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Abstract 21 

This study aimed to investigate how electromyography (EMG) cluster analysis of the rectus femoris 22 

(RF) could help to better interpret gait analysis in patients with cerebral palsy (CP). The retrospective 23 

gait data of CP patients were categorized into two groups: initial examination (E1, 881 patients) and 24 

subsequent examination (E2, 377 patients). Envelope-formatted EMG data of RF were collected. Using 25 

PCA and a combined PSO-K-means algorithm, main clusters were identified. Patients were further 26 

classified into crouch, jump, recurvatum, stiff and mild gait for detailed analysis. The clusters (labels) 27 

were characterized by a significant peak EMG activity during mid-swing (L1), prolonged EMG activity 28 

during stance (L2), and a peak EMG activity during loading response (L3). Notably, L2 contained 76% 29 

and 92% of all crouch patients at E1 and E2, respectively. Comparing patients with a crouch gait pattern 30 

in L2-E1 and L2-E2, two subgroups emerged: patients with persistent crouch (G1) and patients 31 

showing improvement at E2 (G2). The minimum activity of RF during 20-45% of the gait was 32 

significantly higher (p= 0.025) in G1 than in G2. A greater chance of improvement from crouch gait 33 

might be associated with lower RF activity during the stance phase. Using our findings, we could 34 

potentially establish an approach to improve clinical decision-making regarding treatment of patients 35 

with CP. 36 

Keywords: EMG, Rectus femoris, cerebral palsy, cluster analysis, k-means. 37 

1 Introduction 38 

Cerebral palsy (CP) is a nonprogressive movement and posture disorder that develops in a fetus during 39 

pregnancy or infancy [1]. It is caused by an injury to the developing brain, which mostly happens 40 

before birth. Spastic CP is the most common form of the disease, which arises from damage to the 41 

motor cortex [1]. In this condition, muscles appear stiff and tight. Abnormal muscle tone and motor 42 

deficit affect the walking ability of patients with CP [2].  43 
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Surface electromyography (EMG) can be used to measure muscle activity in a noninvasive and 44 

clinically meaningful manner. In patients with CP, 3D gait analysis with simultaneous EMG 45 

measurements is often conducted to gain insight into muscle function as part of prescribing treatment 46 

and evaluating treatment effect [3]. Combining EMG data of the rectus femoris (RF) muscle with 47 

kinematics, kinetics, and clinical data, Reinbold et al. demonstrated a method to predict the outcome 48 

of RF transfer surgery [4]. They concluded that a diminished range of knee flexion and a high activity 49 

of RF during swing phase, in addition to a positive RF spasticity (Ely) test, are the main factors for 50 

deciding to perform RF transfer surgery [4]. Patikas et al. [5] also suggested that EMG could be used 51 

to better interpret gait in children with hemiplegic spastic CP. They reported a prolonged activation of 52 

RF during the swing phase as a part of the underlying gait compensatory mechanisms in these patients. 53 

Additionally, they stated that EMG signals can describe the clinical condition of patients before and 54 

after surgery [6]. Particularly, several studies also reported a strong association between the EMG of 55 

RF and gait impairments in these patients [7-9].  56 

Although the literature confirms the importance of EMG for treatment decision-making in patients 57 

with CP, there are still some limitations here, such as cross-talk, artifacts, and poor signal quality [10], 58 

for using these data in clinical settings. In addition, interpreting the results derived from these signals 59 

requires the expertise of a clinician and, currently, this is primarily conducted visually and qualitatively 60 

[11]. Consequently, there is a need for an approach that can assist clinicians by providing an objective 61 

analysis and interpretation of the EMG signals.  62 

Some studies quantitively classified CP patients into different groups based on kinematics. Sutherland 63 

and Davids [12] classified common gait abnormalities of the knee in CP into four types: crouch, jump, 64 

recurvatum, and stiff knee. Rodda et al. [13] proposed an algorithm using a combination of 3D gait 65 

analysis, videos, and clinical examinations to classify the gait of patients with hemiplegia and diplegia. 66 

While these studies [14] have shown that kinematics-based grouping is helpful for treatment 67 
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management and clinical decision-making in CP, a comprehensive EMG-based grouping system for 68 

these patients remains a challenge. The lack of access to an extensive EMG database definitively poses 69 

a significant problem for developing such systems.  70 

Clustering analysis represents an analytical technique to group-unlabeled data for extracting 71 

meaningful information [15]. In recent studies, researchers used a K-means clustering algorithm as an 72 

unsupervised approach to classify the pathological gait patterns observed in patients with CP [16, 17]. 73 

Sangeux et al. [18] conducted a study using a large dataset of CP patients to compare sagittal gait 74 

patterns and K-means clustering. They introduced the "Plantar flexor–Knee extension (PFKE) couple 75 

index", which measures the distance of ankle and knee kinematics during 20 to 45% of the gait cycle 76 

relative to normative data. Their findings revealed a significant association between the traditional CP 77 

gait groups and the five clusters identified through the PFKE-based K-means algorithm. Additionally, 78 

they observed a correlation between the clusters and spasticity in the gastrocnemius-soleus muscles. 79 

K-means is a powerful clustering algorithm that is widely used for various clustering problems. 80 

However, this method is associated with two significant limitations : 1) converging to a local minimum 81 

and 2) sensitivity to selecting the initial cluster centroids, which converges on the local rather than the 82 

global optima  [19]. Therefore, the initial selection of cluster centroids plays a critical role in processing 83 

the K-means algorithm. This challenge can also be considered as the optimization of an "objective 84 

function" that effectively groups the points in the data space into clusters. To address this problem, 85 

researchers have proposed several methods that employ global optimization search algorithms to 86 

determine the initial points for the K-means algorithm [20]. Particle swarm optimization (PSO) is a 87 

good, nature-inspired and population-based, effective global optimization algorithm [21].  88 

To the best of our knowledge, no clustering research has been conducted regarding EMG in patients 89 

with CP while walking. In the current study, we focused on EMG of the RF because of the importance 90 

of this muscle in the gait of these patients. Developing a hybrid PSO- K-means clustering algorithm, 91 
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we aimed to analyze the EMG data of patients with CP and to evaluate the relationship between 92 

common CP gait abnormalities, changes in gait over time, and the identified clusters. Therefore, we 93 

hypothesize that the RF EMG patterns of patients with CP are not uniform and that they can be 94 

classified into clusters that might be linked to the clinical picture. Furthermore, examining these EMG 95 

patterns before and after treatment might help us identify EMG features that could aid in patient 96 

prognosis. 97 

2 Materials and Methods 98 

2-1 Participants 99 

The data analyzed in this study were part of a larger database established at the local University Clinics 100 

in the years 2000-2022 and derived from more than 2000 hemiplegia/diplegia patients with CP and 101 

about 350 typically developed individuals. This study was approved by the ethics committee of the 102 

Medical Faculty of Heidelberg University, Germany, with the serial number S-243/2022. The day of 103 

access to the data in the local clinical data base was May 9th 2022. Only author (SIW) had access to 104 

the identity of patients at the day of data collection. After data collection the data set was anonymized. 105 

In agreement the local ethics committee we refrained from obtaining patients’/subjects’ consent since 106 

a) the data to be evaluated are already available at the investigating institution and the original data 107 

collection was carried out as part of routine medical care and the data are pseudonymized and further 108 

processed for research purposes only; and b) for the purpose of research, only persons who have 109 

previously been authorized to inspect patients’ data for routine medical care and have access to 110 

personal data may access the data again, and c) there is no disclosure of personal data to external 111 

bodies. 112 

 113 
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 The retrospective gait data used for this study were primarily divided into two groups. The group of 114 

patients who visited the gait lab for the first time (E1, first examination) and those who visited a second 115 

time, too (E2, second examination). Therefore, it should be noted that the E2 patients in our study 116 

represent the same individuals examined at two different time points. The inclusion criteria were 117 

availability of EMG, kinematics and kinetics data for each subject, walking only barefoot without any 118 

assistive device, and classified as GMFCS level I, II, or III [14]. For hemiplegia patients, only the 119 

affected side was considered. After applying these criteria, 881 and 377 patients were recruited as E1 120 

and E2, respectively, and 117 persons as typically developed (TD) (reference group). In addition, the 121 

patients with CP were classified as crouch, jump, recurvatum, stiff knee, and mild gait [12, 22]. The 122 

characteristics of the participants are shown in Table 1. 123 

 124 

 125 

Table 1. Demographic and descriptive data of the participants at their first (E1) and second (E2) 

examinations and also healthy individuals. 

 E1 (n=881) E2 (n=377) TD (n=117) 

Age (years) 16.8 ± 9.6 (58.3-3.3) 16.9 ± 8.5 (54.2-3.7) 21.7 ± 12.3 (46 -6) 

Height (cm) 151.9 ± 37.1 (197-94) 152.6 ± 18.2 (196-98) 161.9 ± 19.8 (195-108) 

Body mass (kg) 46 ± 19.5 (125.1-13.6) 46.8 ± 17.3 (101.8-14.5) 66.4 ± 16.8 (91-19) 

Sex (male/female) 510/371 212/165 58/59 

CP type (diplegia/ hemiplegia) 700/181 332/45  

Subgroups (crouch/ jump/ 

recruvatum/ stiff/ mild) 

72/65/109/42/593 38/28/24/19/268  

GMFCS level (I/ II/ III) 140/130/15 59/67/3  

Interval between examinations 

(years) 

2.4 ± 1.9 (13.5-0.1)  

 126 

2-2 Data acquisition 127 
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All subjects walked barefoot at a self-selected speed along a lane 15 m in length during data acquisition. 128 

Kinematics and kinetics were recorded using a twelve-camera 3D motion analysis system (VICON, 129 

Oxford Metrics Limited, UK) operating at 120 Hz and using three force plates (Kistler Instruments 130 

Co.), respectively. The skin-mounted markers were applied according to the protocol of Kadaba et al. 131 

[23] and the plug-in-gait model was chosen for analysis. Subsequently, gait parameters of at least seven 132 

strides were determined.  133 

The EMG data were recorded from eight lower extremity major muscles including the RF, right and 134 

left legs, using myon 320 (Myon AG, Schwarzenberg, CH). Bipolar surface adhesive electrodes (Blue 135 

Sensor, Ambu Inc., Glen Burnie, MD, USA) were placed on the targeted muscles, following the 136 

guidelines provided by SENIAM [24]. The distance between the electrodes was set at 2 cm [6]. To 137 

amplify the EMG signal, the Biovision EMG apparatus (Biovision Inc., Wehrheim, Germany) before 138 

2013/2014 and via Delsys (Delsys Inc., Natick, MA, USA) after 2013/14, was utilized with a 139 

preamplification factor of ×5000.  140 

Clinical examination was exclusively performed by two physiotherapists controlling each other. Knee 141 

extensor muscle strength was assessed according to the Medical Research Council (MRC) [25]. The 142 

spasticity of the RF was tested both by the Duncan-Ely test [26] and by the Tardieu test [27]. According 143 

to the MRC, muscle strength ranged from 5 (the strongest) to 1 (the weakest) The scale for spasticity 144 

ranged from 0 (no spasticity) to 4 (severe spasticity). More information about these (strength and 145 

spasticity) grading systems is available in our previous work [28].  146 

2-3 Signal processing  147 

The raw EMG data were then band-pass filtered (Butterworth filter with a cutoff frequency of 20-350 148 

Hz), rectified, and the signal smoothed (Butterworth low-pass filter with a cutoff frequency of 9 Hz), 149 

amplitude-normalized to the mean of signal, time-normalized within one gait cycle (101 datapoint), 150 

and eventually averaged across valid strides in MatLab (The MathWorks, Inc. USA) [6]. Six main 151 
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features (mean, range, max, min, and their timing) during ten gait phases [6], including whole-gait-152 

cycle stance, swing, loading response, mid-stance, terminal stance, preswing, initial swing, mid-swing, 153 

and terminal swing phase, were extracted for clustering.  154 

To determine a magnitude that describes the deviation of a patient’s EMG feature from the reference 155 

group, the norm-distance (NDi) was calculated according to [6] by Equation (1). ND was defined as 156 

the absolute difference between the i_th feature of the EMG of the patient p (𝐹𝑝𝑖) and the mean value 157 

of the same feature in the reference group (𝐹̅𝑛𝑖), divided by the corresponding standard deviation within 158 

the reference group (𝑆𝐷𝑛𝑖). This standardization process served as the initial input for subsequent steps 159 

and can potentially help as a data transformation method to identify meaningful clusters. 160 

Eq. 1. 𝑵𝑫𝒊 =
|𝑭𝒑𝒊 − 𝑭̅𝒏𝒊 

|

𝑺𝑫𝒏𝒊
 

 

2-4 Cluster analysis  161 

We applied cluster analysis as an unsupervised stand-alone tool to gain insight into the data 162 

distribution, examine the distinct characteristics of each cluster, and prioritize specific clusters for 163 

subsequent analysis. Therefore, we applied two feature matrices with dimension of 881×60 (number 164 

of feature (6) × number of gait phases (10)) and 377×60 for E1 and E2 conditions, respectively. Prior 165 

to performing clustering analysis, we employed principal component analysis (PCA) to reduce the 166 

dimensionality of the input matrices [29]. The first principal components (PCs), which explained more 167 

than 96% of the total variance, were used for the clustering. The hybrid clustering algorithm was 168 

developed using MatLab software based on the details described in Supplementary material (Appendix 169 

1). In the initial stage, the PSO algorithm was employed for a global search to explore the possible 170 

optimal solutions to predefine the number of clusters. The output of PSO served as the initial centroids 171 

for the K-means algorithm, which was then utilized to refine and generate the final result. Using the 172 

elbow method [30], the number of ‘K’ was determined. In this method, the changes in the sum of 173 
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squared differences between the observations and their cluster (SSE) were analyzed by adding the 174 

number of clusters. The point at which there is a sharp change in the elbow curve indicates the K. In 175 

this study, we applied the elbow method on the E1 dataset to determine the K; then we set this for the 176 

E2 clustering as well. 177 

2-5 Comparison between the clusters  178 

The Pearson correlation (r) was applied to compare the averaged RF EMG of patients in the different 179 

clusters with that of the typically developed group. A more comprehensive investigation of the clusters 180 

(labels)’ characteristics conducted through 1) extracting the average hip, knee, and ankle joint angles 181 

and moments of each cluster at E1 and E2 in the sagittal plane and 2) examining the population of the 182 

gait subgroups (crouch, jump, recurvatum, stiff knee, and mild) in each cluster. Descriptive statistics 183 

(mean and standard deviation) were used to compare the clinical examination data between the 184 

conditions.  185 

2-6 Comparison between the groups 186 

Considering the changes in the EMG cluster and gait kinematics of the patients from their second 187 

examination (E2), we set two cohorts of patients in E1 in an identified cluster (section 3) who were 188 

determined as crouch and who did not show any changes (G1) or showed improvement (G2) in their 189 

gait later according to E2. All of these patients underwent single‐event multilevel surgery (SEMLS) 190 

between the examinations. Gait profile score (GPS) [31] was computed for the groups in both E1 and 191 

E2 to assess gait improvement.  192 

To investigate the gait factors resulting in these different responses to the treatment, the EMG data of 193 

the RF muscle from G1 and G2 patients at E1 were compared by extracting six main features (section 194 

2-3) during 20 to 45% of their gait cycle, as described by Sangeux et al. [18]. Applying the 195 

nonparametric Kruskal-Wallis test, we compared the features between G1 and G2 at E1 (p-Value = 196 

0.05). Furthermore, we used statistical parametric mapping (SPM, www.spm1d.org) implemented in 197 
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MatLab [32] to compare joint patterns. Fig 1 illustrates the procedure we used in this study in a flow 198 

chart.  199 

Please insert Fig 1 200 

Fig 1. Flowchart of the methodology used in this study. EMG, electromyography; PSO, particle 201 

swarm optimization 202 

3 Results 203 

Fig 2 shows an elbow plot with K=3, representing the number of clusters (L1, L2, and L3). The first 204 

25 PCs accounted for approximately 96.1% of the variance in the primary dataset and were utilized for 205 

the clustering analysis. Comparing the EMG of RF between the three identified clusters in two 206 

examinations (Fig 3A), they were characterized by a peak during mid-swing (L1), prolonged activity 207 

during (mid- and terminal) stance (L2), and a significant peak during loading response (L3). Notably, 208 

L2 contained 76% (55 out of 72) and 92% (35 out of 38) of all crouch patients at E1 and E2, respectively 209 

(Table 2). An excessive knee flexion during the stance phase of gait (Fig 3B), along with lack of an 210 

extension moment (Fig 3C), for patients detected as cluster 2, supported the sensitivity of our clustering 211 

to the crouch gait.  212 

Please insert Fig 2 213 

Fig 2. Determination of the number of clusters using the elbow method. The scatter plots show 214 

the distribution of input data (E1) in different clusters in which the axes are PC1 and PC2. 215 

Each color represents a cluster. 216 

Correlation analysis (Table 2) revealed a similarity of more than 0.9 between the average EMG pattern 217 

of patients placed in L3 and the normal population, while L1 patients had the lowest coefficient by 39 218 

and 53% at E1 and E2, respectively.  219 
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In addition, averaged clinical assessment of the patients (as presented in Table 2 descriptively) revealed 220 

that the L2 group had lower strength and higher levels of spasticity in their knee extensors than did the 221 

other two groups. Moreover, the number of patients with more severe motor impairment (GMFCS level 222 

III) was also higher in the L2 than in the L1 and L3 groups. Comparing G1 (16 patients, 32 limbs) and 223 

G2 (8 patients, 15 limbs), there was a significant improvement in the GPS of G2 at E2 (Table 3).  224 

 225 

 226 

 227 

 228 

 229 

Table 2- Number of patients with a gait abnormality, clinical examination data (mean ± SD), and 

number of patients with different GMFCS level in each cluster examination. 

 

Please insert Fig 3 230 

Conditions 

(Clusters-

Examinations) 

Gait subgroups count per condition r-

correlation 

to normal 

EMG  

Clinical Examination Parameters GMFCS 

level 

(I/ II/ 

III) Stiff Recurvatum Mild Jump Crouch 

Knee 

extensors 

strength 

Rectus 

spasticity 

Tardieu 

Rectus 

spasticity 

Duncan-Ely 

E1-L1 11 63 224 25 7 0.39 4.5 ± 0.6 0.66 ± 1 0.64 ± 0.5 57/40/2 

E1-L2 21 26 178 23 55  0.67 4.3 ± 0.6 1.1 ± 1 0.71 ± 0.4 19/45/11 

E1-L3 10 21 190 17 10 0.91 4.6 ± 0.5 
0.44 ± 

0.8 
0.49 ± 0.5 64/45/2 

E2-L1 6 6 107 10 3 0.53 4.3 ± 0.6 0.68 ± 1 0.72 ± 0.5 30/20/0 

E2-L2 5 9 79 12 35  0.7 4.2 ± 0.6 0.96 ± 1 0.69 ± 0.5 10/29/2 

E2-L3 8 8 83 6 0 0.92 4.4 ± 0.6 
0.44 ± 

0.9 
0.59 ± 0.5 19/18/1 
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Fig 3. Average rectus femoris electromyography (EMG) (A), knee kinematic (B) and knee 231 

kinetic (C) patterns for different clusters and examinations. Red: L1, Blue: L2, Green: L3, 232 

Black: reference group, Solid lines: E1, Dashed lines: E2. 233 

 

 

 

 

 

 

 

 

 

 

Table 3- Mean ± SD and statistical comparison for gait profile score (GPS) and rectus femoris 

electromyography (EMG) features at 20-45% gait between patients with crouch gait (cluster 2) 

measured before and after surgery (E1 and E2) and demonstrated no significant improvement (G1) or 

significant improvement during the second examination (G2). 

 

 

GPS 

G1 G2 Normal 

 

E1 16.25 ± 2.6 18.4 ± 5.9 

4.87 ± 1.09 
E2 15.16 ± 3.9 14.3 ± 6.3 

p-value between E1 and E2 

within each Group 
0.167 0.033* 

 

Rectus EMG features in 20-45% gait cycle during E1 

G1 G2 
p-value between G1 and G2 

for each feature 
Normal 

Min 20-45% 85.1 ± 20.2 69.2 ± 25.7 0.025* 38.3 ± 14.5 

Mean 20-45% 110.8 ± 16.3 100.8 ± 23.4 0.144 56.7 ± 21 

Max 20-45% 137.8 ± 19.1 128.1 ± 27.4 0.121 92.2 ± 36.8 

*p-value<0.05          

Please insert Fig 4 234 
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Fig 4. Average rectus femoris electromyography (EMG) (A), knee kinematic (B) and knee 235 

kinetic (C) patterns for cluster 2 patients that did not improve (G1) or improved (G2) after 236 

surgery (E2) compared to their condition before surgery (E1). Red: G1, Blue: G2, Solid line: 237 

E1, Dashed line: E2. 238 

The SPM results did not show any systematic difference (p<0.05) between knee kinematics of G1 and 239 

G2 individuals at E1 (Fig 4A and Fig 4B). Visually, however, the stance peak extension moment for 240 

both groups is at the same level (Fig 4C). As increased RF activity during stance was the main 241 

characteristic of cluster 2, a subjective comparison between the two groups in this phase (Fig 4A) 242 

showed a higher average EMG in G1-E1 than G2-E1. Statistically, as shown in Table 2, there is a 243 

systematic difference between the minimum activity of RF during 20-45% gait between the two groups 244 

(p=0.025). Mean and maximum (features) were also lower for G2. We only reported the main three 245 

features with the lowest p-value. 246 

4 Discussion 247 

Using an unsupervised hybrid PSO- K-means cluster analysis, three main groups were identified from 248 

EMG data of the RF in patients with CP. These clusters differed from each other in level of activity in 249 

swing (L1), stance (L2), and loading response (L3) (Fig 3A). Applying a pre-clustering standardization 250 

technique in combination with PCA, our clustering system could categorize the patients in relation to 251 

the deviation of their EMG results from those of a healthy population. Subsequently, a correlation of 252 

more than 90% was observed between one of the clusters (L3) and a normal EMG (Table 2). 253 

Descriptively, L3 patients showed a stronger knee extensor and a lower RF spasticity. On the other 254 

hand, patterns in patients identified as L1 correlated least with normal patterns (Table 2). It has been 255 

reported that in the majority of children with CP the RF is active during the mid-swing phase, when 256 

this muscle is normally inactive [33]. A high swing peak observed in the mean EMG of this cluster 257 

(L1) aligns with this typical feature of CP.  258 
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Furthermore, identifying a significant number of patients with a crouch gait as L2 (Table 2) is 259 

consistent with the prolonged activation of RF during stance phase, which is supported by the current 260 

literature [12]. In healthy individuals, quadriceps muscles are typically active for a small portion of the 261 

stance phase. However, in patients with crouch gait, the positioning of the ground reaction force behind 262 

the center of the knee joint requires the quadriceps to be engaged throughout the entire stance phase in 263 

order to maintain stability of the knee joint [34]. Table 1 demonstrates higher levels of RF and weaker 264 

knee extensor strength among individuals classified as L2 at E1 compared to L1 and L3. This cluster 265 

also exhibited a greater proportion of patients with a higher GMFCS level, which may support the 266 

notion that this EMG pattern might be linked to severity of the disability. 267 

Investigating the relationship between EMG activity and altered kinematics in G1 patients with 268 

persistent crouch condition and G2 patients with significant GPS improvement, we observed (Table 3) 269 

that a lower minimum activity of RF during 20-45% of the gait cycle was a significant (p=0.025) 270 

indicator of a better GPS at E2. However, the changes from E1 to E2 for sagittal knee kinematics of 271 

G1 and G2 were not significant. These findings suggest that EMG patterns are important for treatment 272 

decision-making, but that the effectiveness of kinematics, as a widely used clinical measure, is limited. 273 

The G1-G2 EMG comparison was made for the period 20-45% of the gait cycle. Sangeux et al. [18] 274 

developed an index to categorize CP subgroups by considering only this 25% of the gait cycle, mainly 275 

to avoid the loading response effects on the stance phase features. As the relationship between muscle 276 

EMGs and joint kinetics is nonlinear [35], it is difficult to find a direct explanation for the differences 277 

in the kinetics patterns of G1-G2 at E1 based on the RF activity.  278 

Several algorithms are available in the literature to determine the optimal number of clusters [36]; 279 

however, in this study, the elbow curve at K=3 was obvious and an exact biomechanical meaning for 280 

the clusters supports the algorithm results. For instance, each cluster showed a prominent activation in 281 

different gait phases: there was a cluster with a significant number of patients with crouch and a weaker 282 
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RF, in addition to a cluster with patients with (correlated) normal EMG patterns. In this research, we 283 

used blind, unsupervised clustering without any prior information about the available EMG data. The 284 

only inclusion criteria applied were the availability of data from patients who walked barefoot and 285 

without any assistance. Applying such an algorithm on a large database (collected in our center) with 286 

more than 1000 examinations aided us in identifying general trends in the EMG data of CP patients. 287 

Furthermore, the term E2 in our study addressed the second examination of patients in whom a gait 288 

test (E1) had previously been performed in the lab. As a result, this does not apply to a before-after 289 

surgery scenario. However, it is important to note that these patients are typically engaged in an 290 

everyday training program. In the present study, the inclusion or exclusion criteria did not specifically 291 

consider the aspect of "treatment" initially. Moreover, the crosstalk from  the surrounding vastus 292 

lateralis muscle on the activity of RF has recently been extensively reported as a common issue when 293 

employing surface EMG, especially in the presence of crouch gait observed in children with CP [37]. 294 

However, utilizing wire fine EMG, true activation of RF was noted in 30-45% of crouched gait cycles 295 

[37]. Our study specifically focuses on the 20-45% phase of gait in G1 and G2, addressing this actual 296 

part of RF activity. Nevertheless, despite lacking access to an extensive database of wire fine EMG 297 

data from CP patients, we believe that surface EMG, as a non-invasive and clinically relevant measure 298 

of gait in individuals with CP, has the capacity to capture the primary characteristics of muscle activity 299 

in these patients.  300 

To overcome the K-mean algorithm initialization problem, we developed a hybrid K-mean and PSO 301 

optimization approach. As no similar study on the clustering of EMG data in CP has been conducted, 302 

our research focused only on one muscle (RF) and, further, the crouch condition to investigate the 303 

possibility of developing CP-EMG assessment approaches. These findings seem promising and suggest 304 

that clustering analyses should be applied on datasets with more muscles. In addition, we mainly 305 
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evaluated knee movement while other joints and gait abnormalities could also be included in future 306 

studies.  307 
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