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Abstract
Machine learning applications hold promise to
aid clinicians in a wide range of clinical tasks,
from diagnosis to prognosis, treatment, and pa-
tient monitoring. These potential applications
are accompanied by a surge of ethical con-
cerns surrounding the use of Machine Learn-
ing (ML) models in healthcare, especially re-
garding fairness and non-discrimination. While
there is an increasing number of regulatory poli-
cies to ensure the ethical and safe integration
of such systems, the translation from policies
to practices remains an open challenge. Algo-
rithmic frameworks, aiming to bridge this gap,
should be tailored to the application to enable
the translation from fundamental human-right
principles into accurate statistical analysis, cap-
turing the inherent complexity and risks as-
sociated with the system. In this work, we
propose a set of fairness impartial checks es-
pecially adapted to ML early-warning systems
in the medical context, comprising on top of
standard fairness metrics, an analysis of clinical
outcomes, and a screening of potential sources
of bias in the pipeline. Our analysis is fur-
ther fortified by the inclusion of event-based
and prevalence-corrected metrics, as well as
statistical tests to measure biases. Addition-
ally, we emphasize the importance of consider-
ing subgroups beyond the conventional demo-
graphic attributes. Finally, to facilitate oper-
ationalization, we present an open-source tool
FAMEWS to generate comprehensive fairness
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reports. These reports address the diverse
needs and interests of the stakeholders involved
in integrating ML into medical practice. The
use of FAMEWS has the potential to reveal crit-
ical insights that might otherwise remain ob-
scured. This can lead to improved model de-
sign, which in turn may translate into enhanced
health outcomes.

Data and Code Availability In this study, we
primarily experiment with HIRID dataset (Faltys
et al., 2021), which is publicly available for down-
load on PhysioNet (Goldberger et al., 2000), and
with the benchmark models for early-detection of
organ failure developed by Yèche et al. (2021)
whose code base is available at https://github.

com/ratschlab/HIRID-ICU-Benchmark/.
The FAMEWS open-source tool is available at:
https://github.com/ratschlab/famews.

Institutional Review Board (IRB) The institu-
tional review board (IRB) of the Canton of Bern ap-
proved the study on retrospective ICU (BASEC 2016
01463). The need for obtaining informed patient con-
sent for patient data from our institution was waived
owing to the retrospective and observational nature
of the study.
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1. Introduction

We are witnessing the rise of Machine Learning (ML)
models targeting the healthcare domain. The increas-
ing availability of electronic health record (EHR)
datasets enables the development of AI-based moni-
toring systems in the hospital. For instance, Yèche
et al. (2021) propose benchmark models for early de-
tection of organ failure based on the HiRID dataset
(Faltys et al., 2021). These prognosis early-warning
systems aim to raise the alarm in case of a high risk
of organ failure within the next 12 hours. These
systems are meant to be applied to critically ill pa-
tients and could have a tremendous impact on their
health outcomes. As with every ML model, these sys-
tems can be biased (Coeckelbergh, 2020) and could
lead to unfair health disadvantages for some patient
groups (Vayena et al., 2018). Governments worldwide
have expressed concern about the ethics and safe in-
tegration of ML systems. For instance, the proposed
EU AI Act12 aims to answer to the urgency of fram-
ing the models with strict regulatory policies. Re-
garding the fairness of such models, the draft of the
act promotes audits of algorithms and datasets to en-
sure non-discrimination and non-violation of human
rights. To this end, they require developers to provide
documentation about the model’s general character-
istics, capabilities, and limitations. However, no fur-
ther details are provided on how to audit fairness in
practice. As highlighted in the review of algorithmic
fairness (Pagano et al., 2023), this task is challenging
as there is no consensus on how to measure the fair-
ness of an algorithm.

1. https://europarl.europa.eu/doceo/document/
TA-9-2022-0140_EN.html

2. https://data.consilium.europa.eu/doc/document/
ST-15698-2022-INIT/EN/pdf

To fully comprehend the issue of bias in medical ML,
we conducted exploratory work with ethics profes-
sionals and clinicians analyzing early detection of cir-
culatory failure as developed in the HiRID bench-
mark (Yèche et al., 2021). In this first attempt (to
the best of our knowledge) to design a fairness au-
diting framework for early-warning systems, we ac-
knowledge the necessity to not only check for clas-
sical notions of fairness but also to investigate the
fairness of the early-warning system’s real-world con-
sequences (McCradden et al., 2020). We question var-
ious system’s design choices from a fairness perspec-
tive as bias can be introduced at many stages of the
Machine Learning pipeline (Rajkomar et al., 2018).
We summarize our learnings in an open-source tool
FAMEWS which primarily complements the HiRID
benchmarks (Yèche et al., 2021), but is applicable to
a wide range of early-warning systems.
Our main contributions are:

1. A flexible fairness-auditing framework tai-
lored for clinical early-warning systems.
The framework is depicted in Figure 1. In the
clinical context, patient grouping based on medi-
cal attributes such as admission type, comorbidi-
ties, or patient consciousness helps to spot model
biases and identify disadvantaged subgroups be-
yond static demographic attributes (like race or
gender). We propose grouping definitions for the
HiRID dataset, but the user may change and
augment them (Figure 1A). The tool is not re-
stricted to any specific dataset, model type, or
prediction task. If lacking some inputs, the user
can run only part of the analysis (Figure 1B).

2. Evaluating ML models, not only through
standard metrics but also through com-
parison of clinical outcomes and screening
of the potential sources of bias. Available
analyses are listed in Figure 1C and described
in Section 3. We focus on prognosis models es-
timating future risk and providing early alarms,
differing from classification setup by including a
time dimension. Differences in timing lead to un-
fair outcomes as well as discrepancies in alarm’s
accuracy. Also, as to capture an event, it is
enough to have only one alarm, we need to mea-
sure recall from the event point of view (in ad-
dition to a conventional timestep-based recall).
Medical variables serve as input signals and de-
fine prediction targets. Differences in their levels
and missingness patterns, even if initially clini-
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cally justified, can mislead model selection and
obscure fairness measurements. Differences in
feature ranking across cohorts can also result
in an unrepresentative model, especially while
implementing a submodel reduced to the most
important features. We address these concerns
with the screening stages in the framework.

3. Proposing the automatic generation of a
PDF report that is easily shareable with
various stakeholders and comprises the de-
tailed fairness analysis and insightful sum-
maries of each audit stage. Provisioned
stakeholder’s needs and interests are described
in Section 4.2. We don’t differentiate between
users while generating the report. By including
all levels of analysis detail, we aim to ease com-
munication as every stakeholder is viewing the
same version of the report, and in addition, we
do not hide any potentially critical information.
An example of the produced report is given in
Appendix D, and the insights derived from it are
in Appendix C.

2. Related work

In recent years, with the rise of concern surrounding
the fairness of Machine Learning algorithms, tools
to detect bias in these models have emerged (Bel-
lamy et al., 2018; Weerts et al., 2023; Cabrera et al.,
2019; Wexler et al., 2019; Saleiro et al., 2018; Her-
tweck et al., 2023). In Table 1, we summarise the
characteristics of popular fairness auditing tools and
compare them to our framework.
Previous works focus on fair decision-making and as
such support binary classifiers. Nonetheless, some of
these tools extend to multiclass classifiers or regres-
sors, as shown in the first row of Table 1.
Group fairness can be described as the absence of
systematic disadvantages towards a group of individ-
uals that share a common attribute. The type of
supported grouping is an important tool character-
istic that we outline in Table 1. In the algorithmic
fairness literature, classical groupings are based on
protected features such as ethnicity, gender, or age
and there exists a notion of a privileged and an un-
privileged category. We follow the most recent tools
and expand this precept by letting the user define
their own grouping, which can be multicategorical.
FairVis (Cabrera et al., 2019) even proposes to scan

the set of possible features to find the most discrimi-
nated intersectional group.
In order to assess the fairness of a model, the Ma-
chine Learning community relies on formalizations of
fairness (Makhlouf et al., 2021). They can be de-
fined as a mathematical condition on the individual’s
attributes and the model output, that when satisfied
ensures the model’s compliance with a certain vision
of fairness. To approximate these formalizations, fair-
ness auditing tools propose to compare common per-
formance metrics from one group to another.
The detection of unfair model outputs opens the
question of where the bias is coming from. The source
of bias screening is another comparison characteristic
in Table 1. In Meng et al. (2022), authors explore
how interpretability techniques can be used to grasp
the underlying mechanics of detected biases in an ML
model. For the same purpose, What-if Tool (Wexler
et al., 2019) offers an interactive platform to explore
trained models. For instance, they support counter-
factual analysis to investigate which attributes have
an unjustified effect on the prediction. While What-if
tool offers a lot of capabilities to examine the model’s
robustness (exploration of feature importance, data
distribution, and missingness), it lacks the possibility
to perform these analyses per subgroup. Moreover,
the counterfactual analysis on protected attributes is
quite intricate to perform for medical applications as
some of these attributes (such as age and sex) have
direct clinically justified impacts on the label.
Finally, a couple of frameworks like FairnessLab
(Hertweck et al., 2023) and Aequitas (Saleiro et al.,
2018) go beyond the classical bias analysis tools by
providing a more comprehensive fairness assessment.
They output an intuitive summary with explanations
related to relevant ethics and justice concepts, in this
way becoming usable by developers as well as reg-
ulators and guiding the users to the most adequate
fairness metric. For instance, the Aequitas frame-
work (Saleiro et al., 2018) presents an interesting
solution for generating fairness reports. It outputs
detailed plots to compare different formalizations of
fairness across groups as well as summary assess-
ment to easily comprehend for which groups and
metrics the model is biased. However, this frame-
work is only suitable for classical binary classifica-
tion, lacking event-based metrics which are key for
evaluating early-warning systems. They also don’t
propose outcome-based metrics or screening of po-
tential sources of bias. Moreover, the details about
the statistical methodology of their work are miss-
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Figure 1: Schema summarising FAMEWS workflow. The user first needs to provide the patients’ groupings
(A), which can be based on demographics (like gender or race) or static clinical attributes (like
admission reason). Then, for each prediction task and model, the user has to provide model
and data-based inputs that are specific to the ML system to audit (B). Afterwards, the different
analytical stages can be run (C). Their numbering indicates the corresponding section in the paper.
Each analysis stage requires a specific set of inputs depicted in block B by its numbered colored
dot. The results of the analyses are gathered in a PDF report that can be shared with the different
stakeholders (D).

ing.
Discussed frameworks are available as libraries and
some (Table 1) also embed convenient automatic vi-
sualization functionalities like a dashboard or report
generation.
Focus on the medical context and early-warning sys-
tems differentiate our work from others, that are more
general, but missing some essential details for this
particular application.

3. Tool description

FAMEWS aims to facilitate systematic fairness au-
dits of ML-based alarm systems in the medical field.
We designed our tool to widen the usual fairness au-
diting scope: we assess classical fairness metrics but
we also examine the fairness of clinical outcomes and

investigate the potential sources of bias. Its main
functionalities are summarized in Figure 1.
We consider alarm systems that take as input time-
series of medical variables (lab measurements, medi-
cations, etc.) and return for each time step a score in-
dicating how likely is the patient to undergo an event
within the next X hours.
Our audit is based on comparing key statistics across
cohorts of patients. The cohorts can be formed with
usual demographics and static clinical information (in
Figure 1A). For instance, for the HiRID dataset, the
framework includes clinically relevant groupings, such
as admission reasons (like trauma or cardiovascular).
In the generated PDF report, we display the cohorts’
composition (total number of patients and number of
patients undergoing an event). We also give the pos-
sibility for the users to filter out cohorts that don’t
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Table 1: Comparison of fairness auditing tools

Characteristic AI
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Other task than binary classification ✓ ✓ ✓ ✓ ✗ ✗ ✓

Flexible grouping (Not only binary) ✓ ✓ ✓ ✓ ✓ ✗ ✓

Classical fairness metrics ✓ ✓ ✓ ✓ ✓ ✓ ✓

Source of bias screening ✗ ✗ ✓ ✓ ✗ ✗ ✓

Comprehensive fairness assessment ✗ ✗ ✓ ✗ ✓ ✓ ✓

Robust statistical analysis ✓ ✗ ✗ ✗ ✗ ✗ ✓

Visual interface ✗ ✓ ✓ ✓ ✓ ✓ ✓

have enough patients with events (by default this pa-
rameter is set to 1), as the analysis would not be
statistically significant for them.
An overview of the required inputs for each of the
stages is indicated in Figure 1B by a colored dot
with a section number. The minimum required input
is the model’s predictions and true labels for each
timestep. Additionally, the time boundaries of the
target events extend the audit to the assessment of
performance metrics from the event scope and alarm
timing comparison. Access to the trained model (or
directly SHAP feature importance values) and the
time series dataset allows FAMEWS to run screen-
ings of potential sources of bias.
We recommend providing predictions from models
trained with different random seeds, as this will re-
duce the impact of model randomness on audit re-
sults. For each stage of our audit pipeline (in Fig-
ure 1C), we run a detailed statistical analysis, that
conforms to best practices, and we generate aggre-
gated views to summarize key takeaways. These el-
ements are gathered in a PDF report (Figure 1D).
In the following paragraphs, we present the goal and
motivation of each analysis stage, the metrics and
statistical techniques used to capture disparities be-
tween cohorts, and outline generated visualizations
and aggregated views for the fairness report.

3.1. Classical formalizations of fairness:
comparison of model performance across
cohorts

Goal In this stage, we compare the model’s perfor-
mance and the validity of the threshold choice across

different patient cohorts through classical fairness no-
tions (Makhlouf et al., 2021; Chen et al., 2023). An
example can be found in section 2 of the sample re-
port (Appendix D).

Metrics For each cohort of patients, we compute
the metrics related to a set of adequate fairness no-
tions (they are listed in Appendix A together with
the definitions of the performance metrics). We im-
plemented binary (recall, precision, FPR, and NPV)
and score-based metrics (AUROC, AUPRC, average
score on positive and negative classes, calibration er-
ror) as they are relevant at different phases of model
development. For instance, while tuning the model,
score-based metrics are valuable, whereas a deployed
model with binary outputs is evaluated using relevant
binary metrics. For our targeted medical application,
it is beneficial to consider event-based metrics such as
event-based recall (number of predicted events over
the total number of events) and event-based AUPRC
(area under the precision / event-based recall curve).
We added the possibility of comparing the precision,
NPV, and AUPRC after correction for prevalence
(due to the imbalance of positive labels across co-
horts). This is equivalent to comparing the orig-
inal version of these metrics assuming the cohorts
have equal prevalence (more details are given in Ap-
pendix B).

Statistical methodology We compare the met-
rics for each cohort to the rest of the patients. To
ensure the statistical robustness of this comparison,
we first bootstrap the patient population of the test
set (we draw with replacement 100 random samples of
the test set size) and compute for each cohort in each
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sample the metrics listed above. We then perform
the Mann-Whitney U test with Bonferroni correction.
From these statistical tests we obtain for each met-
ric the categories of patients which are significantly
worse off compared to the rest of the population. We
then quantify these disparities by computing the ab-
solute difference in median metric (taken over the
bootstrapped samples) between patients of the cat-
egory and patients outside it:

∆ =
∣∣∣median {metricp∈Sn∩G}Nn=1

− median
{
metricp∈Sn∩Ḡ

}N

n=1

∣∣∣ (1)

with Sn the nth bootstrapped sample, N the total
number of bootstrapped samples drawn, G the stud-
ied cohort and Ḡ the rest of patients.

Visualizations The results of the comparison are
presented as tables in the report. We display box
plots for each metric with the median, first quar-
tile, and third quartile over the bootstrapped sam-
ples. Cohorts that are significantly worse off are
highlighted with a star. For the score-based metrics,
we report performance curves: calibration, ROC,
and precision-recall (also event-based) curves. The
colored error area represents the standard deviation
computed over the bootstrap samples. To ease com-
parison, we keep the same scale for each metric across
the entire report.

Aggregated views 3 aggregated views are pro-
posed for this stage:

1. Summary statistics for each metric and group-
ing: it is composed of the macro-average, the
minimum over the grouping’s categories, and the
metric value for the minority category.

2. Summary view based on the ratio of significantly
worse metrics: For each cohort, we report the
ratio of significantly worse metrics over the to-
tal number of analyzed metrics. We highlight
which category of patients within the grouping
and across all groupings is the worst in terms
of ratio. The largest delta, as defined in Equa-
tion (1), for this category is stated.

3. Table displaying for each metric the 3 cohorts
with the largest delta that are significantly worse
off than the rest of the population. They are
also flagged with a red star on the corresponding
metric box plot.

3.2. Checking for bias of outcomes:
comparison of the time gap between first
correct alarm and event across cohorts

Goal One outcome of the early-warning system is
to direct additional clinical attention to specific pa-
tients to prevent the forecasted events. We analyze
whether the alarm is triggered sufficiently in advance
for the different cohorts of patients. An example is
in section 3 of the sample report (Appendix D).

Metrics For each detected event, we compute the
time gap between the first correct alarm and the
event. The bigger the time gap the better off a pa-
tient is.
To not bias this analysis, we first split the events with
respect to how much time in advance the alarm could
be triggered. For the sake of clarity, let us consider
an alarm system with a 12-hour horizon. If an event
happens three hours after the start of the stay, the
alarm can be triggered at most 3 hours in advance;
while if it occurs after 24 hours, the alarm can be
raised 12 hours in advance. It is thus not equitable
to compare these two categories of events. To over-
come this issue, we propose to split the possible alarm
window into 4 (configurable) parts: 0-3h, 3-6h, 6-12h,
and more than 12h. For each of our alarm window
splits and cohort of patients, we then compute the
median time gap.

Statistical methodology We draw 100 bootstrap
samples (as for the previous stage in Section 3.1).
For each bootstrapped sample, each alarm window
split, and each cohort of patients, we compute the
median time gap. We then use the Mann-Whitney
U test with Bonferroni correction to determine which
cohorts are significantly worse off than the rest of the
population. We quantify the disparity by computing
the difference between the median (taken over the
bootstrapped samples) time gap for patients belong-
ing to a cohort and patients not belonging to it, for
each window split. This is equivalent to computing ∆
in Equation (1) with metric being the median time
gap for the events falling into a specific window split
for a selected cohort.

Visualizations The comparison results are out-
lined in tables and visually displayed in box plots, in
the same fashion as for our first analysis (Section 3.1).

Aggregated views 2 aggregated views are pro-
posed for this stage:
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1. Summary statistics for each alarm window split
and grouping of patients composed of the macro-
average,the minimum metric value over all the
grouping’s categories, and the value for the mi-
nority category.

2. Table displaying for each alarm window split the
3 cohorts with the biggest delta that are signifi-
cantly worse-off than the rest of the population.
These cohorts are also flagged with a red star on
the corresponding box plot.

3.3. Assessing level of bias for potential
sources

3.3.1. Comparison of some medical variables
across cohorts

Goal It is quite common in clinical contexts to rely
on proxy labels instead of ground truth to depict a
medical phenomenon. For instance, circulatory fail-
ure can be defined through arterial lactate and blood
pressure levels. This analysis has been specially de-
signed to tackle the problem of label bias (Wick
et al., 2019; Rateike et al., 2022) that can occur in
these settings. We want to check whether the proxy
used to define the label is correct for all cohorts.
An ill-defined label can create degradation in per-
formance and unfair outcomes. We thus propose to
compare the distribution of medical variables used
in the proxy definition across the different cohorts of
patients. Nonetheless, this stage can also be used to
study other time-series variables that are relevant to
the user. An example can be found in section 4 of
the sample report (Appendix D).

Metrics For each cohort, we compare the distri-
bution of chosen medical variables to the rest of the
population. For each patient, we compute the median
value over the entire stay. According to this stage’s
goal, we expect that undergoing an event has a strong
influence on the variable value. We thus also inspect
separately periods of stay free of events and patients
without events.

Statistical methodology We draw 100 bootstrap
samples from the train set in the same fashion as in
Section 3.1. For each sample and each cohort, we
end up with three different median values (for all
data points, not during events, and for patients free
of events) for the selected medical variables. We com-
pare the distribution of each median from one cohort
to the rest of the population using the Mann-Whitney

U test with Bonferroni correction. We quantify the
difference in median values by computing the abso-
lute difference in medians (median taken over the
bootstrapped samples of the different medians) be-
tween patients belonging to a cohort and patients not
belonging to it. This is equivalent to computing ∆
in Equation (1) with metric being one of the three
median values for a medical variable and a selected
cohort.

Visualizations We report the results in tables and
with box plots. The star on these plots flags the cate-
gories of patients with a significantly different median
value compared to the rest of the patients.

Aggregated views We outline, for each of the se-
lected medical variables and the median computation
methods, the 3 cohorts with the biggest delta in me-
dian value that are significantly different from the
rest of the population. These cohorts are also sig-
naled with a red star on the corresponding variable
box plot.

3.3.2. Comparing the top k features across
cohorts

Goal Regarding explainability concerns, it is essen-
tial for the stakeholders to know the features that
drive the prediction process. We check whether fea-
ture importance deviates across patient cohorts. We
consider this to be of special interest for two scenar-
ios. First, while considering a submodel developers
usually keep only the most important features from
the validation set (Hyland et al., 2020), however in
this process, they can disregard features that are im-
portant to minority cohorts, losing predictive power
for them (Zong et al., 2023). Then, to check the clin-
ical relevance of the model, it can be useful to show
medical practitioners, not only the global top features
but also the top features for the different subcohorts.
Indeed they might want to review how the medical
variables impact the model prediction depending on
the various patient profiles. An example is in section
5 of the sample report (Appendix D).

Metrics To study the feature importance, we will
rely on SHAP values (Lundberg and Lee, 2017). This
is a local explanation method, allowing us to obtain
the feature importance for each data point. We can
thus obtain the feature importance for each patient
and aggregate them per cohort. Furthermore, this
method aligns better with human intuition than other
feature importance estimation techniques (Lundberg
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and Lee, 2017), such as LIME (Ribeiro et al., 2016).
Nonetheless, this framework can yield inaccurate fea-
ture importance values when features are dependent
or correlated. (Aas et al., 2021).
For each patient and a given feature, we thus quantify
its importance with the absolute mean SHAP value
over the stay. Then we derive a feature ranking for
a cohort based on the mean feature importance over
all of its patients. We compare the feature ranking of
each cohort to the global feature ranking using a sim-
ilarity measure on lists called the rank-biased overlap
(RBO) (Webber et al., 2010). This measure has the
particularity of giving more weight to the head com-
pared to the tail (weighting parameter p = 0.935).
This aspect is particularly suitable to the compari-
son of feature importance rankings as we care more
about differences for the top features (Sarica et al.,
2022). Nonetheless, this property highly depends on
the weighting parameter, which can be challenging to
tweak properly. For each feature ranking, we flag the
features that significantly changed rank compared to
the global ranking.

Statistical methodology To establish the statis-
tical relevance of our analysis, we compute the RBO
for feature ranking on random simulated patient co-
horts. This yields an upper bound,

min
100⋃
i=1

{RBO (rkg, rkall)}g∈Gi
random

(with Gi the ith random grouping, rkg the ranking
obtained on one cohort of Gi and rkall the overall
ranking) below which the RBO testifies of signifi-
cantly different feature rankings. From these random
groupings, we compute for each feature, the delta of

inverse rank
∣∣∣ 1
kall

− 1
k0

∣∣∣ (with kall the global rank and

k0 the rank we want to compare to) and obtain a
lower bound,

max
100⋃
i=1

{∣∣∣∣ 1kg − 1

kall

∣∣∣∣}
g∈Gi

random

(with Gi the ith random grouping, kg the rank of
the studied feature for one cohort of Gi and kall its
global rank) above which the delta of inverse rank
indicates that the feature has a significantly different
rank compared to the global ranking.

Visualizations For each cohort, we outline the top
k features, we print the feature name in red when it

isn’t part of the global top k ranking and in blue when
it changes rank within the top k ranking from global
to cohort-based. We only color the names when the
change of rank is significant. However, for each fea-
ture that changes rank, we put in parenthesis the
difference in rank and the direction of change.

Aggregated views We display the RBO for each
cohort, colored in red when it is significantly low.

3.3.3. Comparing the missingness of key
medical variables and its impact
across cohorts

Goal The intensity of measurement of medical vari-
ables highly depends on their nature and the health
status of the patient. As such, data used for medi-
cal applications aren’t missing at random. We thus
investigate how the intensity of measurement for rel-
evant variables correlates with patients’ attributes.
From a fairness perspective, we can wonder whether
disparities in the intensity of measurement across co-
horts of patients are purely motivated by medical
reasons or whether some forms of discrimination are
present. We thus inspect the impact of missingness
on the model performance (Getzen et al., 2023). The
results could hint at adapting the data collection or
the imputation practices. An example can be found
in section 6 of the sample report (Appendix D).

Metrics For this analysis, the user needs to pro-
vide, for each patient, the time series of medical vari-
ables resampled on a fixed time-step grid before data
imputation. For each of the selected medical vari-
ables, we forward propagate the measurement value
according to its usual sampling interval (that has
been indicated by the user).
First, we measure the intensity of measurements I for
each patient that has at least one valid value:

I = 1− Nm

Ne

with Ne the number of expected measurements and
Nm the number of missed measurements. Ne is de-
fined as Ne = los

te
with los the patient’s length of

stay and te the expected sampling interval. Nm

is obtained by summing the number of measure-
ments that could have been done during each pe-
riod Tmissing

i without valid measurements (even af-

ter propagation): Nm =
∑

i
Tmissing
i

te
. The user pro-

vides categorization for the intensity of measurement
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values. For our example report, we class values be-
low 90% as insufficient and above as enough. We
put apart patients without any measurement. Then,
we assess the impact of missing values on perfor-
mance. The methodology is similar to the stage in
Section 3.1: we measure classical metrics but instead
of grouping the data points per cohort of patients,
we group them based on their missingness status.
Data points without valid value after propagation are
grouped in the missing msrt category, those belong-
ing to patients without measurement in no msrt and
the rest in with msrt. For this analysis, we don’t mea-
sure event-based metrics. For variables used in the la-
bel’s definition, it is not possible to run the analysis
on the no msrt category.

Statistical methodology We run the Chi-squared
independence test to assess the dependence between
the patients’ grouping and the intensity of measure-
ment categories.
The statistical tests for the impact of performance
analysis are run in the same fashion as in Section 3.1.
However, instead of comparing each cohort to the
rest of the population, we compare the missing-
ness categories no msrt and missing msrt against the
with msrt category.

Visualizations For the intensity of measurements
analysis, we provide for each cohort a bar plot dis-
playing the percentage of patients belonging to each
intensity category. The dotted lines show the per-
centage over the entire population of patients as ref-
erences. For the impact on performance, we present
the results in tables and box plots as in Section 3.1.

Aggregated views For each of the selected medi-
cal variables, if the grouping and the intensity of mea-
surements are dependent, the grouping is outlined in
a table. Also, the category for the corresponding
grouping with the biggest rate of patients without
measurement and the one with an insufficient num-
ber of measurements are indicated. To summarize
the impact on the performance, the ratio of metrics
that are significantly worse than the with msrt met-
rics is displayed for each missingness category as well
as the worst delta in metrics.

4. Discussion

In this paper, we described FAMEWS – a fairness
auditing tool tailored for medical early-warning sys-
tems. Our approach extends the scope of classical

fairness assessment tools by including an analysis of
fairness of outcomes, screening of potential sources of
bias, and proposing to consider clinical attributes on
top of classical demographic features for fairness anal-
ysis. We will now discuss the flexibility of our tool,
how our generated report can be used by the different
stakeholders as well as the strengths and limitations
of our work.

4.1. Flexibility of the tool

We primarily built our tool to audit the fairness of
an LGBM (Light Gradient-Boosting Machine) early-
warning system detecting circulatory failures in the
intensive care unit on the HiRID dataset (Yèche
et al., 2021). Nonetheless, we conceived it with a
certain level of flexibility, allowing it to be extended
to a broader range of applications. We tested our
framework on other alarm systems (early detection of
respiratory failure (Hüser et al., 2024)) with different
alarm-to-event horizon lengths, on other datasets like
MIMIC-III (Johnson et al., 2016), and on other types
of models (Long Short-Term Memory networks). The
users can define their own patients’ groupings de-
pending on the available attributes, provide pro-
cessed inputs rather than raw data, or run only a
subset of the stages if they don’t have access to some
input data. Moreover, some stages can be adapted to
audit other types of binary classifiers; for instance,
where the model outputs for each patient a single
prediction instead of a time series. Finally, our tool
is open-source, offering the possibility to the users to
further extend its functionalities.
However, to complete this fairness audit, the user
needs a minima access to some test data and the ca-
pability to generate predictions from the model (see
Figure 1B).

4.2. Intended use of the produced report

We designed our report as a conveniently exchange-
able document that can be understood and used by
different stakeholders. We decided against an inter-
active dashboard that, although more convenient for
exploratory work, would have required the technical
skills of the end user, secured access to medical data,
and would not have been easily exportable. We now
list the provisioned use of the report for the identified
stakeholders:

Developers

9
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• Compare different model design choices (model
type, preprocessing, feature engineering) in or-
der to choose the best model from a fairness
point of view. A quick glimpse of how the model
is evolving can be obtained by comparing the
aggregated views of the respective reports.

• Identify targets for bias mitigation and measure
the impacts of different debiasing methods. The
aggregated views can be used to facilitate model
comparison and choose the best bias mitigation.

• Monitor the behavior of the model, from a fair-
ness point of view, while using the model on new
data samples or retraining it (after the deploy-
ment for instance).

Clinicians

• Adapt their reliance on the model by learning
about its main biases, which are highlighted in
the aggregated views. For instance, if the prac-
titioners are aware that the model is perform-
ing worse for a specific patient cohort then they
will not overly rely on the model to monitor
these patients, avoiding falling into an automa-
tion bias (Rajkomar et al., 2018).

• Provide developers feedback and help them to
comprehend certain disparities, especially in the
screening of sources of bias analyses. For in-
stance, the results of the label bias screening can
be used to discuss the validity of the label proxy
definition for all patients. Their feedback can
then guide the developers in choosing adequate
bias mitigation techniques.

Regulators

• Get informed about the model limitations in
terms of bias and obtain a brief overview of the
demographics.

• Check that the model complies with actual
regulations in terms of fairness and non-
discrimination.

4.3. Strengths and limitations of our
framework

The resulting audit report might seem cumbersome
to apprehend. We nonetheless believe it is necessary
to present the entire analysis in the report, as se-
lecting relevant results is subjective and might hide

relevant disparities to the end users. We facilitate its
navigation with a table of contents, a glossary, and
aggregated views for each analysis stage. These views
help in grasping the main takeaways of the report.
However, like every summary, it is not self-sufficient
and we insist on the necessity to refer to the more
detailed analyses to fully understand the extent of
potential biases.
Despite its size, our report is rather limited in the
range of screened sources of bias. We tackle the ones
that we deem crucial for our prime use case. How-
ever, depending on the system’s design choices, other
sources are also valuable to explore. We acknowledge
similar limitations on our exploration of bias of out-
comes. Indeed, this issue is deeply dependent on the
application and some are not measurable without ac-
cess to the actual real-world consequences of the ML
system. We thus encourage the users to extend the
fairness audit to the inspection of post-deployment
biases. Then, our tool proposes a limited set of fair-
ness metrics, contrary to other tools. Nonetheless, we
implemented evaluation with event-based metrics and
prevalence correction which we didn’t find in other
fairness auditing tools, but we consider them impor-
tant for early-warning systems auditing. Finally, we
enforced best statistical practices to bring an ade-
quate level of robustness to our audit results. We
realized that this aspect was missing in existing fair-
ness analysis frameworks.

In summary, we propose FAMEWS to assess the
fairness of ML-based early-warning systems. We be-
lieve that the wide adoption of such auditing tools
could ease the communication between regulators, de-
velopers, and clinicians and could assist in developing
both accurate and ethical applications.
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Appendix A. Formalizations of
fairness and
performance metrics

In this section, we define in Table 2 the different per-
formance metrics available in FAMEWS. We show in
Table 3 the formalizations of fairness that we thought
important to consider while auditing alarm systems
in clinical settings and we link them to their corre-
sponding performance metrics. Precision-recall curve
and AUPRC aren’t present in this table, as checking
together for equal precision and recall across cohorts
doesn’t match one of the conventional notions of fair-
ness. Nonetheless, we still include them in our audit
pipeline as they are valuable performance metrics for
our use-case.

Appendix B. Proof prevalence
correction

Consider C to be a random binary classifier. It assigns
class 0 and class 1 with equal probability. Let D1 and
D2 be two datasets with different prevalence pv1 and
pv2, w.l.o.g. we assume pv1 < pv2.
This classifier being random, we expect it to have the
same performance on D1 and D2. Let us express the
recall, FPR, precision, and NPV on both datasets.
We denote by P1 (resp. P2) the number of positive
labels in D1 (resp. D2), N1 (resp. N2) the number of
negative labels in D1 (resp. D2), TP1 (resp. TP2) the
number of correctly predicted positive labels in D1

(resp. D2), TN1 (resp. TN2) the number of correctly
predicted negative labels in D1 (resp. D2), FP1 (resp.
FP2) the number of negative labels wrongly predicted
as positives in D1 (resp. D2) and FN1 (resp. FN2)
the number of positive labels wrongly predicted as
negatives in D1 (resp. D2).

recall1 =
TP1

P1
=

0.5× P1

P1
= 0.5 = recall2

FPR1 =
FP1

N1
=

0.5×N1

N1
= 0.5 = FPR2

precision1 =
TP1

TP1 + FP1
=

0.5× P1

0.5|D1|
=

0.5pv1|D1|
0.5|D1|

= pv1

precision2 = pv2

Table 2: Performance metrics definitions. Definition
of each of the model’s performance metrics
used in the first step of our fairness analysis.
In the formulas, P stands for the number of
positive labels, TP the number of correctly
predicted positive labels, TN the number of
correctly predicted negative labels, FP the
number of instances with true negative la-
bels that were incorrectly predicted as pos-
itive by the model, and FN the number
of instances with true positive labels that
were incorrectly predicted as negative by
the model.

Performance metric Definition

Recall TP/P
False positive rate (FPR) FP/(FP + TN)
Precision TP/(TP + FP )
Negative predictive value
(NPV)

TN/(TN + FN)

Average score on positive class For all positive labels, average
of the output scores

Average score on negative class For all negative labels, average
of the output scores

Calibration curve The frequency of positive labels
vs the mean predicted scores, it
illustrates how well the proba-
bilistic predictions of the model
are calibrated

Calibration error Area between the calibration
curve and the perfect calibra-
tion line

Receiver operating characteris-
tic (ROC) curve

True positive rate vs False pos-
itive rate

AUROC Area under the ROC curve
Precision-recall curve Precision vs Recall
AUPRC Area under the precision-recall

curve

NPV1 =
TN1

TN1 + FN1
=

0.5×N1

0.5|D1|

=
0.5(1− pv1)|D1|

0.5|D1|
= 1− pv1

NPV2 = 1− pv2

Recall and FPR are equal for both datasets as ex-
pected. However, this is not the case for precision
and NPV. Let us find a way to modify the formula of
precision and NPV such that they are equal for both
datasets.
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Table 3: Relation between popular formalizations of
fairness and performance metrics. We se-
lected a set of formalizations of fairness that
we deemed relevant for our use-case. In
this table, we outline for each formalization
the corresponding metrics we inspected. We
consider that a notion of fairness is re-
spected when the corresponding metric is
equal across cohorts. When we use the sym-
bol ‘&‘ that means that both metrics have
to be equal. For curves, we inspect visually
whether they are similar across cohorts and
use their respective error metrics to assess
more precisely the disparities.

Formalisation of fairness Related performance metric

Equality of opportunity Recall
Predictive equality FPR
Equalized odds AUROC, ROC curve, recall & FPR
Predictive parity Precision
Conditional use accuracy NPV & precision
Balance on positive class Average score on positive class
Balance on negative class Average score on negative class
Calibration Calibration curve, calibration error

Correction of precision We want c precision1 =
c precision2 (with c precision the corrected preci-
sion.) We keep the higher prevalence pv2 as a ref-
erence and we want to correct for pv1. We denote
by s the correction factor. We will artificially modify
the number of false positives for D1 by the factor s.

c precision1 = c precision2 = precision2 = pv2

=⇒ TP1

TP1 + sFP1
= pv2

=⇒ 0.5pv1 × |D1|
0.5pv1 × |D1|+ s× 0.5(1− pv1)× |D1|

= pv2

=⇒ pv1
pv1 + s(1− pv1)

= pv2

=⇒ s =
pv1 − pv1pv2
pv2(1− pv1)

s =

1
pv2

− 1
1

pv1
− 1

Correction of NPV We want c NPV1 = c NPV2

(with c NPV the corrected NPV). We keep the
smaller prevalence pv1 as a reference and we want
to correct for pv2. We denote by s the correction fac-
tor. We will artificially modify the number of false

negatives for D1 by the factor s.

c NPV2 = c NPV1 = NPV1 = 1− pv1

=⇒ TN2

TN2 + sFN2
= 1− pv1

=⇒ 0.5(1− pv2)× |D2|
0.5(1− pv2)|D2|+ s0.5pv2|D2|

= 1− pv1

=⇒ 1− pv2
1− pv2 + spv2

= 1− pv1

=⇒ s =
pv1 − pv1pv2
pv2(1− pv1)

s =

1
pv2

− 1
1

pv1
− 1

This correction allows us to have the same preci-
sion and NPV for both datasets. It is equivalent to
considering the precision and NPV in the case the
prevalences of both datasets are equal. All stages
have be run on the test set, except for the missing-
ness analysis that have been run of the training set.

Appendix C. Main findings from the
example report

We will now outline the key takeaways from the fair-
ness audit of the circulatory failure early-warning sys-
tem (Yèche et al., 2021) that we infer from the sam-
ple report (Appendix D). This report was obtained by
running FAMEWS on the averaged predictions from
10 LGBMmodels trained with different random seeds
on the HiRID dataset. It can serve as an example of
how to interpret such an analysis account.

C.1. Systematic performance discrepancy for
male patients

In the summary table Summarized performance
metrics per grouping (2.1.1.a), we can notice that
for almost every metric (except one) the model per-
forms worse on male patients than on female pa-
tients. Moreover, in the next aggregated view, it is
highlighted that an important part of these metrics
is statistically significantly worse. However, looking
at the more detailed analysis grouping by sex (sec-
tion 2.2.1), we realized that the discrepancy in per-
formance (delta value) seems relatively small. The
feature ranking doesn’t vary significantly between fe-
males and males.
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FAMEWS

C.2. Minority categories aren’t always worse
off

In the summary tables (from 2.1.1.a to 2.1.1.d) Sum-
marized performance metrics per grouping, we
can notice that the worst-performing category rarely
aligns with the minority category.

C.3. The effect of prevalence correction

If a cohort has a higher prevalence than the others
then its performance is decreased by the prevalence
correction, while if it has a lower prevalence its per-
formance will be pushed. Thus, it is not surprising
to observe that the gap between female and male
patients is increased after the correction of AUPRC
(Figure 2.2.1.a). In contrast to the effect on neuro-
logical patients, where the performance discrepancy
in AUPRC has vanished after the correction, as the
prevalence of events is the lowest for the neurologi-
cal cohort (Figure 2.2.3.a). However, one can wonder
whether it makes sense to correct for prevalence, i.e.
whether we should compare these cohorts under the
assumption that they have similar prevalences. It is
then important to discuss with clinicians to gain an
understanding of how a specific patient attribute im-
pacts the prevalence.

C.4. Label bias for neurological patients

In the Summary view based on the ratio of sig-
nificantly worst metrics (subsection 2.1.1), it is
underlined that the worst performance discrepancy
over the entire set of cohorts is for neurological pa-
tients on event-based recall. They also appear a lot
in the table Top 3 categories with biggest per-
formance metric discrepancies (2.1.3.a), empha-
sizing that the model is biased against them.
This is also reflected in the bias of outcomes analysis
where neurological patients have, by far, the biggest
disparity in the time gap between correct alarm and
event (section 3).
The Medical variable analysis (section 4) can
hint at an explanation for these discrepancies. In-
deed, neurological patients have a much higher me-
dian value for mean arterial pressure (MAP) than
other cohorts (see subsection 4.2.3). This variable
is used to construct the label for circulatory failure.
We can then wonder whether the label definition is
correct for these patients. These results trigger dis-
cussions with clinicians in order to adapt the model
design and use for neurological patients.

C.5. Dependence of the intensity of
measurements on patients’ cohorts

We run the Missingness analysis (section 6) for ar-
terial lactate (a Lac) and peak inspiratory pressure
(Spitzendruck). For both of these medical variables,
the intensity of measurements is dependent on the
patients’ groupings, both demographic and clinical.
Recall which is a critical metric for our type of appli-
cation, since we don’t want to miss a patient in cir-
culatory failure, is significantly worse when the mea-
surement is missing and the delta values seem quite
important. This suggests that missingness has a crit-
ical impact on model performance. This sparks pro-
cesses to improve the imputation strategy and also
to dialogue with clinicians in order to gain a better
understanding of these patterns of missingness.

Appendix D. Example of the report

In the following sample report, APACHE group
refers to the admission reason. To understand the
meaning of the medical variables, please refer to
the data description table of the HiRID bench-
mark (Yèche et al., 2021): https://github.com/

ratschlab/HIRID-ICU-Benchmark/blob/master/

preprocessing/resources/varref.tsv.
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1. Information about test dataset
Grouping by sex
Table 1.a

Category Number of patients Number of patients with event

F 1833 393

M 3253 780

Grouping by age_group
Table 1.b

Category Number of patients Number of patients with event

<50 766 127

50-65 1322 298

65-75 1418 350

75-85 1242 319

>85 338 79

Grouping by APACHE_group
Table 1.c

Category Number of patients Number of patients with event

Cardiovascular 1891 666

Neurological 1468 92

Gastrointestinal 522 151

Respiratory 471 102

Other 325 76

Trauma 279 61

Metabolic 98 19

Grouping by surgical_status
Table 1.d

Category Number of patients Number of patients with event

Surgical 2279 541

Non-surgical 2775 626
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2. Model Performance Analysis
Goal: Comparing the model performance across cohorts of patients

Binary metrics computed with a threshold on score of 0.445.

2.1. Aggregated views

2.1.1. Summarized performance metrics per grouping
Grouping by sex

The minority category is F.
Table 2.1.1.a

Metric Macro-average
Worst value
(category)

For minority
category

Recall ↑ 0.201 0.198 (M) 0.204

Precision ↑ 0.557 0.557 (M) 0.558

NPV ↑ 0.965 0.962 (M) 0.967

FPR ↓ 0.007 0.008 (M) 0.007

Corrected precision ↑ 0.576 0.557 (M) 0.596

Corrected NPV ↑ 0.967 0.967 (M) 0.967

Event-based recall ↑ 0.805 0.793 (M) 0.816

Calibration error ↓ 0.032 0.037 (F) 0.037

Avg. score on positive class 0.255 0.252 (M) 0.257

Avg. score on negative class 0.033 0.035 (M) 0.031

AUROC ↑ 0.914 0.908 (M) 0.921

AUPRC ↑ 0.39 0.385 (M) 0.396

Corrected AUPRC ↑ 0.406 0.385 (M) 0.427

Event-based AUPRC ↑ 0.694 0.674 (M) 0.715

Corrected event-based AUPRC ↑ 0.707 0.674 (M) 0.741

Grouping by age_group

The minority category is >85.
Table 2.1.1.b

Metric Macro-average
Worst value
(category)

For minority
category

Recall ↑ 0.199 0.184 (<50) 0.204

Precision ↑ 0.598 0.522 (50-65) 0.708

NPV ↑ 0.963 0.953 (>85) 0.953

FPR ↓ 0.007 0.01 (75-85) 0.006

Corrected precision ↑ 0.67 0.564 (75-85) 0.719

Corrected NPV ↑ 0.98 0.98 (50-65) 0.98

Event-based recall ↑ 0.793 0.751 (<50) 0.795

Calibration error ↓ 0.054 0.082 (>85) 0.082

Avg. score on positive class 0.257 0.253 (75-85) 0.266

Avg. score on negative class 0.034 0.041 (75-85) 0.038

AUROC ↑ 0.915 0.885 (75-85) 0.916

AUPRC ↑ 0.408 0.372 (75-85) 0.479

Corrected AUPRC ↑ 0.475 0.393 (75-85) 0.489
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Event-based AUPRC ↑ 0.717 0.654 (75-85) 0.82

Corrected event-based AUPRC ↑ 0.768 0.676 (75-85) 0.828

Grouping by APACHE_group

The minority category is Metabolic.
Table 2.1.1.c

Metric Macro-average Worst value (category)
For minority
category

Recall ↑ 0.18 0.058 (Neurological) 0.164

Precision ↑ 0.552 0.386 (Neurological) 0.709

NPV ↑ 0.959 0.944 (Cardiovascular) 0.952

FPR ↓ 0.008 0.015 (Gastrointestinal) 0.004

Corrected precision ↑ 0.679 0.58 (Gastrointestinal) 0.766

Corrected NPV ↑ 0.99 0.989 (Neurological) 0.991

Event-based recall ↑ 0.755 0.48 (Neurological) 0.716

Calibration error ↓ 0.075 0.119 (Neurological) 0.113

Avg. score on positive class 0.24 0.132 (Neurological) 0.244

Avg. score on negative class 0.035 0.056 (Cardiovascular) 0.032

AUROC ↑ 0.908 0.878 (Cardiovascular) 0.93

AUPRC ↑ 0.383 0.172 (Neurological) 0.466

Corrected AUPRC ↑ 0.491 0.415 (Cardiovascular) 0.524

Event-based AUPRC ↑ 0.676 0.418 (Neurological) 0.808

Corrected event-based AUPRC ↑ 0.77 0.707 (Cardiovascular) 0.843

Grouping by surgical_status

The minority category is Surgical.
Table 2.1.1.d

Metric Macro-average
Worst value
(category)

For minority
category

Recall ↑ 0.205 0.194 (Non-surgical) 0.217

Precision ↑ 0.554 0.553 (Non-surgical) 0.555

NPV ↑ 0.963 0.961 (Surgical) 0.961

FPR ↓ 0.008 0.009 (Surgical) 0.009

Corrected precision ↑ 0.571 0.557 (Surgical) 0.557

Corrected NPV ↑ 0.966 0.965 (Non-surgical) 0.966

Event-based recall ↑ 0.802 0.799 (Non-surgical) 0.804

Calibration error ↓ 0.033 0.033 (Surgical) 0.033

Avg. score on positive class 0.258 0.248 (Non-surgical) 0.268

Avg. score on negative class 0.035 0.04 (Surgical) 0.04

AUROC ↑ 0.912 0.911 (Surgical) 0.911

AUPRC ↑ 0.388 0.385 (Non-surgical) 0.39

Corrected AUPRC ↑ 0.4 0.391 (Surgical) 0.391

Event-based AUPRC ↑ 0.687 0.682 (Surgical) 0.682

Corrected event-based AUPRC ↑ 0.698 0.682 (Surgical) 0.682
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2.1.2. Summary view based on the ratio of significantly worse metrics
We first show an overview of this analysis over all groupings.
Worst ratio: 73.3% for category 75-85 (age_group) with the biggest delta 0.053 on Corrected
event-based AUPRC.
Worst delta: 0.346 on Event-based recall for category Neurological (APACHE_group).

In the following tables, we display the ratio of significantly worse metrics (over the total number of
analysed performance metrics) for each category of patients.

Grouping by sex

Worst ratio: 60.0% for category M with the biggest delta 0.068 on Corrected event-based AUPRC.
Worst delta is the same as above.

Table 2.1.2.a

F M

6.7% 60.0%

Grouping by age_group

Worst ratio: 73.3% for category 75-85 with the biggest delta 0.053 on Corrected event-based AUPRC.
Worst delta: 0.056 on Event-based recall for category <50.

Table 2.1.2.b

<50 50-65 65-75 75-85 >85

20.0% 33.3% 33.3% 73.3% 20.0%

Grouping by APACHE_group

Worst ratio: 46.7% for category Cardiovascular with the biggest delta 0.104 on Corrected precision.
Worst delta: 0.346 on Event-based recall for category Neurological.

Table 2.1.2.c

Cardiovascular Neurological Gastrointestinal Respiratory Other Trauma Metabolic

46.7% 46.7% 40.0% 40.0% 33.3% 6.7% 26.7%

Grouping by surgical_status

Worst ratio: 40.0% for category Surgical with the biggest delta 0.031 on Corrected event-based
AUPRC.
Worst delta is the same as above.

Table 2.1.2.d

Surgical Non-surgical

40.0% 13.3%
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2.1.3. Top 3 cohorts with the biggest performance metric discrepancies
In the following table, we show for each performance metric the 3 cohorts with the biggest delta that
are significantly worse off than the rest of the patients. If some cells are empty, this means that there
are less than 3 cohorts, possibly none, that are significantly worse than the rest of the patients for this
particular metric.

Table 2.1.3.a

Metric Cohort 1 (∆) Cohort 2 (∆) Cohort 3 (∆)

Recall ↑ Neurological (0.156) Respiratory (0.047) Metabolic (0.038)

Precision ↑ Neurological (0.176) 50-65 (0.048) 75-85 (0.03)

NPV ↑ Cardiovascular (0.028) Gastrointestinal (0.016) Other (0.014)

FPR ↓ Gastrointestinal (0.008) Cardiovascular (0.007) 75-85 (0.004)

Corrected precision ↑ Cardiovascular (0.104) Gastrointestinal (0.067) 75-85 (0.04)

Corrected NPV ↑ - - -

Event-based recall ↑ Neurological (0.346) Metabolic (0.088) <50 (0.056)

Calibration error ↓ Neurological (0.096) Metabolic (0.09) >85 (0.056)

Avg. score on positive class Neurological (0.133) Respiratory (0.026) Non-surgical (0.02)

Avg. score on negative class Cardiovascular (0.031) Gastrointestinal (0.013) Surgical (0.01)

AUROC ↑ Cardiovascular (0.045) 75-85 (0.034) Respiratory (0.027)

AUPRC ↑ Neurological (0.233) 75-85 (0.023) 50-65 (0.016)

Corrected AUPRC ↑ Cardiovascular (0.084) M (0.042) 75-85 (0.035)

Event-based AUPRC ↑ Neurological (0.281) 75-85 (0.046) M (0.041)

Corrected event-based AUPRC ↑ Cardiovascular (0.079) M (0.068) 75-85 (0.053)
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2.2. Grouping by
For each grouping, we display box plots that show the performance metrics' distributions for the
different categories of patients. For each metric, we emphasize with a black star the cohorts that are
significantly worse off compared to the rest of the patients and with a red star the cohorts that appear
in the table Top 3 cohorts with the biggest performance metric discrepancies.
For each grouping, we propose a table that presents the results of the statistical analysis: comparing
the different performance metrics for a cohort against the rest of the patients. P-values are obtained by
running the Mann-Whitney U test with Bonferroni correction. We display only metrics and cohorts with
a significant p-value (smaller than 0.001/number of comparisons) and whose delta is bigger than 0.
For binary grouping, we display the category with the worst distribution for each metric. While for
multicategorical grouping, we display whether the distribution for the category is better or worse than
for the rest of patients
We also display the calibration curve for each grouping's categories as well as the curves
corresponding to each score-based metrics.

2.2.1. ... sex
Figure 2.2.1.a
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Table 2.2.1.a

Metric
Cohort with the
worst metric P-value Delta

NPV ↑ M 1.30e-25 0.005

FPR ↓ M 1.89e-12 0.001

Corrected precision ↑ M 1.96e-14 0.039

Event-based recall ↑ M 6.82e-20 0.023

Calibration error ↓ F 5.68e-09 0.008
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Avg. score on negative class M 1.92e-33 0.004

AUROC ↑ M 3.57e-30 0.013

Corrected AUPRC ↑ M 9.56e-26 0.042

Event-based AUPRC ↑ M 1.13e-18 0.041

Corrected event-based AUPRC ↑ M 7.40e-31 0.068

Figure 2.2.1.b

Figure 2.2.1.c

Figure 2.2.1.d
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2.2.2. ... age_group
Figure 2.2.2.a
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Table 2.2.2.a

Metric Category
Cohort vs.
rest P-value Delta

Recall ↑ <50 worse 9.18e-07 0.018

Recall ↑ 75-85 better 8.03e-07 0.013

Precision ↑ <50 better 4.50e-34 0.13

Precision ↑ 50-65 worse 7.48e-14 0.048

Precision ↑ 75-85 worse 6.77e-07 0.03

Precision ↑ >85 better 6.61e-33 0.162

NPV ↑ <50 better 1.28e-34 0.019

NPV ↑ 50-65 better 3.88e-19 0.004

NPV ↑ 65-75 worse 1.93e-28 0.006

NPV ↑ 75-85 worse 2.48e-34 0.011

NPV ↑ >85 worse 1.70e-27 0.011

FPR ↓ <50 better 1.28e-34 0.006

FPR ↓ 65-75 worse 2.98e-19 0.001

FPR ↓ 75-85 worse 4.50e-34 0.004

FPR ↓ >85 better 2.66e-25 0.002

Corrected precision ↑ <50 better 1.28e-34 0.294

Corrected precision ↑ 50-65 better 5.62e-11 0.04
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Corrected precision ↑ 75-85 worse 2.27e-09 0.04

Corrected precision ↑ >85 better 5.35e-32 0.146

Corrected NPV ↑ <50 better 1.28e-34 0.013

Corrected NPV ↑ 50-65 better 1.28e-34 0.013

Corrected NPV ↑ 65-75 better 1.28e-34 0.013

Corrected NPV ↑ 75-85 better 1.28e-34 0.014

Corrected NPV ↑ >85 better 1.28e-34 0.014

Event-based recall ↑ <50 worse 6.44e-24 0.056

Event-based recall ↑ 50-65 worse 2.22e-06 0.013

Event-based recall ↑ 65-75 better 6.23e-27 0.041

Calibration error ↓ <50 worse 2.23e-29 0.029

Calibration error ↓ 50-65 worse 1.03e-25 0.021

Calibration error ↓ 65-75 worse 1.01e-20 0.014

Calibration error ↓ 75-85 worse 7.78e-26 0.019

Calibration error ↓ >85 worse 8.92e-34 0.056

Avg. score on positive class >85 better 3.18e-08 0.012

Avg. score on negative class <50 better 1.28e-34 0.016

Avg. score on negative class 50-65 better 1.82e-20 0.002

Avg. score on negative class 65-75 worse 2.13e-34 0.005

Avg. score on negative class 75-85 worse 1.28e-34 0.009

Avg. score on negative class >85 worse 1.51e-21 0.004

AUROC ↑ <50 better 1.28e-34 0.048

AUROC ↑ 50-65 better 5.09e-29 0.013

AUROC ↑ 65-75 worse 1.59e-30 0.017

AUROC ↑ 75-85 worse 1.49e-34 0.034

AUPRC ↑ <50 better 6.73e-13 0.044

AUPRC ↑ 50-65 worse 2.03e-07 0.016

AUPRC ↑ 75-85 worse 1.33e-09 0.023

AUPRC ↑ >85 better 1.44e-29 0.097

Corrected AUPRC ↑ <50 better 1.28e-34 0.222

Corrected AUPRC ↑ 50-65 better 4.89e-26 0.061

Corrected AUPRC ↑ 75-85 worse 7.34e-14 0.035

Corrected AUPRC ↑ >85 better 3.98e-27 0.086

Event-based AUPRC ↑ <50 better 7.33e-25 0.083

Event-based AUPRC ↑ 50-65 worse 8.e-11 0.041

Event-based AUPRC ↑ 75-85 worse 4.99e-15 0.046

Event-based AUPRC ↑ >85 better 1.13e-30 0.145

Corrected event-based AUPRC ↑ <50 better 1.28e-34 0.199

Corrected event-based AUPRC ↑ 50-65 better 2.24e-06 0.031

Corrected event-based AUPRC ↑ 75-85 worse 1.37e-18 0.053

Corrected event-based AUPRC ↑ >85 better 5.53e-29 0.132

Figure 2.2.2.b
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Figure 2.2.2.c

Figure 2.2.2.d
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2.2.3. ... APACHE_group
Figure 2.2.3.a
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Table 2.2.3.a

Metric Category
Cohort vs.
rest P-value Delta

Recall ↑ Cardiovascular better 1.38e-31 0.044

Recall ↑ Neurological worse 1.28e-34 0.156

Recall ↑ Gastrointestinal better 7.78e-32 0.071

Recall ↑ Respiratory worse 7.05e-28 0.047

Recall ↑ Metabolic worse 1.05e-07 0.038

Precision ↑ Cardiovascular better 2.35e-08 0.027

Precision ↑ Neurological worse 1.44e-34 0.176

Precision ↑ Metabolic better 1.64e-22 0.155

NPV ↑ Cardiovascular worse 1.28e-34 0.028

NPV ↑ Neurological better 1.28e-34 0.038

NPV ↑ Gastrointestinal worse 1.63e-34 0.016

NPV ↑ Respiratory worse 2.16e-30 0.012

NPV ↑ Other worse 5.91e-30 0.014

NPV ↑ Trauma better 1.28e-34 0.012

NPV ↑ Metabolic worse 4.35e-10 0.011

FPR ↓ Cardiovascular worse 1.28e-34 0.007

FPR ↓ Neurological better 1.28e-34 0.01

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.08.24302458doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302458
http://creativecommons.org/licenses/by-nc/4.0/


23

FPR ↓ Gastrointestinal worse 4.52e-33 0.008

FPR ↓ Other worse 2.04e-06 0.002

FPR ↓ Trauma better 9.45e-22 0.002

FPR ↓ Metabolic better 1.13e-33 0.004

Corrected precision ↑ Cardiovascular worse 5.07e-34 0.104

Corrected precision ↑ Neurological better 1.28e-34 0.252

Corrected precision ↑ Gastrointestinal worse 2.1e-10 0.067

Corrected precision ↑ Trauma better 1.84e-27 0.114

Corrected precision ↑ Metabolic better 1.03e-25 0.134

Corrected NPV ↑ Cardiovascular better 1.28e-34 0.019

Corrected NPV ↑ Neurological better 1.28e-34 0.016

Corrected NPV ↑ Gastrointestinal better 1.28e-34 0.019

Corrected NPV ↑ Respiratory better 1.28e-34 0.018

Corrected NPV ↑ Other better 1.28e-34 0.018

Corrected NPV ↑ Trauma better 1.28e-34 0.018

Corrected NPV ↑ Metabolic better 1.28e-34 0.018

Event-based recall ↑ Cardiovascular better 1.32e-34 0.081

Event-based recall ↑ Neurological worse 1.28e-34 0.346

Event-based recall ↑ Gastrointestinal better 5.90e-10 0.02

Event-based recall ↑ Other better 3.13e-13 0.035

Event-based recall ↑ Metabolic worse 1.55e-13 0.088

Calibration error ↓ Cardiovascular better 2.11e-11 0.01

Calibration error ↓ Neurological worse 1.28e-34 0.096

Calibration error ↓ Gastrointestinal worse 3.38e-30 0.032

Calibration error ↓ Respiratory worse 5.88e-33 0.041

Calibration error ↓ Other worse 4.93e-33 0.04

Calibration error ↓ Trauma worse 1.28e-34 0.056

Calibration error ↓ Metabolic worse 1.28e-34 0.09

Avg. score on positive class Cardiovascular better 1.58e-34 0.035

Avg. score on positive class Neurological worse 1.28e-34 0.133

Avg. score on positive class Gastrointestinal better 1.94e-32 0.043

Avg. score on positive class Respiratory worse 1.57e-27 0.026

Avg. score on negative class Cardiovascular worse 1.28e-34 0.031

Avg. score on negative class Neurological better 1.28e-34 0.032

Avg. score on negative class Gastrointestinal worse 1.28e-34 0.013

Avg. score on negative class Respiratory worse 1.71e-10 0.002

Avg. score on negative class Other worse 3.15e-34 0.009

Avg. score on negative class Trauma better 1.28e-34 0.014

AUROC ↑ Cardiovascular worse 1.28e-34 0.045

AUROC ↑ Neurological better 2.e-29 0.023

AUROC ↑ Gastrointestinal worse 1.18e-12 0.011

AUROC ↑ Respiratory worse 2.99e-33 0.027

AUROC ↑ Other worse 1.03e-18 0.016
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AUROC ↑ Trauma better 1.34e-30 0.033

AUROC ↑ Metabolic better 1.05e-10 0.019

AUPRC ↑ Cardiovascular better 8.15e-19 0.028

AUPRC ↑ Neurological worse 1.28e-34 0.233

AUPRC ↑ Gastrointestinal better 1.40e-18 0.062

AUPRC ↑ Metabolic better 4.27e-17 0.081

Corrected AUPRC ↑ Cardiovascular worse 1.53e-34 0.084

Corrected AUPRC ↑ Neurological better 1.28e-34 0.117

Corrected AUPRC ↑ Trauma better 1.63e-34 0.158

Corrected AUPRC ↑ Metabolic better 7.75e-17 0.072

Event-based AUPRC ↑ Neurological worse 1.28e-34 0.281

Event-based AUPRC ↑ Respiratory better 4.99e-15 0.047

Event-based AUPRC ↑ Metabolic better 1.99e-23 0.126

Corrected event-based AUPRC ↑ Cardiovascular worse 8.48e-32 0.079

Corrected event-based AUPRC ↑ Neurological better 8.35e-33 0.088

Corrected event-based AUPRC ↑ Respiratory better 5.11e-08 0.03

Corrected event-based AUPRC ↑ Trauma better 3.23e-26 0.095

Corrected event-based AUPRC ↑ Metabolic better 8.35e-23 0.101

Figure 2.2.3.b

Figure 2.2.3.c
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Figure 2.2.3.d
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2.2.4. ... surgical_status
Figure 2.2.4.a
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Table 2.2.4.a

Metric
Cohort with the
worst metric P-value Delta

Recall ↑ Non-surgical 2.1e-19 0.024

NPV ↑ Surgical 8.23e-18 0.004

FPR ↓ Surgical 1.62e-21 0.002

Corrected precision ↑ Surgical 1.57e-08 0.027

Avg. score on positive class Non-surgical 3.41e-28 0.02

Avg. score on negative class Surgical 1.28e-34 0.01

Corrected AUPRC ↑ Surgical 6.08e-08 0.019

Corrected event-based AUPRC ↑ Surgical 1.08e-09 0.031

Figure 2.2.4.b
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Figure 2.2.4.c

Figure 2.2.4.d
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3. Time Gap Analysis
Goal: Checking whether the time gap between the first correct alarm and the start of the
corresponding event are similar across cohorts of patients

3.1. Aggregated views

3.1.1. Summary statistics of median time gap per grouping
For event starting in the window 0-3h, the overall macro-averaged median time gap is 48.4 (in
minutes).
For event starting in the window 3-6h, the overall macro-averaged median time gap is 218.2 (in
minutes).
For event starting in the window 6-12h, the overall macro-averaged median time gap is 394.4 (in
minutes).
For event starting in the window >12h, the overall macro-averaged median time gap is 66.6 (in
minutes).

Grouping by sex
Table 3.1.1.a

Start event
Macro-average (in
minutes) Minimum (category) For minority category

0-3h 47.5 45.0 (M) 50.0

3-6h 217.5 215.0 (F) 215.0

6-12h 405.0 395.0 (M) 415.0

>12h 30.625 26.25 (F) 26.25

Grouping by age_group
Table 3.1.1.b

Start event
Macro-average (in
minutes) Minimum (category) For minority category

0-3h 43.0 25.0 (>85) 25.0

3-6h 216.25 210.0 (50-65) 215.0

6-12h 403.0 375.0 (<50) 432.5

>12h 38.5 20.0 (75-85) 55.0

Grouping by APACHE_group
Table 3.1.1.c

Start event
Macro-average (in
minutes) Minimum (category) For minority category

0-3h 55.357 35.0 (Neurological) 90.0

3-6h 220.893 190.0 (Respiratory) 255.0

6-12h 367.143 157.5 (Neurological) 370.0

>12h 170.357 20.0 (Cardiovascular) 140.0

Grouping by surgical_status
Table 3.1.1.d

Start event
Macro-average (in
minutes) Minimum (category) For minority category

0-3h 47.5 45.0 (Surgical) 45.0

3-6h 217.5 215.0 (Surgical) 215.0

6-12h 405.0 400.0 (Surgical) 400.0

>12h 32.5 30.0 (Non-surgical) 35.0
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3.1.2. Top 3 cohorts with the biggest time gap discrepancies
In the following table, we show for each start of the event window the 3 cohorts with the biggest delta
that are significantly worse off than the rest of the patients. If some cells are empty, this means that
there are fewer than 3 cohorts, possibly none, that are significantly worse than the rest of the patients
for this particular start of the event window.

Table 3.1.2.a

Start event
Cohort 1 (∆ in
minutes)

Cohort 2 (∆ in
minutes)

Cohort 3 (∆ in
minutes)

0-3h >85 (25.0) Neurological (15.0) Cardiovascular (5.0)

3-6h Respiratory (30.0) Other (15.0) 50-65 (10.0)

6-12h Neurological (247.5) Trauma (40.0) <50 (30.0)

>12h Cardiovascular (70.0) 75-85 (17.5) Other (12.5)
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3.2. Grouping by
For each grouping, we display box plots that show the median time gap between alarm and event for
the different categories of patients depending on the period of the stay when the event began. For
each start of event window, we emphasize with a black star the cohorts that are significantly worse off
compared to the rest of the patients and with a red star the cohorts that appear in the table Top 3
cohorts with the biggest time gap discrepancies.
For each grouping, we propose a table that presents the results of the statistical analysis: comparing
the time gap from alarm to event for one cohort against the rest of the patients. P-values are obtained
by running the Mann-Whitney U test with Bonferroni correction. We display only start of event windows
and cohorts with a significant p-value (smaller than 0.001/number of comparisons) and whose delta is
bigger than 0. For binary grouping, we display the category with the worst time gap distribution for
each start of event window. While for multicategorical grouping we display whether the distribution for
the category is better or worse than for the rest of patients

3.2.1. ... sex
Figure 3.2.1.a

Table 3.2.1.a

Start event
Cohort with the worst
time gap P-value Delta (in minutes)

6-12h M 2.58e-20 20.0
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3.2.2. ... age_group
Figure 3.2.2.a

Table 3.2.2.a

Start event Category Cohort vs. rest P-value Delta (in minutes)

0-3h <50 better 1.48e-12 5.0

0-3h 75-85 better 6.25e-11 5.0

0-3h >85 worse 3.53e-32 25.0

3-6h 50-65 worse 6.9e-09 10.0

3-6h 75-85 better 3.18e-11 6.25

6-12h <50 worse 2.1e-20 30.0

6-12h 65-75 worse 1.1e-16 20.0

6-12h 75-85 better 1.05e-09 15.0

6-12h >85 better 2.75e-29 37.5

>12h 50-65 better 3.62e-13 20.0

>12h 75-85 worse 4.78e-18 17.5

>12h >85 better 7.04e-16 25.0
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3.2.3. ... APACHE_group
Figure 3.2.3.a

Table 3.2.3.a

Start event Category Cohort vs. rest P-value Delta (in minutes)

0-3h Cardiovascular worse 1.71e-14 5.0

0-3h Neurological worse 4.61e-13 15.0

0-3h Respiratory better 7.03e-06 10.0

0-3h Other better 3.51e-18 10.0

0-3h Trauma better 1.58e-14 15.0

0-3h Metabolic better 1.69e-21 45.0

3-6h Cardiovascular better 1.99e-06 10.0

3-6h Respiratory worse 5.34e-24 30.0

3-6h Other worse 3.59e-11 15.0

6-12h Cardiovascular better 1.19e-09 16.25

6-12h Neurological worse 1.28e-25 247.5

6-12h Gastrointestinal better 1.68e-12 65.0

6-12h Trauma worse 1.23e-18 40.0

>12h Cardiovascular worse 1.72e-33 70.0

>12h Gastrointestinal better 1.83e-26 427.5

>12h Respiratory better 1.4e-08 135.0
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>12h Other worse 1.19e-08 12.5

>12h Trauma better 6.72e-31 330.0

>12h Metabolic better 9.84e-30 110.0
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3.2.4. ... surgical_status
Figure 3.2.4.a

Table 3.2.4.a

Start event
Cohort with the worst
time gap P-value Delta (in minutes)

0-3h Surgical 5.81e-23 5.0

6-12h Surgical 5.46e-05 10.0
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4. Medical Variable Analysis
Goal: Comparing the median value of relevant medical variables across cohorts

We check the following variables: a_Lac, ABPm

4.1. Aggregated views

4.1.1. Top 3 cohorts with the biggest differences in the medical variables
distributions
In the following table, for each of the selected medical variables and median computation condition,
we show the 3 cohorts with the biggest delta that are significantly different than the rest of the patients.
If some cells are empty, that means that there are less than 3 cohorts (possibly none) that are
significantly different than the rest of the patients for this particular medical variable and median
computation condition.

Table 4.1.1.a

Medical Variable Cohort 1 (∆) Cohort 2 (∆) Cohort 3 (∆)

a_Lac (mmol/l) Gastrointestinal (0.25) Cardiovascular (0.25) Neurological (0.25)

a_Lac - Not in event (mmol/l) Gastrointestinal (0.25) Cardiovascular (0.25) Neurological (0.25)

a_Lac - Never in event (mmol/l) surgical_status (0.2) Cardiovascular (0.15) <50 (0.1)

ABPm (mmHg) Neurological (14.0) Cardiovascular (10.0) <50 (5.0)

ABPm - Not in event (mmHg) Neurological (14.0) Cardiovascular (10.0) <50 (5.0)

ABPm - Never in event (mmHg) Neurological (12.0) Cardiovascular (10.0) <50 (4.0)
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4.2. Grouping by
For each grouping, we display box plots that show the median value of the selected medical variables
for three conditions: all time points during the entire stay, time points while not in an event, and time
points from patients not experiencing any event. For each variable and condition, we emphasize with a
black star the cohorts that are significantly different compared to the rest of the patients and with a red
star the cohorts that appear in the table Top 3 cohorts with the biggest differences in the medical
variables values.
For each grouping, we propose a table that presents the results of the statistical analysis: comparing
the medical variables' median value for one cohort against the rest of the patients. P-values are
obtained by running the Mann-Whitney U test with Bonferroni correction. We display only medical
variables and cohorts with a significant p-value (smaller than 0.001/number of comparisons) and
whose delta is bigger than 0. For binary grouping, we display the category with the greatest median
value for each of the selected medical variables and median computation condition. While for
multicategorical grouping we display whether the median value for the category is greater or less than
for the rest of patients

4.2.1. ... sex
Figure 4.2.1.a

Table 4.2.1.a

Medical Variable
Cohort with greater
median value P-value Delta

a_Lac M 4.79e-30 0.05

a_Lac - Not in event M 4.95e-30 0.05

ABPm F 3.98e-40 2.5

ABPm - Not in event F 3.77e-40 2.5
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ABPm - Never in event F 2.97e-43 3.0
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4.2.2. ... age_group
Figure 4.2.2.a

Table 4.2.2.a

Medical Variable Category Cohort vs. rest P-value Delta

a_Lac <50 less 1.35e-39 0.112

a_Lac 50-65 less 6.63e-36 0.05

a_Lac 65-75 greater 8.44e-38 0.05

a_Lac 75-85 greater 4.86e-32 0.05

a_Lac >85 less 8.42e-33 0.1

a_Lac - Not in event <50 less 1.41e-39 0.112

a_Lac - Not in event 50-65 less 6.63e-36 0.05

a_Lac - Not in event 65-75 greater 4.76e-39 0.05

a_Lac - Not in event 75-85 greater 1.09e-32 0.05

a_Lac - Not in event >85 less 5.44e-33 0.1

a_Lac - Never in event <50 less 1.35e-41 0.1

ABPm <50 greater 1.11e-37 5.0

ABPm 50-65 greater 9.06e-44 1.0

ABPm 65-75 less 2.07e-43 2.0

ABPm 75-85 less 2.23e-40 3.0

ABPm >85 less 8.96e-29 1.0
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ABPm - Not in event <50 greater 1.11e-37 5.0

ABPm - Not in event 50-65 greater 9.06e-44 1.0

ABPm - Not in event 65-75 less 2.97e-43 2.0

ABPm - Not in event 75-85 less 2.23e-40 3.0

ABPm - Not in event >85 less 6.84e-29 1.0

ABPm - Never in event <50 greater 5.93e-41 4.0

ABPm - Never in event 50-65 greater 9.12e-43 1.0

ABPm - Never in event 65-75 less 2.21e-40 1.0

ABPm - Never in event 75-85 less 3.27e-40 3.0

ABPm - Never in event >85 less 1.14e-29 1.0
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4.2.3. ... APACHE_group
Figure 4.2.3.a

Table 4.2.3.a

Medical Variable Category Cohort vs. rest P-value Delta

a_Lac Cardiovascular greater 5.77e-40 0.25

a_Lac Neurological less 8.43e-41 0.25

a_Lac Gastrointestinal greater 2.23e-43 0.25

a_Lac Respiratory less 4.14e-44 0.2

a_Lac Other less 4.51e-21 0.05

a_Lac Trauma less 1.37e-41 0.2

a_Lac Metabolic less 4.28e-42 0.2

a_Lac - Not in event Cardiovascular greater 5.77e-40 0.25

a_Lac - Not in event Neurological less 9.91e-41 0.25

a_Lac - Not in event Gastrointestinal greater 3.22e-43 0.25

a_Lac - Not in event Respiratory less 4.14e-44 0.2

a_Lac - Not in event Other less 4.51e-21 0.05

a_Lac - Not in event Trauma less 1.37e-41 0.2

a_Lac - Not in event Metabolic less 4.28e-42 0.2

a_Lac - Never in event Cardiovascular greater 1.90e-42 0.15

a_Lac - Never in event Neurological less 3.20e-41 0.1
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a_Lac - Never in event Gastrointestinal greater 1.32e-43 0.1

a_Lac - Never in event Respiratory less 1.76e-45 0.1

a_Lac - Never in event Other less 8.31e-37 0.1

a_Lac - Never in event Trauma less 2.33e-35 0.05

a_Lac - Never in event Metabolic less 7.89e-39 0.1

ABPm Cardiovascular less 6.14e-44 10.0

ABPm Neurological greater 1.76e-42 14.0

ABPm Gastrointestinal less 2.10e-37 2.0

ABPm Respiratory less 2.95e-41 3.0

ABPm Other less 5.26e-36 1.0

ABPm Trauma greater 4.33e-41 4.0

ABPm Metabolic greater 6.85e-39 3.75

ABPm - Not in event Cardiovascular less 9.05e-44 10.0

ABPm - Not in event Neurological greater 1.76e-42 14.0

ABPm - Not in event Gastrointestinal less 2.10e-37 2.0

ABPm - Not in event Respiratory less 2.95e-41 3.0

ABPm - Not in event Other less 5.26e-36 1.0

ABPm - Not in event Trauma greater 4.33e-41 4.0

ABPm - Not in event Metabolic greater 6.85e-39 3.75

ABPm - Never in event Cardiovascular less 4.65e-45 10.0

ABPm - Never in event Neurological greater 7.39e-45 12.0

ABPm - Never in event Gastrointestinal less 2.35e-41 2.0

ABPm - Never in event Respiratory less 2.8e-38 4.0

ABPm - Never in event Other less 6.96e-42 2.0

ABPm - Never in event Trauma greater 2.6e-41 3.0

ABPm - Never in event Metabolic greater 3.47e-39 3.0
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4.2.4. ... surgical_status
Figure 4.2.4.a

Table 4.2.4.a

Medical Variable
Cohort with greater
median value P-value Delta

a_Lac Surgical 4.63e-41 0.2

a_Lac - Not in event Surgical 1.34e-40 0.2

a_Lac - Never in event Surgical 5.45e-38 0.2

ABPm Non-surgical 2.88e-45 3.0

ABPm - Not in event Non-surgical 1.76e-45 3.0

ABPm - Never in event Non-surgical 9.73e-44 4.0
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5. Feature importance Analysis
Goal: Comparing the top 15 most important features across cohorts

5.1. Aggregated views

5.1.1 Similarity of feature ranking per groupig
The following table displays the RBO (similarity measure) between the feature ranking for a patients'
cohort and the general feature ranking. We consider the feature ranking for a specific cohort to be
significantly different when its RBO is smaller than 0.627 (colored in red in the table).

Table 5.1.1.a

Grouping Category RBO

sex F 0.635

sex M 0.627

age_group <50 0.574

age_group 50-65 0.618

age_group 65-75 0.617

age_group 75-85 0.633

age_group >85 0.627

APACHE_group Cardiovascular 0.611

APACHE_group Neurological 0.618

APACHE_group Gastrointestinal 0.622

APACHE_group Respiratory 0.615

APACHE_group Other 0.619

APACHE_group Trauma 0.607

APACHE_group Metabolic 0.597

surgical_status Surgical 0.627

surgical_status Non-surgical 0.635
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5.2. Grouping by
We will now display for each grouping, the top 15 most important features. When the feature's rank
changes compared to the general ranking, we put the rank difference in parentheses.
We color in red the features that aren't in the general top 15 features and in blue the ones that change
place within the top 15, when their delta of inverse rank is significantly large.

5.2.1. ... sex
Table 5.2.1.a

Top 15 Top 15 F Top 15 M

a_Lac a_Lac a_Lac

datetime datetime datetime

ABPm ABPm ABPm

ABPs ABPs ABPs

HR HR HR

ABPd ABPd Spitzendruck (↑ 1)

Spitzendruck Spitzendruck ABPd (↓ 1)

RASS RASS RASS

age age age

a-BE a-BE a-BE

creatinine creatinine creatinine

norepinephrine norepinephrine norepinephrine

ETCO2 ETCO2 ETCO2

glucose glucose glucose

INR INR INR

5.2.2. ... age_group
Table 5.2.2.a

Top 15 Top 15 <50 Top 15 50-65 Top 15 65-75

a_Lac a_Lac a_Lac a_Lac

datetime datetime datetime datetime

ABPm age (↑ 6) ABPm ABPm

ABPs ABPm (↓ 1) ABPs ABPs

HR HR HR HR

ABPd ABPs (↓ 2) ABPd Spitzendruck (↑ 1)

Spitzendruck ABPd (↓ 1) Spitzendruck ABPd (↓ 1)

RASS Spitzendruck (↓ 1) RASS RASS

age RASS (↓ 1) a-BE (↑ 1) a-BE (↑ 1)

a-BE a-BE creatinine (↑ 1) creatinine (↑ 1)

creatinine creatinine norepinephrine (↑ 1) norepinephrine (↑ 1)

norepinephrine norepinephrine ETCO2 (↑ 1) age (↓ 3)

ETCO2 ETCO2 glucose (↑ 1) ETCO2

glucose glucose INR (↑ 1) glucose

INR INR age (↓ 6) INR

Top 15 75-85 Top 15 >85

a_Lac a_Lac

datetime datetime
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ABPm ABPm

ABPs ABPs

HR HR

ABPd ABPd

Spitzendruck Spitzendruck

RASS age (↑ 1)

age RASS (↓ 1)

a-BE a-BE

creatinine creatinine

ETCO2 (↑ 1) ETCO2 (↑ 1)

norepinephrine (↓ 1) norepinephrine (↓ 1)

glucose glucose

INR INR

5.2.3. ... APACHE_group
Table 5.2.3.a

Top 15 Top 15 Cardiovascular Top 15 Neurological
Top 15
Gastrointestinal

a_Lac a_Lac a_Lac a_Lac

datetime datetime datetime datetime

ABPm ABPm ABPm ABPm

ABPs ABPs ABPs ABPs

HR Spitzendruck (↑ 2) HR HR

ABPd HR (↓ 1) ABPd ABPd

Spitzendruck ABPd (↓ 1) RASS (↑ 1) Spitzendruck

RASS RASS Spitzendruck (↓ 1) a-BE (↑ 2)

age age age age

a-BE a-BE norepinephrine (↑ 2) RASS (↓ 2)

creatinine creatinine creatinine creatinine

norepinephrine ETCO2 (↑ 1) a-BE (↓ 2) norepinephrine

ETCO2 INR (↑ 2) glucose (↑ 1) INR (↑ 2)

glucose norepinephrine (↓ 2) ETCO2 (↓ 1) ETCO2 (↓ 1)

INR glucose (↓ 1) NIBPm (↑ 1) glucose (↓ 1)

Top 15 Respiratory Top 15 Other Top 15 Trauma Top 15 Metabolic

a_Lac a_Lac a_Lac a_Lac

datetime datetime datetime datetime

ABPm ABPm ABPm ABPm

HR (↑ 1) ABPs HR (↑ 1) ABPs

ABPs (↓ 1) HR ABPs (↓ 1) HR

ABPd ABPd Spitzendruck (↑ 1) ABPd

Spitzendruck Spitzendruck ABPd (↓ 1) a-BE (↑ 3)

RASS a-BE (↑ 2) age (↑ 1) age (↑ 1)

a-BE (↑ 1) age RASS (↓ 1) Spitzendruck (↓ 2)

age (↓ 1) RASS (↓ 2) a-BE glucose (↑ 4)
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creatinine norepinephrine (↑ 1) creatinine RASS (↓ 3)

ETCO2 (↑ 1) creatinine (↓ 1) norepinephrine creatinine (↓ 1)

norepinephrine (↓ 1) INR (↑ 2) ETCO2 NIBPm (↑ 3)

glucose ETCO2 (↓ 1) glucose norepinephrine (↓ 2)

INR glucose (↓ 1) GCS Motorik (↑ 2) ETCO2 (↓ 2)

5.2.4. ... surgical_status
Table 5.2.4.a

Top 15 Top 15 Surgical Top 15 Non-surgical

a_Lac a_Lac a_Lac

datetime datetime datetime

ABPm ABPm ABPm

ABPs ABPs ABPs

HR HR HR

ABPd Spitzendruck (↑ 1) ABPd

Spitzendruck ABPd (↓ 1) Spitzendruck

RASS RASS RASS

age age age

a-BE a-BE a-BE

creatinine creatinine creatinine

norepinephrine norepinephrine norepinephrine

ETCO2 ETCO2 ETCO2

glucose glucose glucose

INR INR INR
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6. Missingness Analysis
Goal: Comparing the intensity of measurements across cohorts of patients and its impact of
performance

Binary metrics computed with a threshold on score of 0.445.

6.1. Aggregated views

6.1.1. a_Lac
Groupings that are statistically dependent on the intensity of measurements:
Table 6.1.1.a

Group name
Category with the biggest rate
of no_msrt

Category with the biggest rate
of insufficient

sex F M

age_group <50 75-85

APACHE_group Neurological Cardiovascular

surgical_status Surgical Surgical

Summary of the impact of missingness on performance.

missing_msrt: 36.4% of metrics are worse than for with measurement time points, with the biggest
delta 0.115 for metric Recall.

6.1.2. Spitzendruck
Groupings that are statistically dependent on the intensity of measurements:
Table 6.1.2.a

Group name
Category with the biggest rate
of no_msrt

Category with the biggest rate
of insufficient

sex F M

age_group <50 75-85

APACHE_group Metabolic Cardiovascular

surgical_status Non-surgical Surgical

Summary of the impact of missingness on performance.

no_msrt: 45.5% of metrics are worse than for with measurement time points, with the biggest delta
0.175 for metric AUPRC.
missing_msrt: 45.5% of metrics are worse than for with measurement time points, with the biggest
delta 0.155 for metric AUPRC.
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For each grouping, we display a bar plot that shows the percentage of each intensity of measurement
category within a cohort of patients. The dashed lines represent the percentage of each intensity of
measurement category with respect to the entire patient population. We run the Chi-squared
independence test (with significance level 0.001) to assess the depence between the intensity of
measurement and the grouping.
In the impact on performance subsection, we present box plots that show the metrics' distribution for
each of the missingness categories. For each metric, we mark with a black star the missingness
categories that are significantly worse compared to metrics computed on data points with present
measurement.
We also propose tables presenting the results of the impact on performance statistical analysis, we
display only metrics and missingness categories with a significant p-value (smaller than 0.001/number
of comparisons) and whose delta is bigger than 0. We compare the metrics for missingness categories
missing_msrt and no_msrt (when relevant) against the with_msrt category. P-values are obtained by
running the Mann-Whitney U test with Bonferroni correction.

6.2. Study of the variable a_Lac

6.2.1. Intensity of measurement per grouping

Grouping by sex
Figure 6.2.1.a

The intensity of measurements of a_Lac and sex attributes are dependent.

Grouping by age_group
Figure 6.2.1.b
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The intensity of measurements of a_Lac and age_group attributes are dependent.

Grouping by APACHE_group
Figure 6.2.1.c

The intensity of measurements of a_Lac and APACHE_group attributes are dependent.

Grouping by surgical_status
Figure 6.2.1.d
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The intensity of measurements of a_Lac and surgical_status attributes are dependent.

6.2.2. Impact on performance
Figure 6.2.2.a
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Table 6.2.2.a

Metric
Missingness
category

Category vs
with msrt P-value Delta

Recall ↑ missing_msrt worse 1.28e-34 0.115

Precision ↑ missing_msrt better 8.76e-17 0.052

NPV ↑ missing_msrt better 1.28e-34 0.019

FPR ↓ missing_msrt better 1.28e-34 0.009

Corrected precision ↑ missing_msrt better 1.28e-34 0.204

Corrected NPV ↑ missing_msrt worse 2.29e-20 0.003

Avg. score on positive class missing_msrt worse 1.28e-34 0.077

Avg. score on negative class missing_msrt better 1.28e-34 0.023

AUROC ↑ missing_msrt better 2.88e-34 0.025

AUPRC ↑ missing_msrt worse 4.32e-31 0.046

Corrected AUPRC ↑ missing_msrt better 1.28e-34 0.09
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6.3. Study of the variable Spitzendruck

6.3.1. Intensity of measurement per grouping

Grouping by sex
Figure 6.3.1.a

The intensity of measurements of Spitzendruck and sex attributes are dependent.

Grouping by age_group
Figure 6.3.1.b

The intensity of measurements of Spitzendruck and age_group attributes are dependent.

Grouping by APACHE_group
Figure 6.3.1.c
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The intensity of measurements of Spitzendruck and APACHE_group attributes are dependent.

Grouping by surgical_status
Figure 6.3.1.d

The intensity of measurements of Spitzendruck and surgical_status attributes are dependent.

6.3.2. Impact on performance
Figure 6.3.2.a
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Table 6.3.2.a

Metric
Missingness
category

Category vs
with msrt P-value Delta

Recall ↑ no_msrt worse 1.28e-34 0.156

Recall ↑ missing_msrt worse 1.28e-34 0.14

Precision ↑ no_msrt worse 2.56e-19 0.077

Precision ↑ missing_msrt worse 6.21e-07 0.044

NPV ↑ no_msrt better 1.28e-34 0.054
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NPV ↑ missing_msrt better 1.28e-34 0.043

FPR ↓ no_msrt better 1.28e-34 0.016

FPR ↓ missing_msrt better 1.28e-34 0.015

Corrected precision ↑ no_msrt better 1.28e-34 0.294

Corrected precision ↑ missing_msrt better 1.28e-34 0.225

Corrected NPV ↑ no_msrt worse 1.79e-15 0.002

Corrected NPV ↑ missing_msrt worse 1.16e-13 0.002

Avg. score on positive class no_msrt worse 1.28e-34 0.108

Avg. score on positive class missing_msrt worse 1.28e-34 0.116

Avg. score on negative class no_msrt better 1.28e-34 0.045

Avg. score on negative class missing_msrt better 1.28e-34 0.042

AUROC ↑ no_msrt better 1.28e-34 0.056

AUROC ↑ missing_msrt better 1.32e-34 0.031

AUPRC ↑ no_msrt worse 1.28e-34 0.175

AUPRC ↑ missing_msrt worse 1.28e-34 0.155

Corrected AUPRC ↑ no_msrt better 1.28e-34 0.191

Corrected AUPRC ↑ missing_msrt better 1.44e-34 0.086
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7. Glossary

7.1. General concepts
Event: Failure or more generally health condition that the model aims to predict. We assume that it
has some duration.
Grouping / Group name: This refers to an attribute used to form the cohorts of patients.
Category: (abbreviation: Cat.) This refers to the value taken by the grouping attribute, it characterizes
a specific cohort. It can also be used to directly designate a cohort.
Cohort: This is used to designate a particular category of patients (i.e. a set of patients that share a
common grouping attribute value).
Macro-average: Consider a grouping with n categories, and each category i has a metric value m_i,
then the macro-average is (m_1 + m_2 + ... + m_n)/n.
Delta: (abbreviation: ∆) Each stage is associated with certain metrics, the delta for a metric and a
cohort corresponds to the absolute difference in median metric between patients of this cohort and the
rest of the patients.
Threshold on score: Binary classifier outputs probability between 0 and 1, to obtain a binary output
the user has to decide on a threshold value below which the output class will be 0 and above which it
will be 1.

7.2. Model Performance Analysis concepts
Metrics Definitions:
P number of positive labels, N number of negative labels, TP number of correctly predicted positive
labels, TN number of correctly predicted negative labels, FP number of instances with true negative
labels but that were incorrectly predicted as positive by the model, FN number of instances with true
positive labels but that were incorrectly predicted as negative by the model.
↑: Means that the larger the metric value, the better it is.
↓: Means that the lower the metric value, the better it is.
Recall: TP/P
Precision: TP/(TP+FP)
NPV: Negative predictive value, TN/(TN+FN)
FPR: False positive rate, FP/(FP+TN)
Corrected precision: Precision corrected for the cohort prevalence of positive labels, TP/(TP+s*FP)
with s the correcting factor that depends on the cohort prevalence and the maximum prevalence for
the grouping.
Corrected NPV: NPV corrected for the cohort prevalence of positive labels, TN/(TN+s*FN) with s the
correcting factor that depends on the cohort prevalence and the minimum prevalence for the grouping.
Event-based recall: Number of detected events over the total number of events.
Calibration curve: Illustrates how well the probabilistic predictions of the model are calibrated
(whether they can be interpreted as true probabilities), x-axis mean predicted probabilities, y-axis
frequency of positive labels. The perfect calibration line (dashed line in the figures) acts as a
reference.
Calibration error: Area between the calibration curve and the perfect calibration line.
Avg. score on positive class: for all positive labels, average of the output scores.
Avg. score on negative class: for all negative labels, average of the output scores.
ROC curve: Receiver operating characteristic curve, x-axis FPR, y-axis TPR.
AUROC: Area under the ROC curve.
PR curve: Precision-recall curve, x-axis recall, y-axis precision. It can be drawn also for event-based
recall and corrected precision.
AUPRC: Area under the PR curve. It can be computed for the PR curve drawn with event-based recall
and/or corrected precision.
Ratio of significantly worse metrics: For a specific category of patients, it refers to the number of
metrics for which the category is significantly worse off compared to the rest of the population divided
by the total number of metrics.
Worst ratio: Refers to the largest ratio of significantly worse metrics (for a grouping or for the
overall analysis).
Worst delta: Refers to the largest delta in performance metrics (for a grouping or for the overall
analysis).

7.3. Time Gap Analysis concepts
Time gap: Amount of time between the trigger of the first correct alarm and the event occurence.
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Start event: Considered split of the alarm horizon. We split the alarm horizon into different windows
(chosen by the user) based on how much time in advance the alarm can be triggered. The available
prediction horizon can not be longer than the time between the start of the considered event and the
start of the stay or between the start of the considered event and the time when the previous event
finished.

7.4. Medical Variable Analysis concepts
Not in event: Refers to the median value computed on time points when patients aren't undergoing an
event.
Never in event: Refers to the median value computed for patients without any event during their stay.

7.5. Feature Importance Analysis concepts
Feature importance: Approximates how useful is a feature for the prediction task. We use SHAP
values to estimate it.
RBO (Rank-biased overlap): Similarity measure between two lists that focuses more on the head of
the list (i.e it penalizes more mismatches that occur at the beginning). We use this measure to
compare two feature rankings.
General feature ranking: Refers to the ranking of features based on their importance (from the most
important to the least important), obtained on the entire set of patients. In contrast to cohort-based
rankings, that are obtained on a specific cohort of patients.
Delta of inverse rank: For a feature that has rank rk_0 in the cohort-based ranking and rk_all in the
general ranking, it is defined as |1/rk_0 - 1/rk_all|. If it is big enough, we consider the change in rank of
the feature from the general to the cohort-based ranking to be significant.
Top 15 (cohort): refers to the first 15 features of the general (or cohort-based) ranking.

7.6. Missingness Analysis concepts
Performance metrics definitions:
All metrics have already been defined in the Model Performance Analysis concepts.
Intensity of measurement categories
no_msrt: Refers to patients without any measurement for a variable.
insufficient: Refers to patients with between 0% (not included) and 90% of valid measurements (over
the number of expected measurements).
The number of expected measurements is computed from the medical variable's expected sampling
interval t_e (input from the user) and the patient's length of stay los as los / t_e.
enough: Refers to patients with between 90% (not included) and 100% of valid measurements (over
the number of expected measurements).
The number of expected measurements is computed from the medical variable's expected sampling
interval t_e (input from the user) and the patient's length of stay los as los / t_e.
Missingness categories:
no_msrt: Refers to patients without any measurement for a variable (before full data imputation).
missing_msrt: Refers to data points without valid measurement for a variable (before full data
imputation but after forward propagation of measurements based on the variable's expected sampling
interval).
with_msrt: Refers to data points with valid measurements for a variable (before full data imputation but
after forward propagation of measurements based on the variable's expected sampling interval).
Dependent/Independent: Refers to the result of the Chi-squared independence test.
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