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ABSTRACT 

Background: Subject screening is a key aspect of all clinical trials; however, traditionally, it is a labor-

intensive and error-prone task, demanding significant time and resources. With the advent of large 

language models (LLMs) and related technologies, a paradigm shift in natural language processing 

capabilities offers a promising avenue for increasing both quality and efficiency of screening efforts. This 

study aimed to test the Retrieval-Augmented Generation (RAG) process enabled Generative Pretrained 

Transformer Version 4 (GPT-4) to accurately identify and report on inclusion and exclusion criteria for a 

clinical trial.  

Methods: The Co-Operative Program for Implementation of Optimal Therapy in Heart Failure 

(COPILOT-HF) trial aims to recruit patients with symptomatic heart failure. As part of the screening 

process, a list of potentially eligible patients is created through an electronic health record (EHR) query. 

Currently, structured data in the EHR can only be used to determine 5 out of 6 inclusion and 5 out of 17 

exclusion criteria. Trained, but non-licensed, study staff complete manual chart review to determine 

patient eligibility and record their assessment of the inclusion and exclusion criteria. We obtained the 

structured assessments completed by the study staff and clinical notes for the past two years and 

developed a workflow of clinical note-based question answering system powered by RAG architecture 

and GPT-4 that we named RECTIFIER (RAG-Enabled Clinical Trial Infrastructure for Inclusion 

Exclusion Review). We used notes from 100 patients as a development dataset, 282 patients as a 

validation dataset, and 1894 patients as a test set. An expert clinician completed a blinded review of 

patients’ charts to answer the eligibility questions and determine the “gold standard” answers. We 

calculated the sensitivity, specificity, accuracy, and Matthews correlation coefficient (MCC) for each 

question and screening method. We also performed bootstrapping to calculate the confidence intervals for 

each statistic. 

Results: Both RECTIFIER and study staff answers closely aligned with the expert clinician answers 

across criteria with accuracy ranging between 97.9% and 100% (MCC 0.837 and 1) for RECTIFIER and 

91.7% and 100% (MCC 0.644 and 1) for study staff. RECTIFIER performed better than study staff to 

determine the inclusion criteria of “symptomatic heart failure” with an accuracy of 97.9% vs 91.7% and 

an MCC of 0.924 vs 0.721, respectively. Overall, the sensitivity and specificity of determining eligibility 

for the RECTIFIER was 92.3% (CI) and 93.9% (CI), and study staff was 90.1% (CI) and 83.6% (CI), 

respectively.  

Conclusion: GPT-4 based solutions have the potential to improve efficiency and reduce costs in clinical 

trial screening. When incorporating new tools such as RECTIFIER, it is important to consider the 

potential hazards of automating the screening process and set up appropriate mitigation strategies such as 

final clinician review before patient engagement. 
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INTRODUCTION 

A critical step in conducting a clinical trial is screening potential subjects to ensure they are eligible based 

on study-specific inclusion and exclusion criteria. Traditionally, screening for clinical trials is a manual 

process, relying heavily on the judgment and diligence of study staff and healthcare professionals. This 

approach, while thorough, is prone to human error, which can lead to inappropriate participant selection 

or exclusion, thus affecting the overall integrity of the trial 1–3. Furthermore, manual screening requires 

substantial human resources and time, contributing to the high costs and lengthy durations of clinical 

trials3. 

 

Recent advances in natural language processing (NLP) have improved the screening process for clinical 

trials 4 . NLP technologies have the potential to automate the extraction and analysis of relevant data from 

electronic health records (EHRs), literature, and other sources, thereby enhancing the efficiency and 

accuracy of participant selection4. However, traditional NLP methods have limitations, particularly in 

handling complex, unstructured data commonly found in EHRs4 which are often the basis for key 

inclusion and exclusion criteria. 

 

The advent of large language models (LLMs), such as Generative Pre-trained Transformer 4 (GPT-4)5, in 

addition to their generative capabilities, has revolutionized the field of NLP6. These models, with their 

advanced capabilities in comprehending and generating human-like text, have shown great promise in 

various applications, including in the medical field7. GPT-4, in particular, exhibits unprecedented skill in 

processing and interpreting both structured and unstructured data, making it an ideal candidate for 

enhancing clinical trial screening processes5,8,9. 

 

In this study, we investigate the application of GPT-4 Vision within a specialized framework known as 

Retrieval Augmented Generation (RAG), which enables the practical implementation of a clinical trial 

screening application in real-world scenarios.  Hereafter, the framework will be referred to as the RAG-

Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review, or RECTIFIER. Specifically, we 

assess the efficacy of RECTIFIER in identifying eligible participants, particularly in scenarios where 

unstructured data is prevalent and structured data may be incomplete or inaccurate. This research aims to 

validate the utility of GPT-4 enabled RECTIFIER as a tool within a clinical trial screening process to 
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improve the efficiency, accuracy, and reliability of the clinical trial screening process, potentially 

transforming the current paradigm in clinical research methodologies. 

 

METHODS 

Patient Population 

We evaluated the capabilities of RECTIFIER in the Co-Operative Program for Implementation of 

Optimal Therapy in Heart Failure (COPILOT-HF) trial, a pragmatic, randomized, open-label intervention 

trial to investigate the comparative effectiveness of two remote care strategies on optimizing the 

prescription of guideline-directed medical therapy in patients with HF(NCT05734690). The current 

process for identifying the cohort for the trial involves querying the EHR through the Mass General 

Brigham (MGB) Enterprise Data Warehouse (EDW)10. Trained, non-clinically licensed study staff 

perform manual chart review to determine patient eligibility and record their assessment of 6 inclusion 

and 17 exclusion criteria for the study. We reviewed each criterion and identified 5 out of 6 inclusion and 

5 out of 17 exclusion criteria that can be determined reliably based on structured data in the EHR 

(Supplemental Table 1). To assess the ability of RECTIFIER to screen patients for the remaining  

(1 inclusion and 12 exclusion), we excluded patients who met exclusion criteria based on information 

identifiable through structured data.  

 

Preparation of Data and Development of Datasets 

The COPILOT-HF Study operations team uses Microsoft Dynamics 365 (Version 2023 Release Wave 2) 

to capture the inclusion and exclusion criteria obtained during the screening process for every patient11. 

The values (yes/no) entered by the licensed study staff are stored in structured fields for each question. 

We extracted the data for the 1 inclusion and 12 exclusion criteria questions determined by the study 

staff’s review of the medical records. During screening, study staff stop reviewing an individual patient 

and mark them as ineligible as soon as they meet one of the 17 exclusion criteria. Because of this process, 

there were missing answers for the remaining exclusion criteria. To compare RECTIFIER vs. study staff 

performance for screening, an expert clinician completed a blinded review of all patients and answered 

the questions previously answered by the study staff, thus establishing the “gold standard” answers.  
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We prepared datasets for three phases: development, validation, and test.  During development, we 

designed and evaluated various prompts to optimize their performance in identifying each inclusion and 

exclusion criteria. In the validation phase, we confirmed or rejected the improvements observed during 

the development phase, refining each prompt based on its performance on the larger dataset.  Finally, in 

the test phase, we assessed the final prompts’ performance on a larger number of patients to assess their 

generalizability. 

 

We identified 3,000 patients screened by study staff, each with documented expected answers for 

program inclusion/exclusion.  For the development phase, we used 100 patients (50% eligible, 50% 

ineligible) to design and evaluate various prompts to optimize their performance in identifying each 

inclusion and exclusion criteria. We aimed to include 400 semi-randomly selected patients in the 

validation phase by ensuring that it represented both negative and positive cases for each exclusion 

criteria. After removing the patients with no answers to any of the 13 questions, 282 patients were left in 

the validation dataset which was used to confirm or reject observed improvements in prompt 

performance, refining the prompt based on its performance on the larger dataset.  Finally, we selected 

2,500 previously untested patients from the remaining dataset to assess the final and optimized prompts 

on a larger scale to present our final performance results. After removing the patients with no answers to 

any of the 13 questions, there were 1,894 patients left in the test dataset. Out of 1,894 patients, 1509 had 

available answers sufficient to decide if a patient was eligible or ineligible (“Yes” to at least one 

exclusion criteria question, or “No” to at least one exclusion criteria question and “Yes” or “No” to 

inclusion criteria question). Expert clinician review classified 1,162 of these patients as eligible and 347 

as ineligible.   

 

Creation of Model Architecture 

We used GPT-4 Vision (Model version 1015) in this study which is referred to as GPT-4 throughout this 

manuscript since we only used language capabilities of the model. We identified Retrieval-Augmented 

Generation (RAG) architecture12 as a suitable solution for this study. First, we needed GPT-4 to be able to 

access external data, namely clinical notes of patients. Second, we only wanted to invoke GPT-4 using the 

relevant portions of the clinical notes. Using a RAG architecture allows leveraging clinical notes as an 

external data source and filter them to only include relevant context rather than the entire content; this 

capability offers several advantages. On average, a patient in our study had 120 clinical notes in the past 2 

years, ranging from a single paragraph to several pages. For some patients, feeding these notes into  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.08.24302376doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.08.24302376
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

6 
 

GPT-4 would exceed its token context limit. While combining a few notes at a time could circumvent this 

limitation, processing all of the notes associated with the average patient would still be necessary until the 

relevant information is identified or confirmed absent. This approach presents two major drawbacks. 

First, transmitting all notes, regardless of relevance, introduces unnecessary processing and potential 

delays. By contrast, a focused approach transmits an average of 1,000 tokens (see results section), 

targeting only information relevant to the specific query. Therefore, it reduces the processing time and 

enables faster response generation. Second, costs associated with GPT-4 usage scale proportionally with 

the number of tokens consumed. Using only related content leads to substantial cost savings compared to 

sending all notes within specified time windows. Considering the average volume of clinical data within 

the EHR, this cost reduction becomes even more significant. Therefore, we used an approach to identify 

and only provide the parts of the clinical data relevant to the specific question being asked.  

 

The workflow of our clinical note-based question answering system powered by the RAG architecture 

consisted of four key stages: Data load, data split, vector embeddings, and question answering (Figure 1). 

We used an internal REST API to retrieve a collection of clinical notes spanning the past two years.  The 

retrieval process was filtered to include only notes pertaining to specific types (progress note, discharge 

summary, H&P, telephone encounter, note to patient via portal) and statuses (signed or addendum). We 

developed a custom Python (Version 3.10) program to retrieve and store clinical notes organized by 

patient for a defined group of patients in batches. In addition to the notes, we extracted metadata for each 

note, including file location, note ID, date of creation and service, type of note and author, and word 

count which provides a better understanding of the nature of the clinical notes and enables future filtering 

for optimization. To facilitate efficient processing and context-aware analysis, we segmented notes into 

smaller chunks using LangChain’s recursive chunking strategy13 to preserve surrounding context while 

avoiding mid-sentence or word truncation.  We also tracked the origin of each chunk, linking it back to its 

original note for future reference.  This approach naturally led to varying chunk sizes, reflecting the 

diverse lengths of clinical notes, which can range from a single sentence to multiple pages. 

 

We generated numerical vector representations (embeddings) for each chunk using Azure OpenAI’s ada-

002 model14.  These embeddings capture the semantic meaning of the text, which allowed us to compare 

chunks quickly and efficiently when searching for relevant information. To optimize retrieval during the 

question and answering stage, we used Facebook’s AI Similarity Search (FAISS) library15.  Each patient’s 

embeddings were saved in a dedicated file using Python’s pickle module and then loaded into FAISS’  
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Figure 1. The Workflow of Clinical Note-Based Question Answering System Powered by the RAG Architecture 

 

Workflow of the patient Q&A system leveraging the RAG (Retrieval Augmented Generation) architecture. The workflow 

consists of the following key steps: 1) Clinical note retrieval 2) Note segmentation 3) Vector embeddings 4) Similarity 

search, prompting, and generation. 
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in-memory vector store as needed16 to optimize memory usage and loading efficiency.  This approach 

used FAISS’ built-in similarity search capabilities for faster retrieval and allowed us to reuse the same 

embeddings throughout development and validation phases, eliminating the need for repeated generation 

and saving computational resources. We then asked 13 questions for each patient, 1 inclusion and 12 

exclusion criteria.  The embedding model transformed each question into a vector representation 

(embedding). These embeddings then acted as search queries against the vector store, using LangChain's 

Retrieval QA chain13, and retrieved the top 3 most relevant chunks based on their semantic similarity to 

the question, along with links back to their original notes. These retrieved chunks, combined with a 

system prompt and the question itself, were fed to Azure OpenAI’s GPT-4 model with temperature 0, 

which generated concise “Yes” or “No” answers.  At times, GPT-4 returned an answer with a “.” 

appended.  We ignored these trailing periods in our data analysis.  Because the questions were designed to 

be independent, we did not maintain a chat history to influence subsequent prompts, ensuring focused 

analysis for each query. 

 

Determination of the Chunk Size, Prompt Development, and Testing Consistency 

During development, we evaluated the impact of different patient note text chunk sizes (125, 250, 500, 

1,000, and 2,000 tokens) with 20% overlap on the retrieval of relevant context for GPT-4 responses.  Our 

initial analysis suggested that chunk sizes of 500 and 1,000 provided a good balance between capturing 

sufficient relevant information and minimizing irrelevant context. We noted that smaller chunk sizes often 

missed crucial information necessary for accurate information (e.g. missing valve replacement procedure 

to classify patient as having severe valve disease or failing to capture discontinuation of ambrisentan to 

conclude that the patient was still on disease specific therapy for pulmonary hypertension). To further 

investigate the optimal chunk sizes, we used the validation dataset and evaluated all 13 inclusion and 

exclusion criteria.  We compared the percentage agreement between RECTIFIER responses and expert 

clinician reviews for both chunk sizes of 500 and 1,000. Based on the results of these analyses, we 

ultimately decided to perform all analyses using a chunk size of 1,000 tokens (see the results section for 

analysis results). 

 

We implemented an iterative approach to prompt development. Each iteration involved careful evaluation 

of the development set, where the prompt was run, and its retrieved chunks analyzed alongside the 

corresponding patient's clinical notes. This allowed us to understand discrepancies between the expected 

answers and the model's output, informing targeted adjustments to refine the prompt. To validate the 
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efficacy of these refinements, we evaluated different prompt versions on the validation set, allowing us to 

confirm or reject the observed improvements (Supplemental Table 2). Once we identified the final 

prompts for 13 eligibility criteria questions, we ran them through RECTIFIER one by one consecutively 

and also by combining inclusion and exclusion criteria questions into two prompts. 

 

Finally, to investigate the consistency of the outputs from RECTIFIER, we conducted a comparison 

analysis of different RECTIFIER runs on the validation dataset. We ran all 13 criteria on the validation 

dataset five times and compared RECTIFIER responses to each other based on the questions answered by 

the expert clinician. We assigned a score of one to each consistent answer based on the most prevalent 

answer for a total maximum of five points per each question. The final consistency percentage was 

calculated by dividing the total consistency points by the maximum possible points (number of questions 

x 5). We also analyzed the standard deviation of agreement scores to assess response variability.  

 

Data Privacy and HIPAA Compliance 

We employed a multi-layered approach to ensure data privacy and security when using Azure OpenAI for 

sensitive healthcare data.  First, a private endpoint isolated the instance, restricting data access to our 

authorized virtual network and preventing unauthorized access. Second, all persisted data resided solely 

within our secure on-premise corporate network. Third, we focused on storing and providing access to 

only the minimum amount of protected health information required for these purposes.  The Azure AI 

APIs used to call GPT-4 did not persist either prompts or responses.  Finally, the data was encrypted at 

rest and in transit, adhering to stringent security protocols for safeguarding patient information. 

 

Furthermore, MGB has established a formal Business Associate Agreement with Microsoft to ensure 

compliance with HIPAA regulations. This agreement clearly defined the roles and responsibilities of both 

parties regarding the protection of sensitive healthcare data. Additionally, we have entered into a Master 

Service Agreement and an Enterprise Agreement with Microsoft, further solidifying our commitment to 

security and compliance in our use of Microsoft Azure infrastructure. Institutional Review Broad of Mass 

General Brigham gave ethical approval for this work which was performed as part of the COPILOT-HF 

Study. 
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Statistical Analysis 

We created confusion matrices for each of the 13 eligibility criteria for study staff and RECTIFIER 

answers (both for single question and combined question strategy) using expert clinician review as a gold 

standard. We then calculated the sensitivity, specificity, and accuracy for each eligibility criteria. We used 

accuracy as our metric for the optimization of chunk sizes and prompts and to test consistency. For the 

final analysis of performance in the test set, we chose Matthews correlation coefficient (MCC) as our 

primary evaluation metric since it is considered to be the most robust metric in two class confusion 

matrices with rare labels where performance on the positive and negative classification is equally 

important17,18.  Conversely, the Binary F1 metric, also often used for imbalanced datasets, places more 

weight on the positive class since it is independent from true negative classification 17.  

 

We used bootstrapping to estimate 95% confidence intervals (CI) for sensitivity, specificity, positive 

predictive value, negative predictive value, accuracy, and MCC for each question and screening method. 

We randomly sampled the answers for each question with replacement to create 2,000 bootstrap samples 

for each question. We then calculated the 95% CI for each statistic based on the bootstrap distribution by 

taking the 2.5th and 97.5th percentiles of the bootstrap statistics as the lower and upper bounds of the 

confidence intervals. To assess the statistical significance of the differences in metrics between 

RECTIFIER and study staff in the test set, we employed a permutation test with 2000 permutations. In 

each permutation, group labels were randomly shuffled for each question, maintaining the original group 

size. We then recalculated the metrics for these permuted groups and computed the difference in metrics 

between the groups for each permutation. For each metric of each question, a p-value was calculated as 

the proportion of permutations where the absolute difference in the metric was greater than or equal to the 

observed absolute difference in the original (non-permuted) data. This approach allowed us to determine 

the likelihood of observing the given metric differences under the null hypothesis of no difference 

between the RECTIFIER and study staff.  We initially set a predetermined alpha level of 0.05. Given that 

multiple statistical tests (13 tests per patient per metric) were performed, we applied a Bonferroni 

correction to adjust for multiple comparisons, resulting in an adjusted alpha level of approximately 0.0038 

(0.05/13) per test. This stringent threshold was used to deem the results statistically significant, thereby 

minimizing the likelihood of Type I errors due to multiple testing. Statistical analyses were conducted 

using R (version 4.3.2)19. 
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Cost Analysis 

To understand the real-world feasibility of integrating RECTIFIER into clinical trial screening 

workflows, we conducted a cost analysis using the test dataset population and 13 eligibility questions. 

During each program execution, we automatically tracked the token usage of both the prompt and GPT’s 

response, providing a basis for estimating potential costs. 

 

While Microsoft provided complimentary access to GPT-4 (Model version 1015) for our research, its 

actual cost structure remained confidential. To address this gap, we used the publicly available pricing of 

GPT-4 Turbo (Model version 1106-Preview), considered the successor to our employed model 20. While 

not identical, this approach provided an approximation of potential financial implications when deploying 

the solution on a larger scale. Our analysis compared two approaches which included sending 13 

questions individually to GPT-4 and combining exclusion criteria into a single prompt and sending  

GPT-4 a total of 2 questions (1 inclusion and 1 combined exclusion).  

 

RESULTS 

The word count in the validation set ranged from 8 to 7097 (roughly 13 pages), with 75.13% of notes 

containing 500 words or less and 92.01% under 1,500 words. We compared the accuracy of RECTIFIER 

responses for chunk sizes of 500 and 1,000. Chunk size of 1,000 outperformed 500 in 10 out of 13 criteria 

(Supplemental Table 3). In the consistency analysis for RECTIFIER with five different runs on the 

validation dataset, consistency percentage ranged between 99.16% and 100% and the standard deviation 

of accuracy ranged from 0% to 0.86% with minimal variation and high overall consistency (Supplemental 

Table 4).  

 

In the test set, both study staff and RECTIFIER showed overall high sensitivity and specificity across 13 

eligibility questions. The sensitivity for individual questions ranged from 66.7% to 100% for study staff 

and 75% to 100% for RECTIFIER, specificity ranged from 82.1% to 100% for study staff and 92.1% to 

100% for RECTIFIER, and PPV ranged from 50% to 100% for study staff and 75% to 100% for 

RECTIFIER (Figure 2). Both study staff and RECTIFIER answers closely aligned with the expert 

clinician answers with accuracy ranging between 91.7% and 100% (MCC 0.644 and 1) for study staff and 

97.9% and 100% (MCC 0.837 and 1) for RECTIFIER (Table 1).  RECTIFIER performed similarly to 

study staff for all eligibility criteria except for the inclusion criteria of “symptomatic heart failure” where 
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it performed better with an accuracy of 97.9% vs 91.7% and an MCC of 0.924 vs 0.721, respectively. 

Overall, the sensitivity and specificity of determining eligibility for a study staff was 90.1% and 83.6%, 

and for RECTIFIER was 92.3% and 93.9%, respectively. When inclusion and exclusion questions were 

asked in combination in a single prompt, RECTIFIER performed worse with a sensitivity of 73.7% and 

specificity of 77.9% to determine overall eligibility (Supplemental Table 5).  Figure 3 shows confusion 

matrices for both RECTIFIER and study staff. 

In the cost analysis, the individual question approach incurred an average cost of 10 cents per patient with 

the combined question approach incurring 2 cents per patient (Supplemental Table 6).  

 

Figure 2. Comparison of Positive Predictive Value (Precision) and Sensitivity (Recall) of RECTIFIER vs Study Staff 

A. 

 
B. 

 
Solid lines indicate 95% confidence interval. AI: Aortic insufficiency; AS: Aortic stenosis; CI: Confidence Interval; DM: 

Diabetes Mellitus; HCM: Hypertrophic cardiomyopathy; MCC: Matthews Correlation Coefficient; PAH: Pulmonary arterial 

hypertension, * indicates p<0.001 
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Table 1. Comparison of Accuracy and Matthew Correlation Coefficient of RECTIFIER And Study Staff to Determine 

Each Eligibility Criteria and Overall Eligibility 

  Accuracy 

(95% CI) 

MCC 

(95% CI) 

Criteria 
Prevalence 

in Cohort 
Study Staff RECTIFIER 

P 

Value 
Study Staff RECTIFIER P Value 

Active 

Chemotherapy 

72 /1469 

(4.9%) 

0.980 

(0.972-0.986) 

0.987  

(0.982-0.993) 
0.16 

0.810  

(0.743-0.871) 

0.852  

(0.783-0.910) 
0.41 

Actively 

undergoing dialysis 

3 /1414 

(0.2%) 

0.999 

(0.998-1.000) 

0.999  

(0.998-1.000) 
>0.99 

0.816 

 (0.577-1.000) 

0.866  

(0.577-1.000) 
>0.99 

Congenital Heart 

Disease 

2 /317 

(0.6%) 

1.000 

(1.000-1.000) 

1.000  

(1.000-1.000) 
>0.99 

1.000 

 (1.000-1.000) 

1.000  

(1.000-1.000) 
>0.99 

Ventricular Assist 

Device 

8 /1422 

(0.6%) 

0.999 

(0.998-1.000) 

1.000  

(1.000-1.000) 
>0.99 

0.942 

 (0.790-1.000) 

1.000  

(1.000-1.000) 
0.59 

Pregnant or 

breastfeeding 

1 /1418 

(0.1%) 

1.000 

(1.000-1.000) 

1.000  

(1.000-1.000) 
>0.99 

1.000 

 (1.000-1.000) 

1.000  

(1.000-1.000) 
>0.99 

Symptomatic Heart 

Failure 

1374 /1654 

(83.1%) 

0.917  

(0.903-0.929) 

0.979  

(0.972-0.985) 
<0.001 

0.721 

 (0.675-0.761) 

0.924 

 (0.899-0.948) 
<0.001 

HCM 
40 /1203 

(3.3%) 

0.997  

(0.993-0.999) 

0.999  

(0.998-1.000) 
0.37 

0.952 

 (0.900-0.989) 

0.987 

 (0.958-1.000) 
0.22 

Group 1 PAH 
6 /1483 

(0.4%) 

0.996  

(0.993-0.999) 

1.000  

(1.000-1.000) 
0.04 

0.644 

 (0.312-0.881) 

1.000 

 (1.000-1.000) 
0.05 

History of 

transplant and being 

evaluated for 

transplant 

33 /1439 

(2.3%) 

0.995  

(0.991-0.999) 

0.999  

(0.997-1.000) 
0.18 

0.890 

 (0.798-0.964) 

0.969 

 (0.919-1.000) 
0.10 

Amyloid heart 

disease 

14 /1491 

(0.9%) 

0.998  

(0.995-1.000) 

1.000  

(1.000-1.000) 
0.25 

0.896 

 (0.761-1.000) 

1.000 

 (1.000-1.000) 
0.12 

End-of-life care or 

hospice 

16 /1422 

(1.1%) 

0.995  

(0.991-0.999) 

0.999 

 (0.996-1.000) 
0.19 

0.801 

 (0.629-0.926) 

0.937 

 (0.830-1.000) 
0.15 

Severe AS or AI 
25 /1482 

(1.7%) 

0.991  

(0.985-0.995) 

0.994  

(0.990-0.997) 
0.41 

0.785 

 (0.672-0.883) 

0.837 

 (0.723-0.932) 
0.52 

Type 1 DM 
11 /1201 

(0.9%) 

0.998  

(0.994-1.000) 

0.998  

(0.994-1.000) 
>0.99 

0.857 

 (0.663-1.000) 

0.885 

 (0.737-1.000) 
0.82 

Overall Eligibility 
1162/1509 

(77%) 
0.891  

(0.875-0.907) 

0.927  

(0.913-0.940) 
<0.001 

0.711 

 (0.668-0.749) 

0.813 

 (0.780-0.847) 
<0.001 

AI: Aortic insufficiency; AS: Aortic stenosis; CI: Confidence Interval; DM: Diabetes Mellitus; HCM: Hypertrophic 

cardiomyopathy; MCC: Matthews Correlation Coefficient; PAH: Pulmonary arterial hypertension 
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Figure 3. Performance Metrics of Study Staff and RECTIFIER for Overall Eligibility Determination 

A. 

 

B. 

 

A) Performance metrics of RECTIFIER and Study Staff to determine overall eligibility based on 13 questions in the 

test set. Solid lines indicate 95% confidence interval. B) Confusion matrices of RECTIFIER and study staff against 

expert clinician review for overall eligibility based on 13 questions in the test set. NPV: Negative Predictive Value, 

PPV: Positive Predictive Value, * indicates p<0.001 
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DISCUSSION 

This study tested the ability of a scalable and cost-conscious architecture leveraging GPT-4 for clinical 

trial screening. We found that RECTIFIER can accurately screen patients for clinical trials using an 

actively enrolling heart failure clinical trial as an example. In specific aspects, RECTIFIER performance 

for clinical trial screening surpassed traditional methods with study staff. Furthermore, the cost of using 

RECTIFIER was only 10 cents per patient. We believe these findings can lead to substantial 

improvements in the efficiency of patient recruitment for clinical trials. 

 

We found that both sensitivity and specificity of RECTIFIER was high, while study staff had slightly 

lower sensitivity and significantly lower specificity. A lower specificity of study staff is mitigated in 

clinical trial screening processes, as there is always a final clinician review before a patient is enrolled in 

a clinical trial. However, reducing the need for an upfront detailed review by study staff would save 

significant resources before the final review while improving the identification of potentially eligible 

patients given the slightly higher sensitivity.  

 

Natural Language Processing (NLP) models have been employed previously in similar workflows in 

clinical trial operations such as screening and clinical endpoint adjudication4,21. However, conventional 

NLP models often depend on specific words or phrases or large training sets for accurate phenotyping. 

The NLP approach particularly falls short in tasks that involve complex clinical scenarios22, such as 

discerning whether symptoms are related to heart failure. Pre-trained language models, such as GPT-4, 

distinguish themselves in these tasks by their ability to synthesize conclusions from a combination of 

sources. This feature is particularly advantageous in reviewing and discerning complex clinical scenarios 

where even trained study personnel struggle. We found substantial evidence of this when we manually 

reviewed the patient charts where study staff and RECTIFIER disagreed. As an example, in an older 

female patient with obesity presenting with exertional dyspnea, lower extremity edema, elevated right and 

left-sided ventricular filling pressures, and evidence of left ventricular diastolic dysfunction, the provider 

noted that “the patient does not have heart failure” solely due to normal NT-proBNP levels. As expected, 

the study staff reviewed the patient’s chart and concluded that the patient did not have heart failure due to 

the provider’s note. However, as the thresholds for NT-proBNP in obesity are not well established, it 

alone should not be used as the sole reason to rule in or rule out heart failure23 in patients with obesity and 

renal dysfunction24,25. RECTIFIER could correctly identify a clinical heart failure diagnosis in this patient 
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based on other data, however, as it is not possible to discern the reasoning of LLMs to answer a question, 

it is impossible to determine how GPT-4 arrived at that decision. 

 

We leveraged GPT-4 as part of a RAG architecture that uses an embedding model to retrieve relevant 

context from the clinical notes. Therefore, it is possible that we underreported the performance of GPT-4 

in this study. Providing the full chart to GPT-4 may have improved accuracy in some cases, but this 

would have resulted in significantly increased cost. Therefore, we tested GPT-4 as part of an architecture 

that is readily deployable from a cost perspective in a real use case. In addition to the architecture we used 

in this study, integrating structured EHR data into prompts may further refine the screening process. This 

combination strategy could enhance the patient pool by not relying exclusively on diagnostic codes, 

especially for clinical diagnoses such as heart failure. This approach might broaden the scope of potential 

candidates and result in a more inclusive and accurate screening process. As an example, one could use 

the structured data for chemotherapy obtained from the EHR to determine if a patient is on active 

chemotherapy and consequently use GPT-4 to determine if the patient is on chemotherapy for an active 

malignancy. 

 

Although a more efficient and cost-saving strategy for clinical trial screening would be highly desirable, a 

critical consideration is the potential hazards of an automated screening process. These are five examples 

of potential hazards associated with automating the clinical trial screening process:  1) the reliance on 

LLM for initial screening may lead to a loss of nuanced patient context that a study staff might gather 

such as values of the patient or the preferred method of contact, impacting the quality of the enrollment 

conversation. 2) Operational hazards might develop associated with LLM system downtime, which could 

delay patient screening and enrollment, if there are no downtime strategies put in place. 3) From a clinical 

perspective, the LLM might overlook critical nuances in physician notes, such as a patient's maximum 

tolerated dosage in our use case, which is crucial for determining trial eligibility. 4) The integration of 

LLMs into clinical trial screening raises equity hazards which have not been investigated in this study. 

The reliance on algorithms using LLMs could exacerbate access issues for people medically underserved, 

potentially leading to increased false positives or negatives in these groups. Such a discrepancy might be 

due to less frequent healthcare interactions or variations in data representation within these populations, 

or implicit bias reflected in patient notes, which could skew the predictive accuracy of LLM. 5) There 

might be hazards associated with changes in upstream data capture, LLM infrastructure or clinical 

processes which can significantly impact the performance of the LLM-integrated automated algorithms 
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and, consequently, the screening results. Given these potential significant hazards, the integration of  

GPT-4 into clinical trial screening necessitates a careful balance between embracing technological 

advancements and mitigating the associated risks. This approach is crucial to preserve the trial's integrity 

and efficacy while safeguarding against patient harm and ensuring equitable treatment across diverse 

populations. To mitigate these risks, the implementation of robust checks and balances, including a final 

review by clinicians before patient enrollment, is essential. In addition, planned systematic analyses of 

distribution of social determinants of health among those who are screened in or out by the LLM-

integrated algorithm might help early identification of equity hazards. 

 

There are several future iterations to improve the performance of GPT-4 for clinical trial screening. 

Combining GPT with the RAG architecture, as detailed in this manuscript, offers significant efficiency 

and cost advantages for clinical trial recruitment.  However, while efficient, this approach has 

shortcomings, such as ensuring GPT receives relevant clinical context for accurate responses. To 

maximize the value of RAG while minimizing effort, one can leverage several low-cost, quick-to 

implement techniques such as metadata filtering to target more specific clinical notes, using a hybrid 

search to incorporate essential keywords (e.g., procedure names, medications) to refine searches, or 

reranking to prioritize results based on date sensitivity (e.g., current vs. historical condition). Furthermore, 

these techniques can be implemented using various vector databases with built-in capabilities or existing 

frameworks like LangChain and LlamaIndex26.  These tools offer a faster and easier way to experiment 

and improve the process than advanced, but expensive and time-consuming techniques like fine-tuning 

embeddings or the LLM model itself. Although we had high consistency across several runs for the 

validation dataset, to further enhance the consistency of GPT-4 responses, one can leverage Microsoft 

OpenAI’s recommended “seed” parameter27.  Even though not completely deterministic, setting the same 

seed value across GPT runs reduces randomness, potentially leading to even greater reproducibility and 

consistent performance.  Finally, while we found that per patient cost for screening was very low with the 

RECTIFIER, one can leverage several prompting approaches to decrease costs even further. We used one 

such approach using combined prompts for exclusion criteria questions which led to significantly lower 

costs but also a significantly lower sensitivity and specificity for determining overall eligibility, 

highlighting the importance of balancing the performance and cost of the model depending on the desired 

outcome. In our case, prioritizing higher accuracy might justify the additional cost of processing 

individual criteria. It is important to recognize that these optimization steps involve inevitable trade-offs. 

Finding the right techniques requires a cost-aware approach that aligns with the specific use case.  To 

inform decision-making, automated monitoring, and evaluation of individual components and overall 
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performance will be essential. These data will provide valuable feedback to refine the system, mitigate 

risks, and address limitations effectively. 

 

This study had several strengths. Primarily, we included a large number of patients with coded inclusion 

and exclusion criteria ascertained previously by study staff and an expert clinician. Second, the extensive 

dataset used is derived from an ongoing randomized clinical trial, which is particularly valuable as it 

provides a rich, authentic context for applying and evaluating GPT-4 in clinical trial screening, ensuring 

that the findings are grounded in practical, real-world scenarios. Additionally, this approach allowed us to 

assess the study staff performance and compare it to the performance of GPT-4, which is critical in 

evaluating whether GPT-4 can assume the task of clinical trial screening from the study staff. Third, the 

criteria we evaluated for screening in this study included those needing more complex clinical 

assessments such as “symptomatic heart failure”. Considering that most screening questions typically 

focus on basic phenotyping to determine whether a condition is present, evaluating GPT-4 on more 

intricate tasks enhances the potential for generalizability in the findings of this study. Beyond those 

previously mentioned, this study had several additional limitations. First, several eligibility questions 

were unanswered by the study staff given they stopped answering other eligibility questions once they 

determined presence of any exclusion criteria. Second, our study cohort consisted predominantly of 

patients with a high prevalence of heart failure and exclusion criteria were relatively rare. This 

composition was due to the structured query methodology used to create the patient list for the 

COPILOT-HF trial. While this approach is effective to narrow down the list of potentially eligible 

patients for the study and enable a more cost-effective approach to use LLMs, the results might exhibit 

variability when applied to the 13 different conditions in populations with varying prevalence of these 

conditions. A third limitation is that a single expert clinician prepared the gold standard.  Including 

additional clinicians will help characterize variations in the expert reviews, and additionally provide a 

quality assurance for the gold standard. 

 

This suggests the necessity for initial validation of GPT-4 in a broader and more diverse potentially 

eligible trial population before consideration of automating the screening task.  
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CONCLUSION 

GPT-4, when used to screen patients for clinical trials, has the potential to improve efficiency and reduce 

costs significantly. Before the complete automation of the screening process, it is important to consider 

carefully all potential hazards and deploy appropriate mitigation strategies. Furthermore, while this study 

offers promising insights and applications of GPT-4 in clinical trial screening, these must be interpreted 

with an understanding of the context-specific nature of our findings. As we progress, we must continue 

refining these technologies, ensuring their applicability across a spectrum of clinical scenarios while 

addressing potential challenges to ensure the continued integrity of clinical trials. 
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