larger epidemic and could eliminate both clades at similar vaccination rates. Therefore, our results256

highlight that adopting vaccines for against both clades would be essential for the broadly-protective257

vaccine deployments.258

Additionally, when a vaccine-escape variant emerges, the population might be more vulnerable259

to the variant [5] than in the absence of the vaccine. For example, in theory, a vaccine providing260

cross-immunity by reducing infectiousness would reduce transmission at the population level and261

improve herd immunity in the long term [4]; however, such a vaccine might permit larger pandemics262

when the coverage is low [5], by increasing the population’s vulnerability to a pandemic invasion263

by a non-target variant. These existing studies focused on hypothesized vaccines that only reduce264
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the infectiousness without reducing the susceptibility to infection, consistent with the effect of non-265

sterilizing T-cell immunity. Currently, promising vaccine candidates are being developed to reduce266

susceptibility to infection, e.g., one targeting the HA-stalk region [17]. Our results illustrate the267

potential of the epidemiological impacts of such vaccines: they might have a lower risk of permitting268

a larger pandemic than those that reduce infectiousness.269

However, due to the lack of relevant experimental data on the mechanisms of vaccinal immunity,270

our results remain theoretical. Other caveats of this work include that the model assumes a homoge-271

neous infection in a well-mixed population; for example, age or spatial structure of hosts or antigenic272

imprinting [13] could favor the invasion of the pandemic variant. The model also does not incorpo-273

rate subtype diversity within clades of influenza viruses, nor does it address the effect of immunity274

on severity. In addition, we did not assess potential evolutionary impacts of the broadly-protective275

vaccines [4]. Furthermore, our model calibration only matches the subtype dominance pattern. The276

model could be refined by fitting time series of influenza incidence in the future, if more refined277

data become available. Finally, we assume that vaccine-induced and infection-induced immunity are278

independent, but in practice, they might oppose each other due to a possible ceiling effect, i.e., the279

level of protection cannot exceed a threshold. Nonetheless, even our simple epidemiological model280

provides insights into the potential value of population-level TPPs: the importance of considering281

immunity breadth, strength and duration in broadly-protective vaccine design and deployments. To282

advance understanding of population-level TPPs, future studies could incorporate virus genomic data283

and human immune data by applying immuno-epidemiological phylodynamic modelling approaches.284

These advances depend crucially on maintaining and enhancing epidemiological, genomic, and im-285

mune surveillance against influenza and other imperfectly-immunizing pathogens.286
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S1 Supplementary information387

The supplementary information includes:388

• Dataset and code availability389

• Ordinary differential equations of the model, Supplementary Tables S1-2390

• Invasion analysis of a pandemic variant391

• Supplementary Figures S1-11392

S1.1 Dataset and codes393

See R codes and data on our GitHub repository: https://github.com/kikiyang/broadFluVacModel394

S1.2 Ordinary differential equations of the model395

See Table S1 and S2 below for a description of all symbols in the model.396 

dS/dt = µ− (ρ+ µ)S − β1S(I1 + I2,1 + IV1 + IV2,1)− β2S(I2 + I1,2 + IV2 + IV1,2) + σ1R1 + σ2R2 + σV V

dI1/dt = β1S(I1 + I2,1 + IV1 + IV2,1)− (γ1 + µ)I1

dRT
1 /dt = γ1I1 + σV2

RV,T
1 − (σT + µ+ ρ2)R

T
1

dR1/dt = σ2R1,2 + σTR
T
1 + σV2R

V
1 − β2(1− θ1)R1(I2 + I1,2 + IV2 + IV1,2)− (µ+ σ1 + ρ2)R1

dI1,2/dt = β2(1− θ1)R1(I2 + I1,2 + IV2 + IV1,2)− (µ+ γ2)I1,2

dI2/dt = β2S(I2 + I1,2 + IV2 + IV1,2)− (γ2 + µ)I2

dRT
2 /dt = γ2I2 + σV1

RV,T
2 − (µ+ σT + ρ1)R

T
2

dR2/dt = σ1R1,2 + σTR
T
2 + σV1

RV
2 − β1(1− θ2)R2(I1 + I2,1 + IV1 + IV2,1)− (µ+ σ2 + ρ1)R2

dI2,1/dt = β1(1− θ2)R2(I1 + I2,1 + IV1 + IV2,1)− (µ+ γ1)I2,1

dV/dt = ρS + σ1R
V
1 + σ2R

V
2 − (µ+ σV )V − β2(1− τ1)V (I2 + I1,2 + IV2 + IV1,2)−

β1(1− τ2)V (I1 + I2,1 + IV1 + IV2,1)

dIV1 /dt = β1(1− τ2)V (I1 + I2,1 + IV1 + IV2,1)− (γ1 + µ)IV1

dRV,T
1 /dt = γ1I

V
1 + ρ2R

T
1 − (σV2 + σT + µ)RV,T

1

dRV
1 /dt = σ2R

V
1,2 + σTR

V,T
1 + ρ2R1 − β2(1− θ1)(1− τ1)R

V
1 (I2 + I1,2 + IV2 + IV1,2)− (σ1 + σV2 + µ)RV

1

dIV1,2/dt = β2(1− θ1)(1− τ1)R
V
1 (I2 + I1,2 + IV2 + IV1,2)− γ2I

V
1,2 − µIV1,2

dIV2 /dt = β2(1− τ1)V (I2 + I1,2 + IV2 + IV1,2)− (γ2 + µ)IV2

dRV,T
2 /dt = γ2I

V
2 + ρ1R

T
2 − (σV1 + σT + µ)RV,T

2

dRV
2 /dt = σ1R

V
1,2 + σTR

V,T
2 + ρ1R2 − β1(1− θ2)(1− τ2)R

V
2 (I1 + I2,1 + IV1 + IV2,1)− (σ2 + σV1 + µ)RV

2

dIV2,1 = β1(1− θ2)(1− τ2)R
V
2 (I1 + I2,1 + IV1 + IV2,1)− (γ1 + µ)IV2,1

dRV
1,2/dt = γ1I

V
2,1 + γ2I

V
1,2 − (σ1 + σ2 + µ)RV

1,2

dR1,2/dt = γ2I1,2 + γ1I2,1 − (µ+ σ1 + σ2)R1,2

(S1)
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Table S1: Compartments in the model

Compartment Definition

S Susceptibles to both groups

V Vaccinated

Ii Primary infections by group i

Ii,j
Secondary infections by group j with a primary in-

fection by group i

IVi,j
Infected individuals by strain j, who has been vacci-

nated (and had group i infection before)

RT
i,j

Strain-transcending immune to both strains by pri-

mary infection by group i (and a secondary infection

by group j)

RV
i,j

Vaccinated and also immune to group i (and group

j from infection)

RV,T
i

Vaccinated and also strain-transcending immune to

group i by previous infection by group i

Ri Immune to group i

Ri,j Immune to both group i and group j
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Table S2: Parameters in the model

Parameter Definition Value Source of the value

R
(i)
0

Basic reproductive num-

ber
1.44 (H1), 1.60 (H3) [25]

βi

Transmission rate of clade

i

βi(t) = R
(
0i)(γi + µ)(1 +

a cos(2πt)), β0 = R0(γ + µ)
/

a
amplitude of sinusoidal

seasonal forcing function
0.04 See methods 2.2

γi
Recovery rate from infec-

tion of clade i
365/2.64 (H1), 365/3.03 (H3) [25]

σT

Waning rate of strain-

transcending immunity in-

duced by infection

365/60 [10]

σi

Waning rate of immunity

induced by natural infec-

tion of clade i

1/3.12 (H1), 1/2.28 (H3) [25]

θi

Reduction in susceptibil-

ity of the other clade con-

ferred by infection of clade

i

/ See methods 2.2

σV

Waning rate of vaccinal

immunity
σV = k2σ /

σVi

Waning rate of immunity

of the vaccine targeting

clade i

σVi
= k2σi /

ρ Vaccination rate 0-1 /

ρi
Vaccination rate of the

vaccine targeting clade i
ρ /

τi

Reduction in susceptibil-

ity of the other group

conferred by vaccination

against clade i

τ = k1θ /
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S1.3 Invasion analysis of a pandemic variant397

We used a similar method as in the previous study [20]. However, our model relaxes the assumption398

that two strains have the same reproductive ratio and other important epidemiological parameters.399

We first prepare a population where H3 clade is endemic in the presence of H3 vaccine and H1 clade400

is absent. We simulate the system for 600 years at semi-weekly time steps to bring H3 to endemic401

equilibrium, given by402 

Ŝ = γ2+µ
β2

= 1
R2

0

Î2 = µ+σT

γ2
R̂T

2

R̂T
2 = µ+σ2

σT
R̂2

V̂ = ρ
µ+σV

Ŝ

(S2)

where R2
0 is the basic reproductive ratio of H3. The critical vaccination rate pc makes the system at403

disease-free equilibrium, which gives the two following conditions:404  R2
0 > 1

p < pc ≡ (R2
0 − 1)(σV + µ)

(S3)

Hence, H3 clade is eliminated when σV < 1
R2

0−1
− µ and p < (R2

0 − 1)(σV + µ).405

Next, we introduce a pandemic variant into the population at a very low frequency (I1 = 10−6).406

The initial invasion dynamics of the pandemic variant approximately follow the equations below.407 
dI1
dt = β1Ŝ(I1 + I2,1 + IV1 )− (γ1 + µ)I1
dI2,1
dt = β1(1− θ2)R̂2(I1 + I2,1 + IV1 )− (µ+ γ1)I2,1

dIV
1

dt = β1(1− τ2)V̂ (I1 + I2,1 + IV1 )− (γ1 + µ)IV1

(S4)

Let X2(t) = I1(t)+ I2,1(t)+ IV1 (t), and assume that initially X2(t) approximately grows or decreases408

exponentially during a short time interval. This exponential behaviour can be written as Cext, where409

C is a positive constant and x is the invasion rate of the pandemic variant. The equations S4 can be410

solved as:411 
I1(t) =

β1

γ1+µ+x ŜCext +K1e
−(γ1+µ)t

I2,1(t) = K2,1e
−(γ1+µ)t + 1−θ2

γ1+µ+xCβ1R̂2e
xt

IV1 (t) = KV
1 e−(γ1+µ)t + 1−τ2

γ1+µ+xCβ1V̂ ext

(S5)

where K1, K2,1, KV
1 are three constants that depend on initial conditions. If x > −(γ1 + µ),412

then the first term in each function rapidly becomes negligible. Since we initially assumed that413

I1(t) + I2,1(t) + IV1 (t) = Cext, then x must satisfy the following relation:414

f(x) ≡ β1

x+ γ1 + µ
(Ŝ + (1− θ2)R̂2 + (1− τ2)V̂ ) = 1. (S6)

f(x) is a continuous, decreasing function over (−(γ1 + µ),∞). If cross-immunity is perfect, i.e.415

θ2 = τ2 = 1, then f(x) = β1(γ2+µ)
β2(x+γ1+µ) = 1, therefore x = β1(

1
R2

0
− 1

R1
0
) is a solution for (S6).416

Otherwise, f(β1(
1
R2

0
− 1

R1
0
)) > 1, so f(x) admits a unique solution x > β1(

1
R2

0
− 1

R1
0
). When R2

0 < R1
0,417

i.e., the basic reproductive ratio of the endemic strain is smaller than the invading variant, x > 0,418

i.e., the pandemic always emerges. Otherwise, β1(
1
R2

0
− 1

R1
0
) < 0, and therefore x could be negative419
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or positive. In our case, where θ2 = 0, the unique solution can be written as below.420

x = β1(Ŝ + R̂2 + (1− τ2)V̂ )− (γ1 + µ) (S7)

We can see that the vaccine characteristics (σV , τ2 and ρ) and their relationship with the pathogen421

epidemiological parameters decide if pandemic emergence could be successful.422

S1.4 Figures423

Figure S1: Sensitivity test for initial conditions. The initial condition 1 assumes susceptible population is 89.9%, H1 infection

is 0.01% and H3 infection is 0.1%. The initial condition 2 assumes the susceptibles are 89.9%, H1 infection is 0.1% and H3

infection is 0.01%. Average weekly incidence of H1 and H3 subtypes per 1000 population (y axis) vaccinated by vaccines with

different target clades (rows) and immunity strengths (columns, defined as k1 =
τi
θi

), with changes of vaccination rate (%) per

week (x axis). The results are calibrated with the best-fitting parameters (θ1 = 0.8, θ2 = 0.5, a = 0.04). Other parameters are

the same as in 2.

22



Figure S2: Sensitivity test for initial conditions. Parameters are the same as in S1. Average weekly incidence of H1 and

H3 subtypes per 1000 population (y axis) vaccinated by vaccines with different target clades (rows) and immunity durations

(columns, defined as k2 =
σi
σV

), with changes of vaccination rate (%) per week (x axis).

Figure S3: Weekly incidence of human influenza H1N1 (in red) and H3N2 (in blue) in the United States. The grey area is

pandemic seasons from 2009-07-01 to 2011-07-01; they are excluded in the model calibration.
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Figure S4: The optimization metric distribution across the parameter space of a, θ1 and θ2. Each grid represents a combination

of the parameters, the colour of which shows the sum of the absolute distance between simulation and data [11] of three summary

statistics, including I) correlation between H1 and H3 seasonal incidence, II) coefficient of variation of H1 (and H3) seasonal

incidence, III) auto-correlation of H1 (and H3) seasonal incidence.
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Figure S5: The distribution of the optimization metric (< 3) across the parameter space of a, θ1 and θ2. Each grid represents

a combination of the parameters, the colour of which shows the sum of the absolute distance between simulation and data [11]

of three summary statistics, including I) correlation between H1 and H3 seasonal incidence, II) coefficient of variation of H1

(and H3) seasonal incidence, III) auto-correlation of H1 (and H3) seasonal incidence.

Figure S6: Occurrence counts of the same parameter sets of θ1 and θ2 with different a that gives optimization metric value

smaller than 3.
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Figure S7: Histogram of correlation between H1 and H3 seasonal incidence (left-top panel), auto-correlation of H1 (and H3)

incidence (right-top panel) and coefficient of variation of H1 (and H3) incidence (left-bottom panel) of every 12-yer period of

the 2000-year simulation with first 800 years as burn-in, using θ1 = 0.8, θ2 = 0.5, a = 0.04 as the parameters. Dashed lines

show the metric values in the incidence data. Blue and red colours represent H3 and H1 respectively.

Figure S8: Histogram of correlation between H1 and H3 seasonal incidence (left-top panel), auto-correlation of H1 (and H3)

incidence (right-top panel) and coefficient of variation of H1 (and H3) incidence (left-bottom panel) of every 12-yer period of

the 2000-year simulation with first 800 years as burn-in, using θ1 = 0.55, θ2 = 0.35, a = 0.04 as the parameters. Dashed lines

show the metric values in the incidence data. Blue and red colours represent H3 and H1 respectively.
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Figure S9: Average weekly incidence of H1 and H3 subtypes per 1000 population (y axis) vaccinated by vaccines with different

target clades (rows) and immunity strengths (columns, defined as k1 =
τi
θi

), with changes of vaccination rate (%) per week (x

axis). The results are calibrated with the moderate-fitting parameters (θ1 = 0.55, θ2 = 0.35, a = 0.04). Other parameters are

the same as in 2.

Figure S10: Average weekly incidence of H1 and H3 subtypes per 1000 population (y axis) vaccinated by vaccines with different

target clades (rows) and immunity durations (columns, defined as k2 =
σi
σV

), with changes of vaccination rate (%) per week

(x axis). The parameters are the same as in S9.
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Figure S11: Persistence of the endemic variant 5 years after its emergence, measured by trough depth of its incidence ((the

minimal incidence), under vaccination of different immunity strength (y axis), duration (row) and vaccination rate ρ (%) per

week (x axis), with different basic reproduction number R1
0 (column). The grey area is when the endemic strain fails to

persist. The black curve indicate the transition between persistence and failure in the persistence of the endemic strain. Other

parameters are same as those in Figure 4.

28



Figure S12: Deterministic trajectories after the pandemic strain (at the incidence of 10−6) invades the endemic equilibrium

of H3. Line types represent weak (20%), middle (40%), and strong (80%) susceptibility reduction against the pandemic strain

(τ2) by the vaccine. R2
0 = 3.2, 1/σV = 16(yr), ρ = 1.73% per week. Other parameters are as in Figure 4.
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