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Abstract 

Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease following lung transplantation, conventionally relies 

on pulmonary function tests (PFTs) for diagnosis due to limitations of CT images. Thus far, deep neural networks (DNNs) 

have not been used for BOS detection. We optimized a DNN for detection of BOS solely using CT scans by integrating an 

innovative co-training method for enhanced performance in low-data scenarios. The novel auxiliary task is to predict the 

temporal precedence of CT scans of BOS patients. We tested our method using CT scans at various stages of inspiration 

from 75 post-transplant patients, including 26 with BOS. The method achieved a ROC-AUC of 0.90 (95% CI: 0.840-0.953) 

in distinguishing BOS from non-BOS CT scans. Performance correlated with disease progression, reaching 0.88 ROC-AUC 

for stage I, 0.91 for stage II, and an outstanding 0.94 for stage III BOS. Importantly, performance parity existed between 

standard and high-resolution scans. Particularly noteworthy is the DNN's ability to predict BOS in at-risk patients (FEV1 

between 80% and 90% of best FEV1) with a robust 0.87 ROC-AUC (CI: 0.735-0.974). Using techniques for visually 

interpreting the results of deep neural networks, we reveal that our method is especially sensitive to hyperlucent areas 

compatible with air-trapping or bronchiectasis. Our approach shows the potential to improve BOS diagnosis, enabling early 

detection and management. Detecting BOS from low-resolution scans reduces radiation exposure and using scans at any 

stage of respiration makes our method more accessible. Additionally, we demonstrate that techniques that limit overfitting 

are essential to unlocking the power of DNNs in scenarios with scarce training data. Our method may enable clinicians to 

use DNNs in studies where only a modest number of patients is available. 
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1.  Introduction 

Bronchiolitis obliterans syndrome (BOS) is a progressive fibrotic lung disease affecting lung transplantation recipients and 

patients with hematopoietic transplantation 1,2. In lung transplant recipients, BOS is defined as graft deterioration secondary 

to progressive airway disease for which there is no other cause. The severity of BOS is defined by the decline of forced 

expiratory volume in the first second (FEV1) from the patient’s best value 3. BOS is associated with poor overall survival 

(median of 2.5 years after lung transplantation). Unfortunately, the alterations in spirometry are only apparent after the 

establishment of airway fibrosis. At this point, the disease is irreversible with no curative treatment 4. Consequently, early 

diagnosis is pivotal for optimal patient management and follow-up 5. 

The diagnosis of BOS presents multiple challenges. Surgical lung biopsies are not routinely performed due to the high risk 

of complications in lung transplant recipients 6,7. Less invasive, transbronchial biopsies have a low diagnostic sensitivity. 

The clinical presentation of BOS is similar to other obstructive lung diseases including asthma, COPD, and bronchiectasis, 

which may also present with an irreversible obstructive pattern on spirometry 6. Consequently, current diagnostic methods 

centered on pulmonary function tests (PFTs), e.g. decline in FEV1, lack specificity, and chest imaging for diagnosing BOS 

is not fully established. Typical findings, such as parietal wall bronchial thickening and mosaic attenuation/perfusion pattern 

with air-trapping on expiration, can only be seen with advanced disease, and some BOS cases remain difficult to diagnose 

even in advanced forms. Moreover, CT scans are only considered helpful if performed at high resolution and preferably 

during the expiratory phase of breathing, which conveys higher radiation exposure and maneuvers that may not be feasible 

for patients with poor lung capacity 8,9. 

Ongoing research on computational methods to detect BOS from CT scans were designed to address the current limitations 

of CT imaging in BOS diagnosis. However, previous methods 10,11,12,13,14,15,16,17,18 rely on heavily engineered procedures for 

extracting information from the scans, and designing these procedures to maximize robustness in scans taken at different 

resolutions or respiration phases is not feasible. These drawbacks can be overcome by using a deep neural network (DNN) 

19, which have thus far not been used for BOS detection. By contrast to previous visual recognition approaches, DNNs learn 

to produce disease likelihoods directly from images. This end-to-end learning, from raw data to disease likelihood, allows 

DNNs to capture subtle manifestations of diseases in CT scans, including ones that might be too difficult to quantify with 

manually designed procedures, and gives them the flexibility needed to adapt to variation in scan appearance. However, 

DNNs require large volumes of training data to reach their full performance, which so far hindered their application to 

studies with only a small number of patients. 

In this study, we developed an innovative DNN technique for BOS detection. Integrating a novel as well as multiple existing 

methods to enhance training data efficiency, we crafted a state-of-the-art approach that simultaneously trains the DNN to 

detect BOS and differentiate between late and early stages of the disease. Our DNN-based BOS detector is the first to detect 

BOS from standard-resolution scans taken at any stage of respiration. Moreover, it shows promise in predicting future BOS 

onset in patients at risk. Finally, our contribution goes beyond detecting BOS: Thanks to its data-efficiency, our method 

enables using DNNs in studies where the number of available patients is limited due to the low incidence of the targeted 

disease or by other constraints. 

 

Methods 
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1.1. Study participants 

Approval for this study was obtained from the relevant ethics committee (CER-VD reference number 2020-02455). We 

initially included 130 lung transplant recipients presenting to University Hospital of Lausanne, Switzerland between 1990 

and 2020. Among those, 45 patients were diagnosed with BOS. The 85 patients without BOS had either normal PFTs, 

restrictive lung disease, or obstructive lung diseases other than BOS, e.g., airway stenosis. For each patient, the presence or 

absence of BOS in chest imaging was confirmed by an expert thoracic radiologist and an expert pulmonologist. Patients 

with insufficient PFT documentation or missing CT scans were excluded from the analysis. We retained 75 patients, 

including 26 with confirmed BOS diagnosis (Figure 1). 

For each of the selected patients, we extracted and anonymized thoracic CT scans from the hospital's picture archiving and 

communication system (PACS). We incorporated CT scans from the time of transplantation to either the time of data 

extraction, the date of the patients’ demise or their second transplantation. Within the inclusion period, patients presented 

for a CT scan between one and eighteen times and the majority of patients had between three and ten visits (80%). Whenever 

PACS contained more than one copy of a scan, e.g., reconstructed with the standard kernel and the lung kernel, we retained 

all the copies. Scans with pixel size larger than 0·75 mm in the transverse plane and ones containing less than fifty transverse 

slices were excluded. Finally, we inspected the entire set of scans and removed those with lung infiltrates in more than one 

lobe. For patients not diagnosed with BOS, this approach resulted in 228 scans. Patients eventually diagnosed with BOS 

contributed a total of 163 scans, with 105 scans acquired after the onset of the disease. The onset was defined as the time 

when the FEV1 consistently fell below 80% of the patient's best value, computed as the average of the two best 

measurements taken at least three weeks apart, in alignment with clinical guidelines 10. 

Figure 1: CT scan selection protocol 
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1.2. Evaluation methodology 

Our main objective was to evaluate the performance of the DNN in differentiating patients with BOS from patients without 

BOS. To that end, we analyzed the CT scans of BOS patients taken after their FEV1 fell below 80% of the best FEV1, which 

corresponds to the clinical criterion of BOS stage I 20 , and all scans in patients never diagnosed with BOS (non-BOS). 

To understand how the BOS detection accuracy changes as the disease progresses, we conducted evaluation on CT scans of 

BOS patients in stages I, II, and III of the disease, defined in accordance with the  current diagnostic guidelines as a fall of 

FEV1 below 80%, 65%, and 50% of the best FEV1 on at least two consecutive tests taken no less than three weeks apart. 20 

We evaluated the network's ability to distinguish between these CT scans and CT scans of non-BOS patients. To enhance 

the versatility of our approach, we opted for CT scans acquired at any stage of inspiration, diverging from the conventional 

practice of relying on expiratory CT scans for BOS diagnosis. 

From the clinical perspective, the added value of a method to automatically detect BOS from CT scans largely depends on 

its capacity to detect patients at risk of developing the disease before the lung function declines. To verify this capacity, we 

designed a comparison that closely mimics a realistic clinical scenario, in which a patient whose FEV1 has decreased but 

remains above the threshold of BOS stage I needs to be screened for the risk of developing BOS in the future. We evaluated 

the performance of the network in distinguishing the scans of BOS patients taken before the diagnosis with FEV1 between 

80% and 90% of best FEV1 from the scans of non-BOS patients with relative FEV1 in the same range. 

Since high-resolution scans (slice thickness below 1.25 mm) contain more information than standard-resolution ones, we 

also investigated if this difference affects the ability of the DNN to learn to extract diagnostic information. We verified this 

by re-training the DNN on data sets restricted to high-resolution scans and limiting the test sets accordingly. 

 

1.3. Performance evaluation criteria and statistical analysis 

We used the Chi-squared test for contingency tables to evaluate the match in sex between the BOS and non-BOS groups, 

and the Student’s t-test for independent samples to compare patient ages and FEV1, measured 3 and 30 months after 

transplantation. 

We performed five-fold cross-validation. We randomly divided the cohort of 26 patients with BOS and 49 non-BOS patients 

into four splits of 5 patients with BOS and 10 patients without BOS and one split of 6 patients with BOS and 9 patients 

without BOS. We trained our DNN five times according to the procedure described below, each time leaving scans of one 

split of patients out of the training set. We tested the resulting classifier on the scans that were not used for training. 

We present the results using the receiver operating characteristic area under curve (ROC-AUC). When computing the 

curves, we weighted the results for individual scans to prevent biasing the results to patients who had scans performed more 

often. The details of this procedure are provided in the supplementary material. 

To summarize the performance, we computed a single ROC curve for test predictions computed for CT scans of patients 

from all five splits and evaluated the corresponding AUC. We call this metric "aggregated AUC". Unlike the average of 

AUC computed for individual splits, the aggregated AUC provides a conservative performance estimate, because each point 
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in the aggregated ROC curve results from applying the same threshold to predictions produced by five independently trained 

DNNs with different optimal thresholds. 

We could not apply the standard approach to computing confidence intervals for the aggregated ROC-AUC values since 

predictions produced by the DNN for two scans of the same patient are not statistically independent. We therefore resorted 

to bootstrapping by hierarchical case resampling 21. We used ten thousand simulations to estimate the 95% confidence 

intervals. See supplementary material section C1 for details. To additionally illustrate the variability of the performance of 

our method, we report the performance attained on individual splits in the form of box plots containing five ROC-AUC 

values, one for each training run. 

 

1.4. Deep learning approach 

We framed detecting BOS from CT scans as a classification task. We trained a DNN to take a CT scan as input and return 

an estimate of the log-likelihood that the patient suffers from BOS. DNNs are a well-studied technique for image 

classification 21 but generally need to be trained on large volumes of annotated data to attain high performance. The modest 

number of patients in our data set makes training prone to overfitting – a phenomenon where the DNN learns to classify 

training scans with high accuracy but fails to classify examples not seen during training. We employed several techniques 

to mitigate this adverse effect. First, we used the late-fusion architecture 22, which relies on a two-dimensional DNN to 

process scan slices independently from one another and then fuses the results to produce the disease likelihood. Compared 

to architectures that rely on three-dimensional representations of the scan, late fusion DNNs have a significantly lower 

number of parameters, which is crucial for reducing overfitting. Second, we randomly discarded scan slices during training, 

forcing the DNN to learn recognizing BOS from incomplete scans. This discourages the DNN from classifying training 

scans using anatomic details or pathologies specific to individual patients, since large portions of the scans are removed at 

random. Finally, we co-trained the DNN in BOS detection and a novel auxiliary task: temporal precedence prediction of 

CT scans. Given a random pair of scans of a patient with BOS taken at least six months apart, the auxiliary task is to predict 

which of the scans was acquired earlier. This allowed us to include CT scans of BOS patients acquired before the patients 

met BOS clinical criteria in the training of the DNN. These scans would otherwise not be used for training since it is not 

clear which of them represent signs of the disease and which do not. We provide more details of the architecture of our 

DNN, the training procedure, and the experiments we performed to validate the design in the supplementary material 

sections B and C. 
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2. Results 

2.1. Study participants 

All participants were age and sex matched (p-value 0·78 and 0·54, respectively). To compare the lung function between 

patients of the two groups, we evaluated their relative FEV1, computed as the ratio of the current FEV1 to the best FEV1 

level, defined as the average of two best measurements, after the transplantation, and at least three weeks apart, as 

recommended by the current clinical practice guidelines 20. While the difference between the results obtained three months 

after the transplantation was not significant, thirty months after transplantation, several BOS patients showed a marked 

decrease in FEV1 (p-value 0·0037) (Table 1). 

 

 

 

 

 

 

 

 

 

 

Table 1: Participant 

characteristics.  

Characteristics of patients with or without BOS including sex, age, and FEV1 relative to best FEV1 at 3 or 30 months post 

lung transplant. M – mean, SD – standard deviation, N – number of patients. TX – transplant. N lower than 26 for BOS 

patients and 49 for non-BOS patients means that no PFT has been recorded within one month of the query date. 

  

 non-BOS BOS p-value test 

     

Sex (Male/Female) 22/27 9/17 0·54 Chi-squared 

independence test 

     

Age at transplantation M=47·75 

SD=13·77 

N=49 

M=46·77 

SD=15·74 

N=26 

0·78 Student’s t-test for 

independent samples 

     

Relative to best FEV1 

3 months after TX 

M=0·99 

SD=0·09 

N=39 

M=0·95 

SD=0·11 

N=20 

0·12 Student’s t-test for 

independent samples 

     

Relative to best FEV1 

30 months after TX 

M=0·95 

SD=0·05 

N=34 

M=0·85 

SD=0·17 

N=21 

0·0037 Student’s t-test for 

independent samples 
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The median time to BOS onset was 3 ·8 years. One thousand days after transplantation, 42% of BOS patients with 

documented PFT results maintained relative FEV1 above 90% of the best level. This fraction diminished to 19% at two 

thousand days post lung transplant (Figure 2). Total number of patients decreased with time as patients were transferred 

to other medical centers, underwent a second transplantation, or passed away. 

 

Figure 2: PFT decline after lung transplantation in patients diagnosed with BOS.  

The height of the bar of each color represents the number of patients in each range of relative FEV1. The total height of the 

colored area corresponds to the total number of patients for whom PFT results were available at the given time.  
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2.2. Detection of BOS 

We assessed the performance of our method in distinguishing between CT scans of BOS patients meeting the clinical criteria 

of BOS stage I or higher and CT scans of patients who were never diagnosed with BOS. The method was able to distinguish 

patients with BOS from non-BOS with an AUC median of 0·92 varying between 0·87 to 0·95 on individual splits. The 

aggregated AUC, less affected by the number of patients in individual splits, attained 0·90 (95% CI: 0·840-0·953) (Figure 

3).  

 

Figure 3: The performance of the deep-learning based method in distinguishing CT scans of BOS from non-BOS 

patients 

Left: weighted ROC curves for individual splits (dotted lines), and the ROC curve resulting from aggregating all splits 

(continuous blue line); Right: ROC-AUC values of the dotted curves in the left summarized in a box plot. 
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To understand how the BOS detection accuracy changes as the disease progresses, we tested our method’s ability to 

distinguish between CT scans of patients within BOS stages I, II, and III, and CT scans of patients who were never diagnosed 

with BOS. The performance increased with the advancement of BOS: At BOS stage I, the ROC AUC attained 0·88 (CI: 

0·798-0·945) and increased to 0·91 (CI: 0·829-0·964) and 0·94 (CI: 0·869-0·989) for stages II and III, respectively. 

Performance on individual data splits revealed a similar pattern, with a median ROC AUC of 0·89 for stage I, 0·93 for stage 

II, and 0·98 for BOS stage III (Figure 4). 

 

Figure 4: Performance of the method for detecting BOS at different stages of the disease. 

Left: aggregated weighted ROC curves representing performance of the deep neural network in distinguishing thoracic CT 

scans of BOS patients at different stages of the disease from scans of patients that were not diagnosed with BOS. Right: 

ROC-AUC values for individual splits. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.07.24302414doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.07.24302414
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 

2.3. Risk prediction for future development of BOS 

To verify the capacity of our method to detect patients at risk of developing BOS before they meet the clinical criteria, we 

evaluated the performance of the network in distinguishing CT scans of BOS patients before the diagnosis with FEV1 

between 80% and 90% of best FEV1 from CT scans of non-BOS patients with FEV1 in the same range. The network attained 

an aggregated ROC-AUC of 0·87 (CI: 0·735-0·974), and between 0·75 and 1·0 on individual splits. The variance of this 

result can be attributed to the low number of CT scans in the considered FEV1 range (11 BOS and 20 non-BOS patients). 

To contrast these results with a yet more challenging scenario, we also evaluated our method in distinguishing scans of BOS 

and non-BOS patients with FEV1 in the range of 90–100% of the baseline, where we expect to see much less difference 

between the patients with and without BOS. At this range of FEV1 the aggregated AUC decreased to 0·61 (CI: 0·412-0·792) 

(Figure 5). This points to either the absence of disease at this stage, or that the abnormalities are too subtle for our method 

to detect. 

 

Figure 5: Performance of DNN in the prediction of BOS 

Deep network prediction of future onset BOS in patients with relative FEV1 in the range of 90–80%, (orange), and 100–

90% (blue). Left: aggregated ROC curves. Right: ROC AUC computed on individual splits. 
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2.4. Detection based on high- and standard-resolution scans 

Radiological changes associated with advanced BOS have traditionally been elucidated using high-resolution CT scans 

acquired during the exhalation phase, necessitating higher radiation doses and specialized protocols. In addition to using 

CT scans at any stage of respiration as input (see section 1.2), we probed the impact of image resolution—both high and 

low—on our method’s performance. The dataset for this study comprised 81 high-resolution CT scans from 22 patients with 

BOS, taken post-disease onset, and 216 such scans from 49 patients without BOS. Additionally, 95 standard-resolution 

scans were available for 26 patients with BOS, and 176 such scans for 48 patients without BOS. Certain scans existed in 

both standard- and high-resolution formats, thus the numbers reported here deviate from those in section 2.1. Both types of 

scans were included in training and evaluating the method to produce the results reported in sections 2.2 and 2.3. To verify 

if higher scan resolution makes it easier for the DNN to detect BOS, we tested it separately on high- and standard-resolution 

scans. Remarkably, the method exhibited comparable performance in both scan types, achieving an aggregated ROC-AUC 

of 0.90 for high-resolution scans (the blue-continuous plot in Figure 6) and 0.89 for standard-resolution scans (the blue-

dashed plot in Figure 6). To confirm this observation, we re-trained the DNN exclusively on high resolution scans. When 

tested on high-resolution scans, the re-trained DNN demonstrated performance comparable with the one trained on both 

scan types, attaining a ROC-AU C of 0·87 (the orange-continuous plot in Figure 6). But when tested on standard-resolution 

scans, the re-trained DNN performed remarkably worse, reaching a ROC-AUC of 0·81 (the orange-dashed plot in Figure 

6), as expected. In summary, limiting training or testing to high-resolution scans did not result in improved performance. 

 

Figure 6: The performance of DNN following training with low or high resolution CTs.   

Our deep network was trained on standard- and high-resolution scans and could detect BOS in both types of scans (blue). 

Re-training the network exclusively on high-resolution scans gives on-par performance for high-resolution scans, but 

significantly lower performance for standard-resolution scans (orange). Left: aggregated ROC curves. Right: AUC attained 

in individual splits. 
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2.5. Verification of our deep learning approach 

To demonstrate the contribution of each of the deep learning techniques to performance, we re-trained the DNN with each 

of the techniques switched off and evaluated it in distinguishing BOS from non-BOS in the same way as reported in section 

2.2. We present the results in Supplementary Table 1 and Supplementary Figures 2, 3, and 4. The results confirm that 

each of the techniques contributes to the result. Notably, disabling all the techniques, which reduced our method to a standard 

deep learning approach, dropped the performance to 0·74 (CI: 0·629-0·831) ROC-AUC (Supplementary Table 1 and 

Figure 2). This illustrates the importance of mitigating overfitting when deploying DNNs in small-scale studies. 

 

2.6. Generating explanations for the deep neural network’s decisions 

To delineate the lung regions instrumental in the DNN's diagnostic process, we employed Guided Grad-CAM23, a technique to produce 

masks that highlight the image areas important to the network's decision-making. In essence, Guided Grad-CAM utilizes the DNN's 

gradient to accentuate regions in the image whose alteration would bolster the decision. An example of this explanation map is provided 

in Figure 7. Remarkably, the marking consistently manifests in hyperlucent areas, compatible with either air-trapping or bronchiectasis. 

The same focal lesions are marked in both high- and low-resolution scans. Therefore, these areas may represent focal regions utilized 

by the DNN in its diagnostic assessment. 

Figure 7: A. visual explanation of the DNN’s decision for two representative BOS patients. Left: a CT slice; Right: 

the same slice with the attention map obtained using Grad-CAM algorithm. B. DNN interpretation on low- and high-

resolution CTs obtained at the same radiology visit.   

Patient 1 Patient 2 

Patient 3 

Low-resolution 

High-resolution 

A 
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3. Discussion 

While DNNs have shown remarkable success in detecting lung diseases such as Covid-19, their application to BOS detection 

has to date remained unexplored. Importantly, our method improves diagnoses of BOS even in the absence of dedicated CT 

scans for BOS diagnosis, for example, during full inspiration, excluding the need for special CT protocols during exhalation. 

Additionally, it can be applied to standard-resolution CT scans, mitigating radiation concerns, and expanding accessibility.  

Previous methods of CT scan analysis for BOS detection rely on pre-defined procedures to identify patterns in the lung and 

cannot benefit from signs of BOS not captured by these procedures.10,11,12,13,14,15,16,17,18 However, designing procedures to 

extract all pertinent information from the scans may not be feasible. Prior research suggests that BOS can manifest itself in 

non-obvious ways, including by alterations to the volume and surface of the airways, modifications of the volume of 

pulmonary vasculature 24,17, and changes in the density of microvasculature25,26, all of which may affect the appearance of 

the scans. This prompted us to take a different approach and use a DNN that does not rely on fixed pattern identification 

procedures but instead learns to extract pertinent information directly from the scans. When benchmarked in distinguishing 

scans of patients with and without BOS, our DNN attains an area under the receiver operating characteristic (ROC-AUC) 

of 0·90 (CI: 0·840- 0·953).  

Interestingly, we could train the DNN to detect BOS in non-dedicated, standard-resolution CT scans at any stage of 

inspiration. The high performance of the resulting BOS detector suggests that current diagnostic procedures might not fully 

benefit from the information contained in CT scans, and that DNNs can help unlock currently unused information.  

The ability to identify BOS in routinely conducted CT scans, without the necessity for high-resolution or paired inspiratory-

expiratory scans, implies that our deep-learning-based BOS marker can be computed at reduced expense and without 

exposing patients to additional procedural risks. This stands in contrast to invasive procedures like surgical lung biopsies, 

which, although informative, are not routinely used due to the risks of adverse events. The integration of data from various 

non-invasive modalities such as CT scans and PFTs has the potential to create a more comprehensive diagnostic profile of 

BOS, improving diagnostic accuracy and contributing to a more nuanced understanding of disease progression. 

Moreover, our method shows the promise of early BOS detection, reaching a ROC-AUC of 0·87 (CI: 0·735-0·974) in 

patients whose lung function decreased but remains above BOS clinical criteria. These results render DNNs a promising 

avenue for improving BOS diagnosis and enabling early detection, crucial for improving patient outcome. This result is 

well aligned with previous reports of predicting BOS onset based on airflow simulations and computations of airway volume 

in lung models reconstructed from CT scans 24. In contrast to this approach, our DNN can be applied directly to CT scans, 

without the need of constructing airway models. Further research is needed to establish a standard of early management, 

such as azithromycin or extracorporeal photopheresis27,28, that could be administrated to patients with elevated risk of 

developing BOS, identified by a prognostic method, like our DNN. 

The effectiveness of the DNN in our study is significantly influenced by strategies employed to counter overfitting, notably 

our innovative co-training configuration: A DNN trained without these techniques attains a ROC-AUC of 0·74 (CI: 0·629- 

0·831), which represents a large performance drop from the 0·90 (CI: 0·840- 0·953) ROC-AUC attained by our method. 

Anticipatedly, these techniques will diminish in significance with the availability of a sufficiently extensive training dataset. 

However, financial constraints often restrict the size of patient cohorts accessible for the initial assessment of novel 
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technologies in diagnosing diseases with low incidence. In this context, our method could offer valuable benefits to future 

studies facing similar limitations. 

To conclude, we described a novel method for detecting BOS through cutting-edge deep learning applied to CT scans. Our 

approach holds clinical relevance in lung transplantation, thanks to the capacity to detect BOS early, pivotal in enabling 

timely interventions and improving patient care. 
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