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Abstract 
The emerging large language models (LLMs) are actively evaluated in various fields including healthcare. Most 
studies have focused on established benchmarks and standard parameters; however, the variation and impact of 
prompt engineering and fine-tuning strategies have not been fully explored. This study benchmarks GPT-3.5 
Turbo, GPT-4, and Llama-7B against BERT models and medical fellows' annotations in identifying patients with 
metastatic cancer from discharge summaries. Results revealed that clear, concise prompts incorporating 
reasoning steps significantly enhanced performance. GPT-4 exhibited superior performance among all models. 
Notably, one-shot learning and fine-tuning provided no incremental benefit. The model's accuracy sustained even 
when keywords for metastatic cancer were removed or when half of the input tokens were randomly discarded. 
These findings underscore GPT-4's potential to substitute specialized models, such as PubMedBERT, through 
strategic prompt engineering, and suggest opportunities to improve open-source models, which are better suited 
to use in clinical settings. 
 
Introduction 
Large Language Models (LLMs) are transforming many fields1-2. Built on the Transformer architecture3, these 
models employ billions, sometimes, trillions, of tokens and parameters, enabling them to accomplish a range of 
tasks that were previously considered unattainable. From answering straightforward questions to handling 
complex reasoning tasks, their performance is often astonishing. Inspired by the scaling law4, which revealed a 
positive correlation between model performance and the number of parameters employed, tech companies are 
increasingly investing in these models using their proprietary training sets and massive computing power. Some 
models could be accessed through the API, such as OpenAI's GPT-35 (trained with 175 billion parameters and 
300 billion tokens) or the software packages, including Meta's Llama6 (trained with 65 billion parameters and 1.4 
trillion tokens), and Google's PaLM7 (trained with 540 billion parameters and 780 billion tokens). While some 
specifications, like the number of parameters, are publicly disclosed, many technical intricacies remain 
proprietary. Moreover, the task performance highly relies on skilled user prompting. 
  
In the realm of biomedicine, LLM applications are burgeoning. While pretrained models like GatorTron8, trained 
on >80 billion words extracted from de-identified clinical text, showcased their capabilities across multiple 
clinical Natural Language Processing (NLP) tasks, most of the efforts remained on the fine-tuning of open-source 
LLM models. For example, Med-PaLM was a fine-tuned model from PaLM for biomedical research and 
performed considerably well but remained inferior to clinicians9. Compared to fine-tuned biomedical pretrained 
language models, LLMs like GPT-3.5 and GPT-4 showed promise in biomedical semantic similarity and 
reasoning tasks but are less effective in information extraction and classification10. Despite these efforts, few 
studies have systematically evaluated various prompting and fine-tuning strategies in published LLMs and 
compared with human performance. 
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Building on our prior work11, where we used early versions of language models like BERT12 for identifying 
metastatic cancer patients through clinical notes, we aim to further this research. Metastatic cancer is a leading 
cause of cancer-related deaths, thus identifying patients with metastatic cancer for early intervention is crucial for 
improving survival. In the Electronic Health Record (EHR) systems like Epic, metastatic cancer is often 
inadequately defined and labeled11, therefore, identifying those patients from clinical notes is intriguing. Training 
language models from scratch for clinical notes is resource-intensive, making pre-trained models followed by 
domain-specific fine-tuning a more viable alternative. In our previous study, we investigated several BERT 
variations such as BioBERT13, clinicalBERT14, and PubMedBERT15, and found that fine-tuning on PubMedBERT 
yielded the best results. However, compared to those LLMs trained with billions of parameters, the 110 million 
parameters in BERT are quite small. Moreover, although we could use tools to identify important features in the 
BERT models, compared to LLMs trained on large corpus, their reasoning capabilities remained limited. 

Prompt engineering is an integral part to enhance model output quality, especially in complex tasks demanding 
causal reasoning16. In general, there are three different types of methods: zero-shot, one-shot and few-shot. Giving 
clear and specific instructions, describing the overall context, utilizing explicit constraints, and asking to play 
roles are some techniques that can be employed to achieve better results17-19. It is difficult to recommend a best 
practice, but with iterative testing and refinement, prompts can be significantly improved. Recent studies 
demonstrate that utilizing structured prompts can elevate LLM performance in medical diagnostics, where 
precision and interpretability are essential20-22. 

Therefore, in this study, using metastatic cancer identification as a case study, we explored multiple recommended 
prompting strategies as well as common LLMs. We also evaluated the impact of various key parameters and 
compared their performance with that of domain experts. By fusing domain knowledge and chains of thought, we 
proposed an optimal prompt for in-context zero-shot learning and observed its favorable outcomes. 
 
Methods 
Dataset and Data Preprocessing 
We used the approach previously presented in,23 to prepare the dataset from MIMIC-III24. More details can be 
found in Appendix A. As a result, we created a dataset that includes 1,873 discharge summaries with 178 patients 
with metastatic cancer. Each record consists of a discharge summary and a label for metastatic cancer. We 
conducted multiple pre-processing steps on the discharge summaries by following the same strategy in11. We 
employed a 7:2:1 ratio to split the data into training, validation, and testing sets.  
 
Manual Annotation 
We engaged a panel of three medical fellows, each either possessing a medical degree or currently undergoing 
medical training, to manually annotate the test set. The fellows were provided with concise guidelines on how to 
identify instances of metastatic cancer based solely on the patient's discharge summaries, without the aid of any 
supplementary tools. For this study, 'metastatic cancer' was defined according to criteria specified in the previous 
work23: "Cancers with very high or imminent mortality (pancreas, esophagus, stomach, cholangiocarcinoma, 
brain); mention of distant or multi-organ metastasis, where palliative care would be considered (prognosis < 6 
months)". This definition guided the annotation process to ensure consistency and accuracy in the identification 
of relevant cases. A designated coordinator shared a screen with the annotators and advanced to the subsequent 
page only upon unanimous agreement among the fellows. To ensure anonymity, all annotations were recorded 
without identifiers. In total, the panel successfully annotated 188 discharge summaries in the test set within six 
hours. On average, each multi-page summary required approximately two minutes for thorough review. The 
analysis of the annotated data was conducted using Python. 
 
LLMs 
We utilized various LLMs including OpenAI's GPT models and Meta's Llama, to classify the presence of 
metastatic cancer within discharge summaries. The setup and deployment of these models, alongside prompt 
engineering, one-shot, and fine-tuning strategies, were designed to ensure a rigorous evaluation protocol. 
 
OpenAI's GPT models: The deployment of OpenAI’s GPT models,  specifically GPT-3.5 Turbo and GPT-4, 
was executed on Microsoft Azure cloud computing service. An Azure subscription was obtained,  and a dedicated 
Resource Group was established to manage essential resources such as compute instances and storage services. 
These models were then deployed within this Resource Group, ensuring an organized and efficient management 
of cloud resources. Access to the models was facilitated via the OpenAI Application Programming Interface 
(API), which required authentication using a unique API key. To adhere to OpenAI's API usage policies, a robust 
rate limiting and request batching mechanism was implemented. The interaction with the API was encapsulated 
within a Python function designed to handle API requests with a retry mechanism. This function was tailored to 
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efficiently manage both high-volume requests and API-specific errors, such as rate limit exceedances. It ensured 
reliable and efficient predictions retrieval from the GPT models. 
 
In GPT models, the temperature parameter is used to control the randomness and creativity of the generated text 
in a generative language model. It adjusts the probabilities of predicted words in the model's SoftMax output layer. 
A lower temperature sharpens these probabilities, making the word with the highest probability more likely to be 
chosen. As a result, the output becomes more conservative and stable. We have set the temperature to be 0.2 to 
get a more deterministic response. We have also tested for different token sizes to determine whether the output 
differs in any way. We have first tried one prompt with a variety of token sizes ranging from (500, 1000, 1500, 
2000, 3000, 4000) and observed a variation in the F1 scores and other performance metrics. To illustrate the 
changes in F1 scores, we ultimately chose 1500 tokens and 3000 tokens to apply to all prompts. 
  
Meta Llama: Meta offers Llama as an open-source LLM. Llama comes in two main versions, with version 1 
(V1) being released in February 2023, and version 2 (V2) in July of the same year. V1 offers model sizes of 7B, 
13B, 33B, and 65B, and V2 provides sizes of 7B, 13B, and 70B. In this paper, fine-tuning was conducted using 
the 7B model from Llama V1 due to the hardware constraints of using larger models. These experiments were 
conducted with the research purpose consent provided by Meta and were carried out using the Huggingface 
Module. 
 
Prompt Engineering 
Initially, we created a baseline prompt (prompt 0) based on the suggestion from ChatGPT and common 
knowledge. Following the concept of chains of thought, we refined these prompts by adding instructional steps. 
We also incorporated a universal prompt, as suggested in a recent study that introduced zero-shot reasoners, by 
simply adding "Let's think step by step" before each answer25. In total, we explored six different prompts. 
  
#Prompt 0 
"Please act as a curator. Based on the input discharge summary, classify if the patient has metastatic cancer or not. 
Please provide a concise response as either 'Yes' or ‘No'. " 
 
#Prompt 1 
"Please act as a curator. Based on the input discharge summary, classify if the patient has metastatic cancer or not 
using the following steps. 
 Step 1: identify if this patient has cancer or not. 
 Step 2: if this patient has cancer, identify its staging, grade, and primary site. 
 Step 3: if this patient has metastatic cancer, identify its primary site, and metastatic.  
 Give a final decision 'Yes' or 'No' only.” 
 
#Prompt 2 
"This is a discharge summary for a patient who underwent diagnostic tests, please act as a healthcare professional 
and classify if the patients has metastatic cancer or not using following steps: 
1. Identify if a patient has cancer or not. 
2. If this patient has cancer, identify if it's metastatic cancer. 
3. Based on the information please provide a concise response as either 'Yes' or 'No'." 
 
#Prompt 3 
"This is a discharge summary for a patient who recently underwent diagnostic tests for suspected metastatic 
cancer. Please analyze the following information and provide a concise response as either 'Yes' or 'No' based on 
the presence of only metastatic cancer in the patient's discharge summary." 
 
#Prompt 4  
"This is a discharge summary for a patient. Please act as a healthcare professional and provide a response based 
on the summary using the following instructions: 
1. Identify if a patient has metastatic cancer or not. 
2. If there is clear evidence of metastatic cancer, respond 'Yes'. 
3. If there is no strong evidence of metastatic cancer or if the evidence is unclear, respond 'No.' 
Please provide a concise response as either 'Yes' or ‘No’. " 
  
#Prompt 5 
"Please act as a curator and analyze the following discharge summary, classify if the patient has metastatic cancer 
or not. Let's think step by step. Choose the final answer from the list 'Yes' or 'No'." 
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Context in Zero-Shot, One-Shot Learning, and Fine-Tuning 
To use LLMs for our target classification task, there are three approaches we study in this work. The first approach 
is zero-shot learning, which inputs a combination of our designed prompts and clinical notes on untouched LLMs 
without giving any example. We can also conduct one-shot learning, which adds a few examples of clinical note 
and prediction labels, in addition to the inputs used by zero-shot learning, again on untouched LLMs. Finally, we 
can revise LLMs by fine-tuning clinical notes from the training set and adjusting the distribution of LLMs through 
back-propagation.  
 
We tested the proposed six prompts in a zero-shot learning setting. We found that with the proper construction of 
prompts, one shot learning did not offer any additional benefits, so we focused primarily on zero-shot learning. 
For the fine-tuning process, we utilized the Llama architecture. The Llama model, known for its versatility and 
efficiency, offers various sizes ranging from 7 billion to 65 billion parameters. In our research, we leverage the 
Llama-7B model, which has been adapted for compatibility with the Transformers/HuggingFace framework. To 
make it better suited for specific tasks, such as clinical note classification and other medical-related challenges, 
we contemplate further fine-tuning of the Llama-7B model. Technically, we further employ approaches such as 
Parameter-Efficient Fine-Tuning (PEFT)26, 4-bit floating-point quantization27, and low-rank adaptation (LoRA)28 
in our fine-tuning process to make it more efficient. The number of fine-tuning epochs in our experiment is setting 
to be 3. And the batch size is 8. Within the optimization phase, we have chosen the AdamW(32-bit) optimizer, a 
widely adopted selection for fine-tuning large language models. Furthermore, for our experiments, we have 
standardized the token size within the Llama model to 2048 tokens, which is appropriate in our computing 
environment. The Llama fine-tuning experiment was executed within a high-performance computing 
environment, featuring four NVIDIA A5000 graphics cards, each having 24 gigabytes (GB) of GPU memory. 
This robust hardware configuration provided us with ample computational power and memory capacity to 
efficiently fine-tune the Llama-7B model on our training dataset. 
  
Evaluation 
To assess the classification performance of the GPT models, we executed a rigorous evaluation protocol across 
various prompts and input sizes (1500 and 3000 tokens). This analysis included the utilization of both GPT-3.5 
Turbo and GPT-4 models. For each prompt configuration, we performed five separate runs to ensure result 
consistency and reliability. The evaluations were done using input lengths of 1500 and 3000 tokens to determine 
the impact of input size on the classification quality. Key metrics such as F1 scores, recall, and precision were 
recorded for each run. The averages of these metrics were then computed and summarized in a comprehensive 
table, facilitating direct comparisons of the effectiveness of each prompt and input size on the model's 
classification accuracy. For manual annotation, the inter-annotator agreement was measured using Fleiss' Kappa, 
a statistical measure that accounts for agreement occurring by chance. The performance of each medical fellow 
annotator was individually assessed in terms of F1 score, recall, and precision to gauge the reliability of manual 
annotations in identifying metastatic cancer within the discharge summaries. Comparative analysis was conducted 
across all models and methods employed in the study, including PubMedBERT, and Meta Llama-7B. For each 
model and approach, we reported the F1 scores, recall, and precision metrics derived from the test set. This enabled 
a thorough comparative evaluation, highlighting the relative strengths and weaknesses of each method in the task 
of metastatic cancer classification from clinical notes. All the analyses were conducted using Python, leveraging 
libraries such as Pandas for data manipulation, Scikit-learn for model evaluation, and Huggingface's Transformers 
for LLM interactions. This ensured a consistent and reproducible analysis environment. 
 
Results 
Data Statistics and Baseline Performance 
Before training the model, the dataset was preprocessed and tokenized. The token counts for each row in the 
training, validation, and test sets were calculated to understand the distribution of the data and to ensure that it 
aligns with the model's limitations. Within the training set, token counts ranged from a minimum of 5 tokens to a 
maximum of 5348 tokens. On average, each record contained approximately 1791 tokens, with a standard 
deviation of 1008 tokens. In the validation set, the token values spanned from a minimum of 27 to a maximum of 
5401 tokens. The average token count for this set were around 1747 tokens, accompanied by a standard deviation 
of approximately 1004 tokens. Similarly, the test dataset displayed token counts that varied from a minimum of 
15 to a maximum of 5104 tokens. On average, each row consisted of approximately 1824 length of tokens, and 
the standard deviation was approximately 973 tokens. 
 
The PubMedBERT model was implemented utilizing the MetBERT code repository from GitHub11. In the 
identification of cases with metastasis, the precision was 0.790 and a recall of 0.610, resulting in an F1-score of 
0.690. These metrics indicate the model’s effectiveness in correctly classifying instances with and without 
metastasis. 
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Manual Annotation 
In evaluating the reliability of manual annotations for metastatic cancer identification within discharge summaries, 
we examined inter-annotator agreement and individual annotator performance (Table 1). Using the percent 
agreement metric, we found an impressive 94% agreement among the three medical fellows, demonstrating the 
robustness of the manual annotation process and dataset validity. The high percent agreement suggests a shared 
understanding of annotation guidelines. Fleiss' Kappa κ, indicating inter-rater agreement beyond chance, yielded 
a substantial value of 0.868, further confirming annotation reliability. Together, these metrics suggest that the 
annotators were highly competent in identifying metastatic cancer cases from patients’ discharge summaries. 
 
Table 1: Evaluation Metrics of Annotator Performance Compared to Actual Cases 

Annotator F1 Score Recall Precision 
1 0.710 0.611 0.846 
2 0.774 0.667 0.923 
3 0.727 0.667 0.800 

  
Zero-shot and One-shot Learning 
We explored the GPT-3.5 Turbo and GPT-4 models using the test set. Regardless of the input token size and 
prompts, GPT-4 consistently outperformed GPT-3.5 Turbo, often by a large margin (Table 2).  
 
Table 2: Evaluation of the Six Prompts in GPT Models Using the Test Set 
GPT Model Prompt ID Input size F1 Score Recall Precision 

 
 
 
 
 
 
 

GPT-3.5 
Turbo 

 
Prompt 0 

1500 0.341 0.811 0.210 

3000 0.318 0.877 0.195 

 
Prompt 1 

1500 0.332 0.868 0.215 

3000 0.357 0.855 0.232 

 
Prompt 2 

1500 0.331 0.866 0.205 

3000 0.284 0.867 0.169 

 
Prompt 3 

1500 0.330 0.7 0.214 

3000 0.288 0.833 0.178 

 
Prompt 4 

1500 0.331 0.822 0.203 

3000 0.265 0.889 0.254 

 
Prompt 5 

1500 0.313 0.889 0.189 

3000 0.274 0.922 0.162 

 
 
 
 
 

GPT-4 

 
Prompt 0 

1500 0.823 0.722 0.957 

3000 0.853 0.867 0.839 

 
Prompt 1 

1500 0.457 0.322 0.819 

3000 0.470 0.322 0.874 

 
Prompt 2 

1500 0.803 0.789 0.818 

3000 0.933 0.933 0.934 

 
Prompt 3 

1500       0.816 0.689 1.000 

3000 0.839 0.722 1.000 

 
Prompt 4 

1500 0.830 0.711 1.000 

3000 0.941 0.889 1.000 

 
Prompt 5 

1500 0.774 0.667 0.923 

3000 0.815 0.733 0.917 
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Among the six prompts, for both the token size prompt 4 yielded better results with an F1 score of 0.941 followed 
by prompt 2 with an F1 score of 0.933 in GPT-4. It is clear that prompts with structured instructions generally 
perform better, moreover simple prompts written in clear and concise way without any complexity also gives 
comparable performance. Notably, smaller tokens tend to result in better performance than longer tokens in GPT-
3.5 Turbo. We observed that GPT-4 handles longer input sizes (3000 tokens) effectively, often outperforming its 
handling of shorter input sizes (1500 tokens). This is particularly evident with prompt 4, where GPT-4 achieved 
an F1 Score of 0.941 and precision of 1.000 at an input size of 3000, suggesting a remarkable ability to maintain 
high precision with increased input length. 
 
Figure 1 showed an example of the discharge summaries of a metastatic cancer patient along with the reasoning 
from GPT. GPT-4 correctly identified metastatic cancer based on the presence of key factors in the discharge 
summaries. 

 
Figure 1: Example of Discharge Summaries for a Patient with Metastatic Cancer.  
 
Next, we used a single label/example for the one-shot approach. The prompt accompanying this label/example 
was similar to the prompt 4 in the zero-shot approach, as it yielded better results. An input size of 1500 tokens for 
each combination, resulted in an F1 score of 0.228 for GPT-3.5 Turbo and 0.824 for GPT-4. 
 
Llama Fine-Tuning 
Next, we explored the fine-tuning in Llama-7B. The performance metrics for the Llama fine-tuning models, as 
outlined in Table 3, indicate a range of effectiveness across different prompts. Specifically, prompts 1, 3 and 4 
show the highest F1 scores at 0.600, accompanied by a recall of 0.500 and the highest precision of 0.750. The 
worst performance among the Llama fine-tuning models is for prompt 0, which has the lowest F1 score of 0.400 
and recall of 0.286. However, its precision is relatively higher at 0.667. This indicates that while prompt 0 is 
precise when it does identify relevant cases, it misses a significant number of relevant instances. All these results 
suggest that while some fine-tuning of Llama models yields promising results, particularly in precision, there is 
room for improvement, especially when compared to the in-context zero-shot learning capabilities of models like 
GPT-4 as well as the fine-tuned PubMedBERT. This points towards a potential avenue for enhancing the fine-
tuning strategies for LLMs, especially considering the accessibility and cost-effectiveness of open-source models 
such as Llama for research purposes. 
 
Table 3: Performance Metrics for Llama-7B Fine-tuning Models 

Model Prompt ID F1 Score Recall Precision 

  

   

Llama-7B 

  

  

Prompt 0 0.400 0.286 0.667 

Prompt 1 0.600 0.500 0.750 

Prompt 2 0.400 0.333 0.500 

Prompt 3 0.600 0.500 0.750 

Prompt 4 0.600 0.500 0.750 

Prompt 5 0.500 0.429 0.600 
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Impact of Key Parameters on GPT Performance 
In our analysis of GPT-4's reasoning abilities under various conditions, we utilized prompt 4 across a set of 100 
test samples. We explored the impact of temperature settings, ranging from 0.1 to 1, on the performance of the 
model. Interestingly, we did not observe any variation in performance as we varied the temperature settings. This 
stability suggests that the reasoning task required for metastatic cancer identification is robust to such parameter 
adjustments. 
  
The significance of keywords is well-established in the context of both machine learning models and human 
decision-making. To test the robustness of LLMs, we selectively removed key terms such as "metasta", "cancer”, 
“advanced" and "metastatic" from the input text. The term "metasta" covers variations like metastasize, metastasis, 
and metastatic. Remarkably, GPT-4's reasoning performance when guided by prompt 4 displayed remarkable 
resilience. We found that the removal of individual keywords from the input did not significantly affect the model's 
reasoning capabilities. 
  
Encouraged by the observation, we further experimented by randomly removing a specific percentage of tokens 
from the input text, while maintaining the original sequence of tokens. Our experiments revealed that the model's 
performance remained stable, even with the removal of up to 40% of the tokens. These findings are in alignment 
with our earlier findings, where a reduction in token counts showed a better performance in the comparisons 
between inputs of differing token lengths (Table 2). Such resilience to information sparsity has added a 
compelling dimension to our understanding of LLM robustness in real-world scenarios, where incomplete or 
sparse data is a common challenge.  
 
Figure 2 illustrates the correlation between the degree of sparsity in the input text and the model's performance. 
For each sparsity level tested, we replicated the experiment five times to ensure statistical reliability and added 
error bars to the resulting average F1 scores, thereby providing a clearer representation of the variability in our 
results. 
 

 
Figure 2. Correlation with Sparsity and Model Performance.  
 
Discussion 
Through an in-depth study of one common task, we have demonstrated the enormous potential of applying LLMs 
in real clinical settings, owing to their remarkable performance and effectiveness. At the same time, we recognize 
the need for human expert intervention in certain challenging cases. After reviewing several false-negative 
instances identified by medical fellows, we suspect that evidence of metastatic cancer is absent in the discharge 
summaries. If such cases were removed from the test set, we expect that the overall performance of both LLMs 
and human annotators would improve. We did not observe hallucinations likely because of the nature of this 
reasoning task. 
  
We found that a well-crafted prompt in zero-shot learning can yield performance that is comparable to, or even 
better than, that achieved through one-shot learning and fine-tuning strategies in this task. The addition of “Let’s 
think step by step” couldn’t compete in comparison to simple and clear prompts. The performance of the models 
(GPT-3.5 Turbo, GPT-4 and Llama-7b) correlates with the number of parameters in the pre-trained models. 
Although we did not investigate Llama-2, which has 65 billion parameters, we anticipate that significant effort is 
needed to optimize the fine-tune process. The Google BARD29 model was also tested using internal data, but 
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provided no comparable results, so we proceeded without further investigation. Remarkably, the PubMedBERT 
model did not maintain its superior performance over the GPT-4 model. This observation suggests that the 
powerful abilities of GPT-4, when effectively harnessed through advanced prompt engineering strategies, can 
outperform specialized models that have undergone extensive domain-specific fine-tuning. This is potentially due 
to their large scale, diverse training data, and advanced architectures. This highlights the potential of leveraging 
the broad foundational knowledge encoded in LLMs to achieve remarkable accuracy in highly specialized fields 
like biomedicine, without the necessity for model specialization. 
 
We observed that using the first 1,500 tokens yielded better results in most cases than using the first 3,000 tokens 
in the GPT-3.5Turbo model. This is likely because the essential information for diagnosis, such as patient medical 
history, is generally found at the beginning of the note, while the latter part often contains irrelevant information 
like medication history. This suggests that segmenting relevant sections of the notes or using the summarized text 
from the models like BART could not only reduce costs but also enhance performance. Additionally, we found 
that removing a significant number of tokens or keywords related to metastatic cancer did not adversely affect 
performance. This finding is particularly important given that our input text is often incomplete. It also implies 
that we could achieve comparable performance using a smaller subset of tokens. GPT-4 demonstrates superior 
performance in processing longer input sequences, maintaining high precision and recall, as evidenced by its 
optimal handling of 3000-token inputs across various prompts. Lastly, we noted that by instructing the model to 
provide concise answers either “Yes” or “No” at the end of the prompt can avoid lengthy responses thus 
facilitating downstream processing. Overall, this study provides practical guidelines for the use of LMM in the 
biomedical field. 
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