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Abstract 

Importance:  Pain empathy represents a fundamental building block of several social 

functions, which have been demonstrated to be impaired across various mental disorders by 

accumulating evidence from case-control functional magnetic resonance imaging (fMRI) 

studies. However, it remains unclear whether the dysregulations are mediated by a shared 

transdiagnostic neural substrate.  

Objective:  Using coordinate-based, network-level, and behavioral meta-analyses to 

quantitatively determine transdiagnostic markers of altered pain empathy across mental 

disorders.  

Data Sources: A literature search was conducted in PubMed, Web of Science, and Scopus 

encompassing the period until April 2023. Search terms included pain empathy, functional 

magnetic resonance imaging, and mental disorders. 

Study Selection: Case-control neuroimaging studies of pain empathy and peak coordinates and 

effect sizes reflecting unbiased (whole-brain) pain empathic neural differences between patients 

and controls in standard stereotactic space were included.  

Data Extraction and Synthesis: The present pre-registered meta-analysis adhered to the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. 

Article screening and data extraction were conducted by three independent reviewers, and data 

were pooled using the random-effects model. 
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Main Outcome(s) and Measure(s): Robust neural activity differences between patients with 

mental disorders and healthy controls during pain empathic processing, meta-analytic network 

level, and behavioral decoding of the identified regions.  

Results:  Patients with mental disorders exhibited increased pain empathic reactivity in the left 

anterior cingulate gyrus, adjacent medial prefrontal cortex, and right middle temporal gyrus, 

yet decreased activity in the left cerebellum IV/V and left middle occipital gyrus compared to 

controls. The hyperactive regions showed strong network-level interactions with the core 

default mode network (DMN) and were associated with affective and social cognitive domains.  

Conclusions and Relevance: Pain-empathic alterations across mental disorders are 

underpinned by excessive empathic reactivity in brain systems involved in empathic distress 

and social processes. These findings point to a shared therapeutic target to normalize basal 

social dysfunctions in mental disorders.  
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1 Introduction 

Pain empathy, defined as the capacity to understand and share the emotional and sensory 

aspects of pain felt by another individual,1 plays a pivotal role in various social functions. 

These include prosocial behavior,2 social bonding, and cooperation,3,4 as well as adaptive 

emotion regulation,1 dysfunctions in these domains have been observed in common mental 

disorders (see ref. 5). As a key capacity supporting social and self-related functions 

abnormalities in pain empathy may lead to social deficits as well as increased empathic distress 

in individuals with mental disorders.6,7 Together, these transdiagnostic deficits may extend 

beyond traditional diagnostic categories (see ref. 8). Emerging evidence from studies involving 

individuals with mental disorders and high levels of pathology-related traits indicate 

transdiagnostic pain empathic dysfunctions (see refs. 9-13), with most studies reporting increased 

empathic distress in individuals with depression, autism spectrum disorders (ASD), 

schizophrenia and elevated levels of alexithymia,9,14-16 although results remained inconsistent 

in ASD.11,13 These dysfunctions may serve as transdiagnostic mediators of social impairments. 

However, despite a growing body of evidence indicating altered pain empathic dysregulations 

across mental disorders, results on the underlying neural basis remained highly inconsistent. 

The neural basis of pain empathy has been extensively examined using functional 

magnetic resonance imaging (fMRI) in healthy individuals.17-20 Together with conceptual 

perspectives, these studies have outlined a core network that underlies pain-empathic 

processing including the anterior and middle cingulate cortex (ACC, MCC), middle and 

anterior insula cortex (MIC, AIC) as well as prefrontal and sensorimotor regions.21-25 Within 

this network, the cingulate and insula primarily extract the affective dimension of pain and 
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interact with subcortical, motor, and prefrontal regions to initiate adaptive responses.26  

Based on an increasing number of studies reporting pain empathic deficits in mental 

disorders - which may encompass both, vicarious and appraisal-related components of empathy 

9,11,13 - case-control studies combined pain empathy paradigms with fMRI to determine the 

underlying neurofunctional alterations in depression, schizophrenia, or ASD.12,15,27-30 However, 

these studies commonly compared a single group of patients with controls (but see ref. 12) and 

findings with respect to transdiagnostic neural alterations remained inconclusive. Several 

studies reported that the ACC, middle temporal gyrus (MTG), and inferior frontal gyrus (IFG) 

exhibit stronger pain empathic reactivity in patients,15,29,31,32 while other studies reported no or 

opposite alterations.12,28 Moreover, results regarding the AIC - a region crucially involved in 

pain-empathic experience 23,33 - remained inconsistent, with several studies reporting intact AIC 

pain-empathic reactivity in the context of cerebellar alterations in mental disorders.29,31,34 

The lack of convergent evidence for transdiagnostic neural alterations may reflect 

disorder-specific neurofunctional empathy dysregulations or methodological limitations 

inherent to the conventional case-control neuroimaging approach, including (1) limited sample 

size, (2) confinement to a single disorder, and (3) variations related to neuroimaging analysis 

methods.35-37 Meta-analytic neuroimaging approaches allow us to (partially) overcome these 

limitations in original studies and have been successfully employed to determine 

transdiagnostic neural alterations across mental disorders.38-40 Against this background, the 

present pre-registered meta-analysis capitalized on the growing number of original case-control 

fMRI studies on pain empathy and utilized a pre-registered meta-analytic strategy to determine 

whether pain empathy alterations across mental disorders are characterized by shared 
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neurofunctional changes. Based on the previous literature, we hypothesized shared alterations 

in core regions of the pain empathic network (insula and ACC) and regions underlying social 

processing (e.g., regions in the temporal cortex).17,25,41 

2 Methods 

2.1 Literature Search 

The meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines (Figure 1)42 and was preregistered on the Open Science 

Framework platform (https://osf.io/axt9k/). Literature search identified original case-control 

fMRI studies examining neural activation during pain-empathic processing (in response to 

stimuli showing noxious manipulation to limbs or painful facial expressions, for shared neural 

and behavioral effects see ref. 25) in mental disorders according to the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5). In the context of long-standing discussions on the role 

of alexithymia in pain-empathic alterations, studies on individuals with high levels of 

alexithymia were additionally included (see refs. 10,43). The search utilized three databases: 

PubMed, Web of Science, and Scopus. The search period included the period until April 2023. 

The search strategies, initially designed for PubMed, combine MeSH (Medical Subject 

Headings) terms and keywords and were subsequently adapted and utilized with the other two 

databases (main focus was on pain empathy, functional magnetic resonance imaging, mental 

disorders; detailed terms, see Supplement 1). In addition, we screened published reviews and 

meta-analyses on related topics to identify further relevant literature. 

Two independent reviewers (JX.H. and M.C.B.) assessed inclusion criteria, and conflicts 
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were resolved by a third reviewer (B.B.). Full-context articles were reviewed by two 

independent reviewers (JX.H. and M.C.B.). Data extraction was performed by two reviewers 

and conflicts and errors in data extraction were resolved by a third reviewer (B.B.). 

2.2 Inclusion and Exclusion Criteria 

The initial exclusion of existing articles, including duplicates, was first performed using 

Endnote (X9 version; https://endnote.com/). We next carefully screened the literature according 

to standardized criteria and guidelines (see Supplement 1, Figure 1), leading to 11 studies with 

data from 525 individuals (296 patients, 229 controls) being included 12,15,27-32,34,44,45 (eTable 1), 

and one on conduct disorder (CD), two on alexithymia, two on schizophrenia, three on ASD, 

and three on major depressive disorder (MDD).  

2.3 Voxel-Wise Meta-Analysis 

The meta-analysis was performed using Seed-based d Mapping Permutation of Subject 

Images (SDM-PSI) (version 6.22, https://www.sdmproject.com). SDM combines recent 

advances and features of previous methods, such as activation likelihood estimate (ALE) and 

multilevel kernel density analysis (MKDA), and permits more detailed and accurate meta-

analyses.46,47 For pooling of data with SDM-PSI, the coordinates in standard spaces and their 

respective t-values are collected. An anisotropic Gaussian kernel with a full-width at half 

maximum (FWHM) of 20mm and voxel size of 2mm was used.48 Due to the small amount of 

experimental data in this study, the imputation value was adjusted to 5.49 To balance type I and 

type II errors when determining neurofunctional brain alterations in mental disorders results 

were thresholded at p < 0.0025, uncorrected; k > 10 (in line with50,51).46 Given that mental 
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disorders have different onset and peak ages52 and neurodevelopmental changes have been 

reported in the domain of pain empathy,53 age was included as a covariate (in line with 54). 

Visualization of brain activation was performed using MRIcroGL (version 1.2.20, 

https://www.nitrc.org/projects/mricrogl).  

2.4 Heterogeneity and Bias Testing 

Heterogeneity in the present study was assessed using the I2 index, with I2 values of 25%, 

50%, and 75% representing low, moderate, and high heterogeneity respectively.55 Tests were 

carried out to check for publication bias. Egger's test was used to assess funnel plot asymmetry, 

with a p-value less than 0.05 indicating significant publication bias.56 

2.5 Functional Characterization of the Identified Regions at the Network and Behavioral 

Level 

To investigate the brain networks associated with the identified regions, peak coordinates 

of the identified regions were entered into the Neurosynth database 

(https://www.neurosynth.org) to obtain non-thresholded resting-state functional connectivity 

maps (rs-FC maps) and meta-analytic co-activation maps of the relevant brain regions. 

Subsequently, we employed SPM12 (Welcome Department of Imaging Neuroscience, London, 

UK) to apply a threshold of r > 0.2 to the rs-FC maps and convert the thresholded maps into Z-

scores. Finally, we merged the rs-FC thresholded maps with the meta-analytic co-activation 

maps to generate conjunction maps of the relevant regions of interest. Next, we employed the 

Anatomy toolbox to extract the labels of the conjunction maps.57 

For further behavioral characterization of the identified regions, we implemented meta-
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analytic behavioral profiling using the Brain Annotation Toolbox (BAT) in combination with 

AAL2 (Automated Anatomical Labeling, atlas). To this end, the peak coordinates of the 

identified regions were examined and the top 15 behavioral items and p-values were obtained 

(in descending order of p-values).58 

2.6 Meta-Regression Analyses 

Meta-regression analysis was employed to assess the effect of subject characteristics on 

the obtained results, including gender, age, and treatment. Significant findings suggest that 

certain variables are related to the observed heterogeneity, indicating potential influence of 

unaccounted factors or confounding variables. 

3 Results 

3.1 Shared Pain Empathy Alterations across Mental Disorders 

We imported 143 coordinates from 11 studies that included 525 participants (296 patients, 

229 controls; mean [SD] age, 28.2 [9.1] years; eTable 1). The primary meta-analysis revealed 

that patients with mental disorders exhibited increased pain empathic activation in a cluster 

located in the left ACC (x/y/z = 0/48/0, p < 0.0025) and spreading into the medial prefrontal 

cortex (mPFC) and a second cluster located in the right MTG (x/y/z = 60/-14/-12, p < 0.0025) 

in comparison with controls (Table 1, Figure 2A). Reduced activation in the patients relative 

to controls was observed in the left cerebellum Ⅳ/Ⅴ (CE_4/5, x/y/z = -22/-48/-28, p < 0.0025) 

and the left middle occipital gyrus (MOG, x/y/z = -52/-70/2, p < 0.0025) (Table 1, Figure 2B). 

Heterogeneity test results were all below 25%, indicating low heterogeneity across studies. 

Additionally, the results of Egger's test revealed p-values greater than 0.05, suggesting that the 
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included studies did not demonstrate evidence of a publication bias (Table 1). 

3.2 Network-Level Functional Characterization via Neurosynth 

The identified ACC region showed strong and overlapping co-activation and connectivity 

patterns with cortical midline regions including ACC, medial and orbitofrontal regions as well 

as the posterior cingulate (PCC) and precuneus (Figure 3A). The identified MTG region 

exhibited overlapping co-activation and connectivity patterns with bilateral middle temporal 

and (inferior) parietal regions as well as with cortical midline regions, i.e., medial 

prefrontal/cingulate regions and PCC and precuneus (Figure 3B). Examining the overlap 

between both networks revealed that both regions exhibited functional interactions with the 

cortical midline regions, including the orbitofrontal and medial PFC as well as posterior parietal 

regions (angular gyrus, PCC, precuneus, Figure 3C). 

Examination of the connectivity and co-activation maps of the regions exhibiting 

decreased pain empathic reactivity in mental disorders (cerebellum, MOG) revealed separable 

networks. The cerebellum region exhibited regional-restricted bilateral connectivity with other 

(anterior) cerebellar regions (Figure 3D), while the MOG exhibited interactions with a bilateral 

network encompassing lateral occipital regions, and precentral and postcentral regions (Figure 

3E). 

3.3 Behavioral Characterization of the Identified Regions  

Meta-analytic behavioral characterization indicated that the left ACC and right MTG are 

associated with negative affective (stress, depression, fear) and evaluative (self-referential, 

reward) processes or social cognitive (theory of mind, social) processes, respectively (Figure 
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4A, B). In contrast, the left CE 4/5 and left MOG were found to be associated with motor and 

visuospatial processes (Figure 4C, D). Please note that smaller p-values indicate a higher 

degree of correlation with the relevant brain regions. 

3.4 Meta-Regression Analyses: Gender, Age, and Treatment  

Meta-regression analysis in SDM revealed no significant effects of gender, age, or 

medication on altered activity in the four meta-analytically identified brain regions. 

4 Discussion 

We capitalized on pre-registered neuroimaging meta-analyses to determine whether pain-

empathic dysregulations share a common neurobiological substrate across mental disorders. To 

guide interpretation, the primary analyses were flanked by meta-analytic network-level and 

behavioral profiling of the identified regions. Quantitative analysis of eleven case-control fMRI 

studies with data from 296 patients and 229 controls revealed that individuals with mental 

disorders exhibited increased pain empathic reactivity in the left ventral ACC and adjacent 

mPFC, as well as in the contralateral MTG. Conversely, patients with mental disorders showed 

hyporeactivity in the left anterior cerebellum and MOG. Network-level decoding analyses 

further indicated that the hyperactive regions show a strong and convergent network-level 

interaction with cortical midline regions that together constitute the core default mode network 

(DMN) and were behaviorally characterized by stress, negative affect, and social cognition-

related terms. In contrast, the hypoactive regions exhibited distinct and regional-specific 

connectivity profiles with the anterior cerebellum or occipital and sensory-motor regions, 

respectively. With reference to our hypotheses, these findings underscore that shared neural 
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dysregulations in the ACC and MTG may underlie pain-empathic alterations across mental 

disorders. In contrast to our hypothesis, no alterations in the insula cortex were observed, while 

the anterior cerebellum and MOG showed convergent hyporeactivity. 

4.1 Shared Pain Empathic Neural Reactivity across Mental Disorders 

Animal models suggest that the ACC plays a critical role in both, the experience and 

regulation of both, first-hand experience of pain and negative affective states as well as social 

transmission of pain and distress (see refs.59-61). It represents the core module for the affective-

motivational component of the "pain matrix" activated by various painful stimuli62 and plays 

an important role in the transition from acute to chronic pain.63-65 In human imaging studies, 

the ACC and insula have been consistently determined as core region of the pain empathic 

network, yet most meta-analyses identified a more dorsal part of the ACC (see ref. 17). In 

contrast to the dorsal part of the ACC, the ventral ACC (vACC) has been strongly involved in 

evaluating the emotional salience of a situation and to adaptively regulate the emotional 

experience (see refs. 66,67). Hyperactivity in this region may thus reflect a stronger distress-

related pain-empathic reactivity or a stronger need to regulate the negative affective 

experience.22,68 Increasing number of reports indicated that individuals with mental disorders 

experience greater levels of empathic distress69,70 and the role of this region in the experience 

of pain-related emotional distress findings may reflect higher pain empathic reactivity. The 

vACC subregion of the ACC has moreover been found to play an important role in other related 

functions such as social cognitive decision-making, behavior encoding, and outcome 

prediction71,72 and can mediate the saliency of the external stimuli thus triggering pain empathic 

experiences.14 
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The ACC cluster also encompassed regions of the mPFC, a region with strong anatomical 

and functional connections with a wide range of subcortical brain regions.73 Both animal and 

human studies have underscored the significance of the ACC and the mPFC in emotional 

cognitive processing, social-emotional cognition (e.g., attachment, empathy, pro-social 

behavior), emotion regulation, decision-making, and pain.74-80 The convergent dysfunction 

affecting both of these systems aligns with the additional functional requirements of pain 

empathy, which, compared to the experience of direct pain require complex social-emotional 

computations to determine the experience of the other person and the integration of previous 

knowledge and contextual information.22,81 In line with this suggestion, previous studies 

reported that structural damage or aberrant functional changes in the ACC or mPFC can 

severely impair social behavior as well as adaptive emotion regulation in animals.82-86 

In addition to the ACC/mPFC, the MTG exhibited consistently elevated pain empathic 

reactivity across mental disorders. The MTG has been convergently involved in social-

cognitive functions that may support the pain empathic process, including inferring and 

understanding the psychological states of others (Theory of Mind, ToM, 87-89), contextual and 

sensory information integration,90 as well as pain perception and pain empathy. 91,92 In this 

context, a stronger MTG recruitment may reflect an impaired ability to distinguish own and 

others' distressing states,89,93 leading to an impaired ability to detach from the pain-empathic 

situation and in turn compromised social cognition.94,95 

The vACC/mPFC are integral components of the DMN, a network critically engaged in 

several functions supporting pain empathy, i.e., socio-affective processes such as self-reference, 

social cognition, and contextual integration (see refs. 96,97). Both, the identified ACC/mPFC and 
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MTG regions exhibited common functional interactions with the core DMN suggesting a 

network-level involvement of the DMN in transdiagnostic pain empathic deficits.  

On the other hand, abnormal pain empathy can also be counterproductive to mental 

disorders.  May lead to hyperlinking of painful stimuli to related experiences of·the individual 

with mental disorders,1 difficulty in shifting attention,98 inability to correctly differentiate 

between feelings of self and others89, and increasing the experience of distress while reducing 

their inhibition of negative emotions 6,99, thus accelerating symptom deterioration. 

Together, the pattern of hyperactivation of the ACC, mPFC, and MTG in patients with 

mental disorders and a convergent coupling of these regions with the DMN may reflect that 

excessive pain empathic distress responses and a failure to regulate these in the context of social 

processing dysfunctions may constitute a shared dysregulation mediating pain empathic deficits. 

4.2 Abnormal Sensorimotor Functioning in Pain Empathy in Individuals with Mental 

Disorders 

The cerebellum and MOG displayed decreased activity to pain empathic engagement 

across disorders. In line with our meta-analytic behavioral decoding, numerous previous studies 

have involved these regions in sensory and motor processes. The cerebellum is anatomically 

connected to the somatosensory cortex and has a similar topographic map of the body, which 

is considered to play a crucial role in somatosensory function and motor control.100,101 While 

we did not hypothesize alterations in these regions, some previous studies reported 

neurofunctional pain empathic alterations in these regions in autism spectrum disorders and 

attention deficit hyperactivity disorder (ADHD) indicating abnormalities in cerebellar 

organization and impaired motor executive control.22,102 The MOG is considered an important 
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brain area for visual stimulus feature extraction and recognition, as well as body part perception103 

and reduced activation of the MOG in patients with MDD and ASD has previously been 

interpreted to reflect impaired visual information processing abilities.104,105 Together with an 

early study suggesting that pain empathy related cerebellar activation may be related to sensory-

motor representation and contribute to cognitive understanding of promoting pain empathy,106 

these results may reflect early sensory-motor processing dysfunction in the patients. These 

patients may have abnormal perception and processing of pain empathic stimuli which may 

lead to a failure to accurately perceive and react to social information. 

4.3 Limitations 

The study has limitations that should be considered. Firstly, the number of studies on pain 

empathic processing using fMRI in patients with mental disorders in pain empathy was 

moderate. Secondly, the number of studies did not allow to employ sub-group analyses, e.g., 

with respect to larger symptomatic groups such as internalizing or externalizing disorders which 

have shown differential neural signatures (see ref. 107). 

5 Conclusion 

The present study suggests that pain-empathic alterations across disorders are neurally 

mediated by increased vACC/mPFC and MTG reactivity and decreased cerebellum and MOG 

reactivity in patients with mental disorders. This pattern may reflect dysregulated affective 

responses and social deficits that are further reflected in strong network-level interactions of 

these regions with the DMN. Targeting pain-empathic dysfunctions in mental disorders with 

tailored behavioral interventions or via brain modulation techniques that can enhance pain 
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empathy23,108 may lead to beneficial effects on social cognitive deficits in mental disorders. 
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Figures 

Figure 1. Flowchart of literature search and screening. 

Figure 2. Meta-analytically determined neurofunctional alterations 

during pain empathy in patients with mental disorders. 

Figure 3. Conjunction maps between the meta-analytic resting state 

(intrinsic) connectivity maps and the meta-analytic co-activation (task 

state) maps of regions that exhibited increased and decreased pain 

empathic reactivity in patients with mental disorders.  

Figure 4. Radar chart of the top 15 behavioral terms associated with 

the four peak coordinates.  
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Figure 2. Meta-analytically determined neurofunctional alterations during pain 

empathy in patients with mental disorders (A) Compared to controls, patients 

with mental disorders exhibited increased activation in the left anterior cingulate 

gyrus (activation spreading to the medial prefrontal cortex) and the right middle 

temporal gyrus. (B) Patients with mental disorders showed less activation in the 

left cerebellar area Ⅳ /Ⅴ  and the left middle occipital gyrus compared to 

controls. Results displayed at p < 0.0025, uncorrected; k > 10, coordinates 

reported in Montreal Neurological Institute (MNI) space. 
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Figure 3. Conjunction maps between the meta-analytic resting state (intrinsic) 

connectivity maps and the meta-analytic co-activation (task state) maps of 

regions that exhibited increased and decreased pain empathic reactivity in 

patients with mental disorders. (A) Conjunction maps for the identified anterior 

cingulate region (with peak coordinates at MNI 0, 48, 0). (B) Conjunction maps 

for the identified middle temporal gyrus region (with peak coordinates at MNI 

60, -14, -12). (C) Overlap of the two large-scale networks identified in A and B 

(conjunction maps). (D) Conjunction maps for the identified cerebellum region 

(with peak coordinates at MNI -22, -48, -28). (E) Conjunction maps for the 

identified middle occipital gyrus region (with peak coordinates at MNI -52, -70, 

2). (F) Overlap of the two large-scale networks identified in D and E (conjunction 

maps). Coordinates are in the MNI space.  
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Figure 4. Radar chart of the top 15 behavioral terms associated with the four 

peak coordinates. (A) Left anterior cingulate gyrus and relevant behavioral 

terms. (B) Right middle temporal gyrus and relevant behavioral terms. (C) Left 

cerebellar Ⅳ/Ⅴ and relevant behavioral terms. (D) Left middle occipital gyrus 

and relevant behavioral terms. Please note that a smaller p-value indicates a 

higher degree of correlation with the relevant brain regions. 
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Tables 

Table 1. Detailed meta-analytic results, heterogeneity tests, and publication bias. 

 

 

 

Comparison Cluster Voxel MNI coordinates(x,y,z)a SDM-Z Voxel P b Hedges'g I2 
Egger 

test P c 

Patient > Control 

Anterior Cingulate, 

Left (ACC.L) 
69 0,48,0 3.510 0.000224233 0.392553 0.355083 0.931 

Middle Temporal 

Gyrus, Right 

(MTG.R) 

17 60, -14, -12 3.699 0.000108063 0.414338 0.276461 0.996 

Patient < Control 

Cerebellum Ⅳ/Ⅴ, 

Left (CE_4_5) 
108 -22, -48, -28 -3.797 0.000073254 -0.466374 2.347702 0.960 

Middle Occipital 

Gyrus, Left 

(MOG.L) 

52 -52, -70,2 -4.246 0.000010848 -0.490509 0 0.920 

a MNI = Montreal Neurological Institute space 

b Voxel p < 0.0025 (uncorrected), significant 

C Egger test p < 0.05, significant. 
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