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Abstract 
 
Background: Post-COVID conditions (PCC) present clinicians with significant challenges due to 
their variable presentation.  
 
Objective: To characterize patterns of PCC diagnosis in generalist primary care settings. 
 
Design: Retrospective observational study 
 
Setting: 519 primary care clinics around the United States who were in the American Family 
Cohort registry between October 1, 2021 and November 1, 2023. 
 
Patients: 6,116 with diagnostic code for PCC; 5,020 with PCC and COVID-19 
 
Measurements: Time between COVID-19 and PCC (U09.9) diagnostic codes; count of patients 
with PCC diagnostic codes per clinician; patient-specific probability of PCC diagnostic code 
estimated by a tree-based machine learning model trained on clinician and specific practice 
visited, patient demographics, and other diagnoses; performance of a natural language 
classifier trained on notes from 5,000 patients annotated by two physicians to indicate probable 
PCC. 
 
Results: Of patients with diagnostic codes for PCC and COVID-19, 43.0% were diagnosed with 
PCC less than 4 weeks after initial recorded COVID-19 diagnostic code. Six clinicians (out of 
3,845 total) made 15.4% of all PCC diagnoses. The high-performing (F1: 0.98) tree-based 
model showed that patient demographics, practice visited, clinician visited, and calendar date of 
visit were more predictive of PCC diagnostic code than any symptom. Inter-rater agreement on 
PCC diagnosis was moderate (Cohen’s kappa: 0.60), and performance of the natural language 
classifiers was poor (best F1: 0.54). 
 
Limitations: Cannot validate date of COVID-19 diagnosis, as it may not reflect when disease 
began and could have been coded retrospectively.  Few options for medically focused language 
models. 
 
Conclusion: We identified multiple sources of heterogeneity in the documentation of PCC 
diagnostic codes in primary care practices after introduction of ICD-10 codes for PCC, which 
has created challenges for public health surveillance. 
 
Funding Source: US CDC 
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Introduction 
 
Post-COVID conditions (PCC) have been challenging to study, largely due to the use of the 
term for a set of “potentially overlapping entities,” in the words of the US Department of Health & 
Human Services.(1) Understanding of PCC has evolved over time. Still, lack of detailed 
characterization creates difficulties for clinicians trying to treat and study the conditions.(2) The 
implementation of the diagnostic code for PCC (U09.9) in October 2021 gave researchers hope 
of a more standardized approach to diagnosing the condition.  
 
Usage of the ICD-10 code, however, has differed substantially across clinicians, practices, and 
electronic health record (EHR) platforms, creating further complications for researchers. In a 
study from the United States Veterans Health Administration, researchers found that rates of 
PCC diagnosis following COVID-19 ranged from 3 to 41% across medical centers, largely due 
to differences in diagnostic practices.(3) Another study in the United States revealed that 35% of 
PCC diagnoses do not meet standards from the Centers for Disease Control and Prevention 
(CDC), and 60% do not meet World Health Organization (WHO) standards.(4) Meanwhile, a 
study from the United Kingdom found that users of different EHR platforms showed very 
different rates of PCC diagnosis with ICD-10 documentation.(5) 
 
The challenge created by inconsistent usage of the PCC ICD-10 code has created demand for 
alternative methods of identifying patients impacted by PCC. Strategies for meeting this demand 
have largely been explored using machine learning methods. Zhu, et al. used a small patient 
cohort and symptom surveys to train a classifier on clinical notes and achieved relatively good 
sensitivity, albeit with a loose definition of PCC and an assumption of very high prevalence.(6) 
Rather than using clinical notes, other researchers have used tabular data to predict PCC. Pfaff, 
et al. used gradient-boosted decision trees with data contributed to the National COVID-19 
Cohort Collaborative (N3C) to identify clinical and demographic features that are associated 
with specialty PCC clinic attendance.(7) Binka, et al. used ridge regression with administrative 
data from British Columbia for the same aim.(8) Among the high-prevalence test set of patients 
attending or diagnosed at a specialty PCC clinic, all achieved good performance, though the 
generalizability to patients outside that setting is unknown. 
 
These three machine learning based studies of PCC were designed to predict whether a given 
patient would be diagnosed at or eligible to attend a specialty PCC clinic. Our interest, however, 
was in evaluating the patterns of diagnosis that exist in the generalist primary care setting. To 
this end, we performed a series of descriptive and machine learning-based analyses that aimed 
to uncover the degree and potential sources of heterogeneity in the application of the ICD-10 
code for PCC among clinicians in primary care, as well as potential commonalities among 
patients with PCC regardless of the presence of a diagnostic code.  
 
Methods 
 
Methods overview 
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We combined descriptive statistical analyses with machine learning to characterize the degree 
of diagnostic heterogeneity of PCC within primary care and to identify potential sources thereof. 
We first examined the distribution of PCC diagnoses across clinicians, which allowed for 
characterization of clinicians’ underlying propensity to diagnose PCC. Next, we analyzed the 
time between the first documentation of COVID-19 and the first documentation of PCC; this is 
an important component of guideline-concordant diagnosis. Then, to better understand the 
degree to which patient and clinician factors contributed to documentation of a PCC diagnostic 
code, we created a gradient-boosted decision tree model trained on the patients’ other 
diagnoses, demographic characteristics, practice, and clinician. Finally, we trained a natural 
language classifier on a sample of physician-annotated clinical notes to determine whether 
documentation may reveal common characteristics of patients with PCC, irrespective of the 
presence of the PCC ICD-10 code. 
 
Data Source 
 
The American Family Cohort (AFC) is a collection of EHR data derived from a registry of mostly 
primary care clinics across the United States.(9) The records in AFC cover the healthcare 
encounters between over 12,000 clinicians and approximately 8 million unique patients. Data 
were prospectively collected beginning in 2017 and extend in the analytic dataset to November 
1, 2023 (Figure 1). The patients were of diverse ages, races, ethnicities, and geographies. 
Approximately 20% of patients were missing data on race and ethnicity. For these patients, we 
used the highest probability race or ethnicity from a validated imputation based on name and 
census tract.(10) 
 
Assessment of Practice Patterns 
 
We were interested in two proxies for understanding potential heterogeneity in application of 
diagnosis standards and behaviors exhibited by clinicians: first, the distribution of PCC 
diagnoses across clinicians; and second, the distribution of time between a patient’s first 
COVID-19 diagnosis and their first PCC diagnosis. Both of these analyses were conducted 
using the ICD-10 code U09.9 to identify patients who had been diagnosed with PCC between 
October 1, 2021, when the PCC ICD-10 code became available, and November 1, 2023 (Figure 
1). All patients with a PCC diagnostic code were included in the descriptive analysis of how 
many PCC diagnoses each clinician recorded. COVID-19 was identified with the ICD-10 code 
U07.1 or the SNOMED code 840539006. Patients with both COVID-19 and PCC diagnostic 
codes were included in the analysis of time between recording the two diagnoses. 
 
Model of Diagnosis Code Documentation 
 
Following the method of Pfaff, et al. (7), we developed a machine learning-based model to 
predict the documentation of an ICD-10 code for PCC (U09.9). As our primary interest was in 
examining diagnosis and documentation patterns in the context of general primary care, it was 
ideal that our dataset did not contain any records from specialty PCC clinics. We used as our 
analytic dataset a random 10% sample of visits between October 1, 2021 and November 1, 
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2023. This dataset included all ICD-10 codes recorded or retained within the patient’s problem 
list; patient demographics; date of visit; and both the practice and clinician visited. We collapsed 
all ICD-10 codes into the parent code: for example, the code F40.01 indicating agoraphobia 
would be collapsed to F40, which covers all phobic anxiety disorders. This resulted in a total of 
1,596 parent codes. We used an 80% split of the 10% sample to train an extreme gradient 
boosted decision trees (XGBoost) model and evaluated performance on the remaining 20%.(11) 
Because visits labeled with a PCC diagnostic code were outnumbered by visits without, we 
weighted visits with a PCC diagnostic code using the inverse ratio of positive to negative labeled 
cases. We visualized results using Shapley values to demonstrate the influence of specific 
attributes on individual patients’ receipt of a PCC diagnosis code.(12)  
 
Sample for Natural Language Classifier 
 
To arrive at the sample of clinical notes to train the natural language classifier we selected 
patient visits between October 1, 2021 and January 9, 2023 based on the recorded reason for 
the clinical encounter. We included only notes from visits that had a SNOMED, ICD-9, or ICD-10 
diagnostic code contained in the National Library of Medicine value sets “COVID-19 Potential 
Signs and Symptoms” (object identifier [OID]: 2.16.840.1.113762.1.4.1223.22) or one of the ten 
most reported symptoms of PCC in the cross-sectional survey of PCC patients conducted by 
Perlis, et al.(13) (Supplemental Material I). This method was designed to capture the largest 
number of potential PCC patients and may have missed patients who presented with less 
common symptoms. 
 
Next, we included only patient notes having a length of at least 100 characters to eliminate most 
of the uninformative notes and extraneous data that could be mistakenly included in the clinical 
notes section. We concatenated all notes for each unique combination of patient ID and visit 
date for the visits identified in the first step of the sampling process.  
 
Finally, we randomly selected 5,000 clinical notes from unique patients among the subset of all 
notes meeting our criteria. Each note was from a single visit. This sample size is based on the 
sample size of a similar study that achieved good model performance.(14) Many notes 
contained formatting marks, which we cleaned using regular expression-based functions. This 
was important not only for readability by the physicians who later tagged the documents, but 
also for avoiding training the NLP model on formatting marks – for example, identifying 
metadata or fonts from particular facilities. 
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Figure 1: Data selection for the four included analyses. Samples were not mutually exclusive. 

 
Natural Language Classifier Development 
 
Two family physicians (MT and GW) each reviewed 2,750 different notes. Both reviewed an 
overlapping set of 500 notes, which we used for calculating Cohen’s kappa for inter-rater 
reliability. The physicians used the criteria defined by the CDC to identify patients who were 
eligible for a PCC diagnosis.(15) Because they were using clinical notes from single visits and 
no structured data from patients’ charts, they also required attribution of the symptoms to a prior 
COVID-19 illness within the note. Within the overlapping subset, disagreements in classification 
were resolved by a third reviewer (NH).  
 
We used three different NLP-based classifiers of increasing complexity: a tree ensemble model, 
a recurrent neural network (RNN), and a Transformer-based model. We trained each model on 
a 70% sample (i.e., 3,500 of 5,000 notes) and assigned the remainder to the test dataset.  
 
For the first model, we trained an XGBoost model on term frequency-inverse document 
frequency (TF-IDF) data – a form of regularized bag-of-words model.(11,16) XGBoost is a tree 
ensemble method that has proven competitive with deep learning methods on many types of 
sparse tabular data, including text.(17)  
 
For the second model, we employed a long short-term memory (LSTM) model.(18,19) Unlike 
bag-of-words approaches, which treat text as a static input with no consideration of word order 
or context, a LSTM RNN model can integrate the sequence of words and their dependencies 
into its predictions. We composed our model with an Embedding layer, LSTM units, and a final 
Dense layer, which we trained using binary cross-entropy loss and the Adam optimizer.  
 
The third model was a transformer pre-trained on deidentified clinical notes. Because it had 
shown superior performance on clinical classification tasks over general transformer models, we 
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used BioClinicalBERT as the basis for our transformer-based classifier.(20) A caveat of the 
transformer architecture is that the model length input is limited. In the case of BioClinicalBERT, 
it is limited to 128 tokens (roughly equivalent to 100 words). Therefore, we separated notes into 
texts of suitable length prior to processing in the transformer model. This meant, however, that 
the model produced multiple predictions for each note, and we had to aggregate them. We 
tested both the mean and maximum of predictions for each note and used the best performing 
aggregation method. 
 
Because only 1% of the notes related to PCC, we augmented presumptive PCC notes and 
under-sampled other notes. We first applied synthetic text augmentation to the positive cases 
using a WordNet-based synonym augmenter, which duplicates notes and randomly replaces 
words with synonyms, effectively increasing the variety of positive case samples.(21) We then 
employed random undersampling, in which a significant portion of the negative cases was 
randomly dropped, thereby reducing the disparity between positive and negative instances in 
the dataset. With random sampling, we ensured that the ratio of negative to positive cases did 
not exceed 5:1.  
 
We used the Optuna package in Python to optimize hyperparameters in the RNN and 
transformer models.(22) In each case, we used evaluation loss on a 30% test dataset as the 
cost function over 50 trials. Our primary outcome of interest was area under the receiver 
operating characteristic curve (AUC), and positive / negative predictive value at the optimal 
threshold, as determined by maximization of the F1 score. We calculated confidence intervals 
for each model’s performance metrics by using a bootstrap with 1,000 repetitions.  
 
Software 
 
Descriptive analyses were conducted in R, version 4.2, while modeling was conducted in 
Python 3.7. We used the xgboost package for prediction of PCC diagnostic code 
documentation.(11) We used the scikit-learn(23) and xgboost packages for the TF-IDF 
analyses; TensorFlow for the RNN(24); and HuggingFace Transformers for the transformer.(25) 
 
Results 
 
Dataset Characteristics 
 
The AFC contained 9,722,653 visits conducted by 3,845 clinicians at 519 practices with 
4,724,507 unique patients from October 1, 2021, to November 1, 2023. Among these, 116,659 
patients had a diagnostic code for COVID-19 and 6,116 had a diagnostic code for PCC. A total 
of 5,020 individuals had diagnostic codes for both COVID-19 and PCC: 1,096 (18%) patients 
with a PCC diagnostic code did not have a diagnostic code for COVID-19.  
 
Patterns of Documentation for the PCC Diagnostic Code 
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Of the 3,845 clinicians, 973 (25.3%) documented a PCC diagnostic code for at least one patient.
The greatest number of PCC diagnoses took place in January and February of 2022, following 
the 2021 surge of infections driven by the emergence of the Omicron variant of SARS-CoV-2 
(Supplemental Material II). The distribution of PCC diagnoses was highly right-skewed (Figure 
2). A substantial share of the clinicians who diagnosed any PCC, 331 (34.0%), diagnosed only 
one patient with PCC. Six clinicians had over 100 patients with PCC, and the maximum number 
of PCC diagnoses for a single provider was 224. These six clinicians, all of whom practice in 
different states without any public indication of working at a specialty PCC clinic, accounted for 
15.6% (957 out of 6,116) of all PCC diagnoses documented with diagnostic codes. Seven 
clinicians diagnosed more than 10% of their patients with PCC, and 35 diagnosed more than 
5%. 
 

   
Figure 2: Diagnoses made for each of the 973 (out of 3,845 total) clinicians with at least one PCC diagnosis made 
from October 1, 2021 – November 1, 2023. 

 
Time between COVID-19 and PCC diagnoses 
 
Among patients with diagnostic codes for both COVID-19 and PCC, 295 (5.8%) had a PCC 
diagnosis recorded before their first documented diagnosis of COVID-19. An additional 3,078 
(61.3%) individuals received their first PCC diagnosis less than 12 weeks after their first COVID-
19 diagnosis, and 2,158 (43.0%) were diagnosed with COVID-19 and PCC less than 4 weeks 
apart. These thresholds represent the timing of diagnosis specified by the WHO and CDC, 
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respectively. The mean time between first COVID-19 and first PCC diagnosis among those with 
both was 127 days, and the median time was 30 days. 
 
Predictive Model of Diagnostic Code Documentation 
 
The XGBoost model trained on documentation of a diagnostic code for PCC achieved excellent 
performance. Its overall accuracy was 99.7% (95% confidence interval [CI]: 99.7 to 99.8%), its 
weighted F1 score was 0.982 (95% CI: 0.982 to 0.983), and its AUC was 0.711 (95% CI: 0.679 
to 0.741). Overall, patient demographics were more predictive of the presence of a PCC 
diagnostic code than any recorded diagnosis and clinical features (Figure 3). Older age, female 
gender, and non-Hispanic white race/ethnicity were all associated with higher rates of PCC 
documentation. Similarly, calendar date and the practice and clinician visited were more 
important than any recorded diagnoses. Force plots for four example patients (Supplemental 
Material III) show similar patterns. 
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Figure 3: Shapley values for the model predicting documentation of an ICD-10 code (U09.9) for post-COVID 
conditions. Feature importance across patients is represented on the vertical axis (higher values on top), while 
influence on individual patients is represented by the jittered points along the horizontal axes. Feature value is 
indicated by color; for instance, low age is blue while higher age is red, and the presence of a given clinical condition 
is indicated by red. Gray indicates nominal categorical variables with more than two potential values.  

 
Natural Language Classifier Performance 
 
In the annotated sample, 50 of the 5,000 notes were related to PCC. Interrater reliability 
calculations between the two physician reviewers showed a Cohen’s Kappa of 0.6 for PCC, 
which indicates moderate agreement beyond chance.  
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The models had low accuracy at identifying patients with PCC. The model AUCs were 0.76, 
0.58, and 0.45 for the TF-IDF, RNN, and transformer models, respectively (Table 1, 
Supplemental Material IV). Only the TF-IDF model was better than chance. Confusion matrices 
(Supplemental Material V) showed that the RNN and transformer models achieved their best 
performance by classifying all individuals as not having PCC. 
 
Table 1: Performance characteristics of the three natural language classifiers (with 95% confidence intervals). 
Performance is based on physician review of notes within a 30% set-aside test set. AUC = area under the curve; 
RNN = recurrent neural network; TF-IDF = term frequency-inverse document frequency (subsequently used in a tree-
based classifier). 

 AUC F1 Score Positive 
predictive value 

Negative 
predictive value 

Sensitivity Specificity 

TF-IDF 
0.76 (0.54 

– 0.93) 
0.54 (0.32 – 

0.65) 
0.41 (0.23 – 

0.56) 
0.94 (0.87 – 

0.99) 
78% (50 – 

92%)  
77% (68 – 

85%) 

RNN 
0.58 (0.36 

– 0.85) 
0.37 (0.06 – 

0.48) 
0.23 (0.08 – 

0.67) 
0.94 (0.77 – 

0.99) 
39% (5 – 

43%) 
89% (65 – 

97%) 

Transformer 
0.45 (0.22 

– 0.67) 
0.32 (0.08 – 

0.47) 
0.32 (0.09 – 

0.50) 
0.86 (0.77 – 

0.93) 
33% (8 – 

50%) 
85% (77 – 

92%) 
 
 
Discussion 
 
Our results revealed substantial heterogeneity in the diagnostic behavior of clinicians in primary 
care in the 15 months following the introduction of the ICD-10 code for PCC. This suggests – 
but does not prove – that interrater reliability of PCC diagnosis among clinicians in primary care 
is low. While a majority of clinicians in our dataset (75.7%) did not record a single diagnostic 
code for PCC, others applied the diagnosis very widely. Our data also showed that a majority 
(61.3%) of PCC diagnoses did not seem to meet the WHO criteria of at least twelve weeks 
between COVID-19 and PCC; nearly half (43.0%) did not meet the CDC definition of a minimum 
four weeks. Furthermore, our machine learning analyses revealed that patient demographics, 
practice visited, and clinician visited were more predictive of a PCC diagnostic code than most 
recorded clinical factors. Three NLP models could not meaningfully identify PCC from the text of 
clinical notes, suggesting that patient heterogeneity may also be high, in addition to clinician 
heterogeneity. 
 
PCC is a collection of symptoms that may commonly occur together but with wide variation. The 
CDC’s PCC symptom collection originally contained more than 1500 symptoms. which may 
mean that we have not sufficiently winnowed the most precise collection of symptoms to define 
PCC. Clusters of patients may have different PCC clusters with little overlap between them, 
thereby producing variation in their presentation at primary care. In practice, primary care 
providers such as those represented in AFC have reported difficulties diagnosing and treating 
PCC patients in the face of often ambiguous definitions and standards.(26) The annotations of 
clinical notes from the two physicians demonstrated this issue: the level of agreement was only 
moderately above what would be expected by chance alone. 
 
Our study revealed results that broadly accord with the findings of other studies. Prior research 
found low concordance between the ICD-10 code for PCC and the clinical criteria for the 
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disease, (4) and a right-skewed distribution of PCC diagnoses across clinicians.(5) Prior 
machine learning-based studies that focused on counterfactual probability of diagnosis had 
patients visited specialty PCC clinics all found different estimates of the mean risk of PCC 
following COVID-19, ranging from approximately 20% in Binka, et al. to over 40% in Pfaff, et 
al.(7,8) This mirrors an even wider difference in estimates derived from prospective patient 
surveys, which range from 4.5% to 89% -- a difference that has been attributed to 
heterogeneous case definitions.(27) Our study’s results also agreed with prior research that 
found PCC diagnoses demographically cluster among non-Hispanic white female patients.(28) 
 
Our results point to unmet needs for clinicians, patients, and researchers. Clinicians in general 
primary care settings have played an important role in identifying and managing PCC, yet report 
feeling poorly equipped to treat it holistically.(26) In practice, clinicians may choose to focus on 
individual symptoms rather than the collective condition and to treat PCC as a diagnosis of 
exclusion.(29,30) Cau, et al. suggested that artificial intelligence could have a role in supporting 
PCC treatment across practices.(31) Meanwhile, patients face many unmet needs as their 
symptoms persist.(32) Researchers, too, face challenges in identifying patients with PCC in 
observational databases, making it difficult to characterize these conditions’ prevalence, 
trajectory, and treatment.(33) 
 
Our study had a number of limitations. First, the physician annotators only had access to notes 
from a single visit, nor did they have access to any diagnostic codes, vital signs, or labs. They 
were therefore limited in the amount of context they could use in their ascertainments. A second 
limitation is that the Wordnet model we used was not specialized for medical text. We are not 
aware of any clinically focused Wordnet dictionaries that we could have used in its place and did 
not find any gross errors on inspection. Third, our choice of BioClinicalBERT meant that we 
used a transformer model capable of accepting only a relatively small amount of text at a time; 
another transformer model may have performed better. Fifth, the dataset was highly 
imbalanced, with PCC diagnoses included in a relatively small portion of visits. Finally, we 
cannot validate the dates documented for any diagnosis entered into an EHR. Thus, if a patient 
were diagnosed with COVID-19 in a setting not captured within our data (e.g., inpatient setting, 
emergency department), the accuracy of the date of first documented diagnosis recorded in the 
EHR depended upon the clinician who documented it. Similarly, the documented date of 
diagnosis may be delayed if the patient did not seek care upon initially testing positive outside of 
a clinical encounter. Thus, date associated with diagnosis code may not reflect when disease 
began and could be a "retrospective" code reflecting prior illness not captured previously in the 
EMR. 
 
This study was strengthened by the use of the real-world data that captured the experience of 
diagnosing PCC in a diverse set of primary care settings. Our use of architectures validated on 
classifying COVID-19 diagnoses gave credence to our findings that even highly sophisticated 
NLP models struggle to accurately identify PCC patients from notes alone. Moderate inter-rater 
reliability metrics between the two physician annotators also highlighted the challenges of 
identifying PCC, even for expert reviewers. 
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Given the heterogeneity around diagnosis of PCC among the included providers, one area for 
future research may be the development of explicitly counterfactual approaches to identification 
of PCC cohorts. This may involve the development of provider-specific models of diagnosis that 
indicate the likelihood that they would diagnose a patient with a given presentation. 
Researchers could then use a single diagnostic model across an entire population to 
standardize diagnosis across providers.  
 
Conclusion 
 
This research points to multiple sources of heterogeneity affecting the documentation of PCC.  
Wide variation in diagnostic and documentation practices are likely due to lack of definitive 
diagnostic criteria for this syndrome in the period of observation, making it difficult for 
sophisticated natural language classifiers to reliably detect. As guidance for PCC diagnosis 
stabilizes and frontline clinicians are more aware of the ICD-10 code diagnostic code, its use 
for public health surveillance may grow. It will be useful to continue to monitor trends in use of 
the PCC ICD-10 diagnostic code and to simultaneously use NLP or other methods to 
understand the symptoms most often associated in primary care, where most people present for 
undifferentiated symptoms. Lack of clear diagnostic criteria with face validity in primary care 
may continue to contribute to inconsistent documentation practices and barriers to effective care 
for patients with PCC.   
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