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Abstract

This paper examines the differential impacts of early childhood exposure to air pol-
lution on children’s health care use across parental income groups and vulnerability
factors using French administrative data. Our quasi-experimental study reveals signifi-
cant impacts on emergency admissions and respiratory medication in young children,
attributed to air pollution shocks from thermal inversions. Using causal machine
learning, we identify these health impacts as predominantly affecting 10% of infants,
characterized by poor health indicators at birth and lower parental income. Our results
suggest that intervention strategies focusing on vulnerability metrics may be more
effective than those based solely on exposure levels.
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1 Introduction

Air quality and environmental inequalities are urgent health policy issues, espe-
cially when young children are at risk. The average impacts of air pollution on
mortality, morbidity (Currie et al., 2014; Velasco and Jarosińska, 2022), and its
links to childhood asthma are well-documented (Khreis et al., 2019). However,
the picture is far from complete since air pollution does not affect all children
equally. Knowledge about the differential effects of early childhood exposure to
air pollution across varied socio-economic backgrounds remains scarce. This gap
is notable as children across these backgrounds display differences in vulnerability,
exposure to pollution, and accessibility to health care.

Figure 1a shows a marked reduction in the average yearly fine particulate
matter (PM2.5) exposure for children in France from 2008 to 2017, using two
distinct data sources, based on satellite measurements (ACAG) or on emission
inventories (Ineris). Figure 1b reveals significant inequalities in exposure: children
from both the upper and lower parental income deciles experience the highest
pollution exposure within their birth cohorts.
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Figure 1: Average PM2.5 exposure by birth year and within decile of adjusted household
income. Source: ACAG: Atmospheric Composition Analysis Group; Ineris: French National
Institute for Industrial Environment and Risks; EDP-Santé

This paper studies the heterogeneous health consequences of temporary in-
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creases in exposure to PM2.5 for children using quasi-experimental evidence linking
health outcomes to socio-demographics, vulnerability factors, and air pollution
exposure. To investigate these inequalities, we leverage a large representative
administrative data sample of about 340,000 children born in France between
2008 and 2017, which includes comprehensive information on their health care
utilization and parental income, and use generic machine learning inference (Cher-
nozhukov et al., 2023) to identify the groups that are particularly vulnerable to
the health consequences of air pollution exposure.

Identifying the causal effects of air pollution exposure on children’s health care
utilization is challenging due to three main endogeneity issues. First, pollution,
as a by-product of economic activity, not only affects health but is also correlated
with other factors such as work conditions and habits (Dehejia and Lleras-Muney,
2004; Heutel and Ruhm, 2016; Stevens et al., 2015). Second, household location
choices are endogenous dynamic decisions that may be influenced by anticipated
air pollution exposure and related amenities like the absence of major roads (Pan,
2023). Finally, measurement errors in individual pollution exposure, with precise
daily tracking being impractical and concentration measures showing significant
source-dependent variations, can introduce an attenuation bias.

To address these endogeneity issues, we use a quasi-experimental design that
isolates a particular type of air pollution shock: local exposure to thermal in-
versions. This phenomenon arises when a layer of warm air traps cooler air
beneath it, preventing the dispersal of pollutants and leading to elevated levels
of PM2.5 in the surrounding area. Our empirical strategy can be described as
a reduced-form instrumental variable (IV) analysis; or intention-to-treat (ITT)
framework (Imbens, 2014); where we design a binary treatment from a plausibly
exogenous variable, to implement a rich heterogeneity analysis following Cher-
nozhukov et al. (2023). We categorize infants into “more exposed” (treated) and
“less exposed” (control) groups depending on their exposure to an above-average
number of thermal inversions in their first year, factoring in municipality-specific
and year-specific averages. This group distinction offers credible exogenous vari-
ations in air pollution exposure, evidenced by its significant association with
fine particulate matter concentrations and its lack of correlation with individual
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child characteristics. Our causal estimations hinge on the assumption that, after
controlling for municipality and year fixed-effects as well as weather variables,
changes in the number of thermal inversions within a municipality are unrelated to
changes in infant health care use, except through their influence on air pollution.

Our analysis examines two key indicators of health care use linked to air pollu-
tion: emergency admissions, and medication dispensed for respiratory conditions.
More specifically, we focus on emergency admissions and medications related to
bronchiolitis and asthma.1 In 2017, medications for obstructive airway diseases
accounted for EUR 1 billion in reimbursements from the French National Health
Insurance, serving 8.6 million beneficiaries, 26.6% of whom were under 20 years
old.2 France’s comprehensive universal health care system minimizes financial
barriers, making health service usage a more accurate reflection of actual health
care needs compared to many OECD countries (OECD, 2019). This universal sys-
tem facilitates not only the analysis of drug prescriptions but also provides access
to comprehensive health care utilization data across a representative population
sample, contrasting with the more limited scope of data from specific insurance
groups or Medicare (Klauber et al., 2023; Deryugina et al., 2019). This broad and
representative coverage renders our dataset ideal for investigating income-based
health disparities.

Our findings indicate that infants overexposed to air pollution in their first year
have on average a higher propensity to utilize healthcare services for respiratory
issues compared to their less exposed peers. After controlling for municipality and
year fixed-effects and weather variables, the infants in the exposed birth cohorts
experience an average of 11 additional days with thermal inversion in their first
year (+30%). This corresponds to a short-term spike in PM2.5 pollution exposure
over a few days and equates to a 0.1 to 0.2 µg/m3 increase in average annual
exposure, or about 1 to 2%. Our results indicate that the exposed cohorts are

1Medications for asthma address both immediate symptoms and chronic management.
Deschenes, Greenstone and Shapiro (2017) emphasize that these drugs also act as a defensive
investment by reducing asthma-related hospitalizations and fatalities despite the condition’s
persistent prevalence (Fanta, 2009).

2According to Open medic (CNAM), this drug class represents 9.9% of the euro value of
drug deliveries reimbursed for individuals under 20 years old. The average cost amounts to 58.5
euros per young beneficiary (under age 20) in 2017, for an average of 3.7 packs, of which 41.3
euros are reimbursed by the National Health Insurance.
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more likely to experience at least one emergency admission for bronchiolitis or
asthma during their first three years, with an increased probability of 0.5 p.p.
(12% of the mean probability). These children also show a higher propensity
for anti-asthma drug consumption before their first birthday, a probability that
increases with the extent of air pollution exposure differential.

We extend this analysis by exploring various dimensions of heterogeneity,
notably parental income and vulnerability at birth. Our results reveal that the
impacts of air pollution are concentrated in about 10% of the infant population,
which are mainly characterized by a combination of poor health indicators at
birth. The most impacted infants (top 10%) exhibit a 2.5 p.p. increased like-
lihood of being prescribed anti-asthma medication (10% of their group-specific
mean probability) and a 1.3 p.p. increased likelihood of at least one emergency
bronchiolitis admission (27% of their group-specific mean probability) if exposed
to the air pollution shock within their first year.

Our results also hint that air pollution is a leading cause of emergency admis-
sions for bronchiolitis among the bottom and top deciles of parental income. Figure
2 reveals a negative gradient between the likelihood of emergency admissions for
bronchiolitis and parental income, with the bottom and top deciles accounting for
14% and 6.7% of all admissions, respectively. However, for admissions attributed
to air pollution, these percentages rise to 17.4% for the lowest income group and
11.1% for the highest, emphasizing the disproportionate impact of air pollution
on admissions for both ends of the income spectrum.

Our findings underscore that temporary surges in air pollution exposure
contribute to respiratory health complications in young children, with the most
vulnerable being disproportionately affected. This highlights the urgent need for
mitigation policies that extend beyond traditional exposure level considerations,
calling for a tailored approach recognizing local characteristics of population and
pollution sources. In our discussion, we employ the European Union (EU)’s
proposed amendments to the Ambient Air Quality Directives both as a framework
for discussion and to evaluate mitigation policies aimed at achieving the EU’s
interim air pollution exposure targets for 2030.3 Our research suggests the need

3Amendments adopted by the European Parliament on 13 September 2023 on the proposal
for a directive of the European Parliament and of the Council on ambient air quality and cleaner
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Figure 2: Distribution of children household adjusted income in children with an
emergency admission for bronchiolitis (all causes) and in children with an emergency
admission for bronchiolitis due to air pollution, as identified by our heterogeneity
analysis.

for more precise air quality monitoring, the development of harmonized indices
that account for population-specific vulnerabilities, and targeted compensation
schemes, particularly for lower-income groups. Crucially, our empirical analysis
informs the development of more effective national air quality roadmaps, aligning
with the EU’s mandate. It underscores that prioritizing regions with vulnerable
populations, identified by simple metrics like the number of premature births, may
more effectively mitigate the adverse health impacts of air pollution compared to
approaches based solely on pollution exposure. This vulnerability-based targeting
could emerge as a more effective strategy over exposure-based prioritization.

Our research engages with the literature exploring the heterogeneous health
impacts on air pollution. Deryugina et al. (2019) find that the mortality effects
of air pollution are concentrated in the most vulnerable 25% of the elderly
population, by leveraging the generic machine learning approach (Chernozhukov
et al., 2023), whereas Deryugina et al. (2021) examine the associated socio-

air for Europe (recast) (COM(2022)0542 – C9-0364/2022 – 2022/0347(COD))(1).
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economic and geographical determinants. We consider that infants and young
children warrant particular attention in the study of health disparities stemming
from air pollution due to the potential lifelong consequences (Isen, Rossin-Slater
and Walker, 2017; Bharadwaj et al., 2017) and intergenerational transmissions of
inequalities (Currie, 2009). In this line of research, and closely related to our work,
Jans, Johansson and Nilsson (2018) document the impact of air quality on infant
health by socioeconomic status, using thermal inversions to tackle endogenous
residential sorting. Thermal inversions have been also used as an exogenous source
of variations for air pollution in Arceo, Hanna and Oliva (2016) and Dechezleprêtre,
Rivers and Stadler (2019), among others, to investigate related environmental
questions.

The remainder of this paper is organized as follows. Section 2 presents some
background facts about inequalities and air pollution in France. Section 3 describes
the data used in our empirical study. Section 4 presents the empirical strategy.
Section 5 collects the empirical results and related discussion. Section 6 discusses
policy implications. Section 7 concludes.

2 Health Inequalities & Air Pollution in France

Children in dense urban areas are disporportionately exposed to fine particulate
matter, highlighting the environmental inequalities faced by some communities.
Figure 3 shows the high concentration of PM2.5 in these populous areas, including
France’s major cities, as depicted in Figure A3. This phenomenon reflects broader
socioeconomic disparities beyond the simple urban-rural divide. Nationally, chil-
dren from both the lower and upper parental income deciles experience elevated
air pollution levels, indicative of spatial sorting effects. The upper decile is more
exposed due to their over-representation in the largest, often more polluted, French
urban areas. Nonetheless, within these areas, children from poorer backgrounds
face the greatest exposure to PM2.5, as shown in Figure A2, a consequence of
their residence in the most polluted municipalities.

Recent U.S. research indicates that higher exposure to air pollution persists
among specific racial groups and, to some degree, low-income populations (Currie,
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Voorheis and Walker, 2023), suggesting that health inequality due to air pollution
is a global issue, not unique to France. Hsiang, Oliva and Walker (2019) observed
that although cities with higher household incomes have increased levels of nitrogen
dioxide (NO2), it is the disadvantaged groups within these cities who endure
the most exposure. The study also reveals a U-shaped relationship between
income and pollution exposure observed at the national level, paralleling France’s
situation where urban low-income groups disproportionately suffer from pollution
(Le Thi, Suarez Castillo and Costemalle, 2023; Champalaune, 2020; Salesse et al.,
2022). The spatial segregation of high and low-income populations in French
urban and suburban areas further intensifies this phenomenon (Aerts, Chirazi and
Cros, 2015).

Figure 3: PM2.5 concentrations at the municipality level (µg/m3) in 2010 (source:
ACAG) and population densities in 2017 (source: Insee-IGN, 2021)

Children’s sensitivity to air pollution exposure may also be influenced by
inherent vulnerability factors (Deguen and Zmirou-Navier, 2010). Due to social
inequalities in health, susceptibilities to air pollution may differ across standards
of living, as children from lower-income families typically have poorer health
at birth. Figure 4 highlights this disparity, showing that children from low-
income families are 1.5 times more likely to be born prematurely or with birth
weights below 2.5 kg, representing a significant and noteworthy difference. These
marked inequalities are also observed among children born at term, as detailed
in Table A5 in the Appendix. Families with higher incomes tend to have more
“healthy births”, defined as those with non-pathological admissions, and absence
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of principal diagnosis involving significant problems from the hospital discharge
data.4 Of significant concern is the additional health care provided to children
from lower-income families during their initial hospital stay at birth, especially
for severe risks. Children from modest backgrounds born prematurely face a 1.77
times higher risk of low birth weight, a 1.48 times greater likelihood of needing
neonatal intensive care, and a 1.75 times increased risk of undergoing a respiratory
system X-ray.
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 Figure 4: Share of premature births and low birth weight by parental income decile

Figure 5a demonstrates a significant correlation between parental income and
the incidence of hospital stays for asthma in early childhood. Specifically, 1.9% of
infants from the lowest income bracket require emergency hospital care, compared
to only 1.2% from the highest income decile. This stark contrast underscores the
pronounced health disparities across income groups in France, starting from birth.

Perhaps more surprisingly, Figure 5a reveals that the administration of anti-
asthmatic medication increases with parental income up to the sixth decile.
Given that asthma can be controlled with appropriate care, the higher levels of
urgent asthma crises and lower levels of medication dispensed suggest insufficient
treatments among lower-income groups. This is supported by the opposite patterns

4Additional information is provided in Appendix A.
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of increasing medication use and decreasing emergency admissions for related
diseases up to the same income decile, implying that remedial investments are
probably missing at the bottom of the parental income distribution. Medication
usage across income levels mirrors the pattern observed in general practitioner and
pediatrician visits, as depicted in Figure 5b. Public health guidelines mandate
a specific number of doctor visits for all children, irrespective of their health
status. From 2006 to 2018, nine such visits were required within a child’s first
year, with full reimbursement from national health insurance, barring any extra
fees charged by certain professionals.5 Doctor visits are more frequent among
higher-income groups (up to the 7th decile). This may indicate differences in
health care utilization rather than health status. Notably, lower-income families
tend to consult general practitioners, whereas higher-income families more often
visit pediatricians. These observations suggest disparities in both the quantity
and quality of health care accessed by various income groups.
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Figure 5: Emergency admissions for asthma, anti-asthma medications and visits to
doctors (GP and pediatrician) by decile of parental income

5These instructions were given to the parents through the “Carnet de Santé”, a notebook
given at birth and filled in by health professionals throughout the child’s development.
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3 Data

In this study, we combine several datasets at the municipality level: (i) air
pollution data sourced from two distinct databases; (ii) atmospheric condition
data extracted from a European reanalysis model; (iii) an extensive administrative
dataset of a representative sample of the French population, with comprehensive
individual data such as health care utilization and fiscal information.

Municipalities are delineated according to the 2017 administrative geography
for communes, with arrondissements being used for major cities (Paris, Lyons,
and Marseilles). These administrative units offer an adequate level of precision for
the purpose of our study. Over half of these units have less than 500 inhabitants
and occupy an area of less than 11 square kilometers (Chéron and Escapa, 2015),
enabling a detailed study of exposure to air pollution.

3.1 Local Air Pollution

We use two reference data sources on local concentrations of PM2.5 in France
at the annual level, to verify that our results are not sensitive to known discrep-
ancies in large-scale estimates (Fowlie, Rubin and Walker, 2019). First, we use
historical annual average data available for 2009-2020 at the municipality level in
France. This database is produced by the French National Institute for Industrial
Environment and Risks (Ineris). This dataset is the outcome of a statistical
reconciliation process that combines measurements from monitoring stations with
simulated data derived from an air quality model that uses emission inventories
(Real et al., 2022). The second source is the Atmospheric Composition Analysis
Group (ACAG) provides annual estimates of PM2.5 concentrations displayed
on a one-kilometer grid that spans the European territory. These estimates are
grounded on satellite observations and cover the years 2001-2018 (Hammer et al.,
2020).

We evaluate the annual mean exposure to PM2.5 for children by merging these
concentration data with location information, as detailed in Section 3.3. Although
these datasets are available continuously over several years, one limitation is that
they are only available for the calendar year. Therefore, as exposure in the first
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year of a child’s life starts on the date of birth, and not necessarily on the first
of January, it is not possible to measure PM2.5 exposure for all children in our
sample.

Figure 1 shows significant discrepancies in the average exposure of infants
to PM2.5 between the two main data sources. The annual average exposure of
infants in France sharply declined from 14-17 µg/m3 in 2009 to 9-11 µg/m3 by
2017. This decrease is explained by progress in all sectors, such as enhanced
dust removal methods in industrial processes, improved efficiency of biomass
combustion plants,6 and a reduction in primary particles emitted by diesel vehicle
exhaust in large cities.7 In this context, an exposure variation of 0.10-0.15 µg/m3

equates to 1% of the average annual exposure. This variation could represent a
1% sustained increase of the daily average concentration throughout a year, or
alternatively, an amplification of the daily average concentration by 36.5% over
a span of 10 days within a year. The quasi-experimental variations in annual
average exposure examined in our study stem from a substantial short-term daily
exposure surge, of about 30%, over a dozen of days with thermal inversions.

3.2 Local Weather Conditions

The UERRA datasets feature reanalysis data of atmospheric and surface climate
variables, derived from the assimilation of historical data into a numerical weather
model. The UERRA-HARMONIE reanalysis system offers hourly estimates of
atmospheric variables at an 11km2 horizontal resolution, with 65 height levels,
covering the period from 1961 to 2019 over Europe. This dataset, accessible on
the Copernicus Climate Data Store, represents the highest resolution reanalysis
dataset for Europe available at the time of our study, to the best of our knowledge.8

We derive municipality-level weather data by aligning each municipality’s
6“Bilan de la qualité de l’air extérieur en France en 2017.” Rapport Commissariat Général

au Développement Durable, 2018, Ministère de la Transition Ecologique et Solidaire.
7“Bilan de la qualité de l’air 2019, Surveillance et information en Ile-de-France.”, 2019, Air

Parif.
8We are grateful to the Copernicus Climate Change and Atmosphere Monitoring Services

for making the Copernicus products available. We acknowledge that neither the European
Commission nor ECMWF assumes responsibility for any use that may be made of the Copernicus
information or data it contains.
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centroid with its closest point on the UERRA grid.9 The weather-related control
variables are established in accordance with the method described by Deche-
zleprêtre, Rivers and Stadler (2019). For each child, we acquire the following
information for their first year of life: (1) the counts of the number of days during
which the average daily temperature falls into one of 20 temperature bins, span-
ning the entire range of observed temperatures; (2) the counts of the number of
days where the daily average wind speed is categorized into one of 12 wind speed
bins, as delineated by the Beaufort wind scale; (3) the mean relative humidity
experienced during their first year; and (4) the mean pressure throughout that
year.

We classify a day with a thermal inversion when there is a positive difference
between the daily mean temperatures at 500 meters and 15 meters above the
surface level.10 We assign weather conditions, including thermal inversions, to
each infant’s first year of life, considering their respective birth dates. Appendix
A offers supplementary information pertaining to our weather data.

3.3 Health care use and socio-demographics

The Echantillon Démographique Permanent (EDP) is a longitudinal representative
sample that tracks 4% of the French population across various administrative
sources. Recently, it has been supplemented with National Health Insurance
affiliation data, thereby creating the “EDP-Santé” data sample.

This rich dataset combines multiple data sources, including the census and
several administrative sources for all individuals born on one of the first four
days of each quarter, known as the “EDP individuals”, linked via a common
identifier.11 Additionally, data from National Health Insurance (Caisse Nationale
d’Assurance Maladie, CNAM) since 2008 provides detailed information on hos-
pital admissions, drug prescriptions, and other health data.12 Our health data

9The median area of the municipality regions (approximately 11 square kilometers) aligns,
on average, with the dimensions of the UERRA grid units.

10Jans, Johansson and Nilsson (2018) and Dechezleprêtre, Rivers and Stadler (2019) employ
this definition for thermal inversions as well.

11Specifically, these dates are the 2nd, 3rd, 4th, and 5th of January, and the 1st through 4th
of April, July, and October.

12Conducted by the Direction de la Recherche, des Études, de l’Évaluation et des Statistiques
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combines information about drug deliveries, inpatient birth stays, emergency
admissions, and doctor visits. Income data from 2010 to 2016 is sourced from the
fiscal database Fidéli/Filosofi, covering all EDP individuals and their household
members, including parents, at the same address.

Our study encompasses 336,169 children born from 2008 to 2017. We track
medication, specifically anti-asthma drugs (26% usage in the first year), delivered
in city care and reimbursed by National Health Insurance over 2008-2018. These
medications, classified under ATC code R03 for obstructive airway diseases,13

are observed alongside doctor consultations or visits resulting in individualized
reimbursements. Data excludes consultations from the Maternal and Child
Protection (Protection maternelle et infantile, PMI), with 15% of children under
six having at least one consultation in 2012 (Amar and Borderies, 2015).

We use hospital discharge data from the PMSI (Programme de Médicalisation
des Systèmes d’Information) that includes all hospital stays (inpatient hospital
admissions) linked to EDP individuals from 2008 to 2018. Emergency admissions
for asthma and bronchiolitis in infants’ first three years are identified using ICD-10
codes J45-J46 and J21 for the principal diagnosis encoded by the physician.14

These admissions exclude non-hospitalized emergency room visits, representing
severe cases. The diagnosis used is determined at the end of the patient’s stay
and justifies the hospital admission. Emergency admissions for bronchiolitis
are considered before age two, and for asthma before age three, following Santé
Publique France and Haute Autorité de Santé guidelines.15 and the Haute Autorité
de Santé.16 The health data is further detailed in Appendix A.

We identify birth hospital stays for 85% of EDP infants using the methodology
based on perinatal statistics.17 For a more comprehensive analysis, we use subset of

(DREES) for measuring health inequalities (Dubost and Leduc, 2020)
13Commonly prescribed molecules include salbutamol and fluticasone propionate; details in

Appendix A.
14Appendix A.1.2 shows evidence of the unavoidability of asthma admissions, indicating that

emergency admissions correlate with actual infant health and not differential healthcare access.
15https://www.santepubliquefrance.fr, 2023, 9th of April.
16Haute Autorité de Santé, 2009, “Asthme de l’enfant de moins de 36 mois : diagnos- tic,

prise en charge et traitement en dehors des épisodes aigus.” Recommandations Professionnelles
17As defined by the French Federation of Perinatal Health Networks (ATIH) and the DREES

in ScanSanté/Indicateurs de santé périnatale/FFRSP/ATIH.
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235,000 EDP children, for whom we have both household income data from Fidéli-
Filosofi and detailed birth health information. Parental income is calculated as
adjusted disposable income, combining earnings, self-employment income, capital
income, and social transfers, minus direct taxes, adjusted for household size
(Blanpain, 2019).18 We rank infants by household income percentile within their
birth cohort for the first three years, and assign them to income groups using the
average income percentile across these years.

4 Empirical Strategy

Our objective is to estimate the causal effect of an increase in exposure to air
pollution on anti-asthmatic drugs deliveries and emergency admissions during the
first years of life. Identifying the causal effects of pollution exposure on children’s
health care use is however challenging due to several factors. First, pollution is
not randomly distributed across space, as it is often associated with the proximity
to dense urban areas. These areas have specific populations with varying baseline
health, health behaviors, and access to health care.19 Second, even within a
specific location, pollution is not randomly assigned over time. It tends to be
correlated with local economic conditions, which can influence or be associated
with infant health outcomes.20 Third, individual measures of pollution exposure
are subject to errors.

This section presents our identification strategy, the econometric models
used to estimate the average treatment effects, and our approach to investigate
heterogeneous treatment effects.

18Details on income groups and consumer unit calculations are in Table A4 in the Appendix,
using the modified OECD scale.

19To address this, researchers commonly control for time-invariant and unobserved local
determinants using location fixed effects.

20To tackle this issue, some studies use time variations that are credibly unrelated to residential
sorting or transient economic factors (Isen, Rossin-Slater and Walker, 2017; Jans, Johansson
and Nilsson, 2018). For instance, they compare cohorts born before or after the introduction
of significant environmental regulations, like the 1970 Clean Air Act, or investigate short-term
health responses to specific events such as thermal inversions.
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4.1 Linking Air Pollution to Health Care Use

We tackle endogeneity by isolating and designing a quasi-experimental air pollution
binary shock induced by variations in local thermal inversion exposure among
children, factoring in their birth location and time. This approach allows us to
create distinct “more exposed” (treated) and “less exposed” (control) cohorts for
comparison.

We opt for a reduced-form IV, often referred to as ITT, for two primary reasons.
The first is methodological: the approach developed by Chernozhukov et al. (2023)
used in the heterogeneity analysis requires a binary treatment variable and does
not accommodate instrumental variables. We hence closely follow the approach
in Deryugina et al. (2019) by designing a binary treatment from a plausibly
exogenous variable. The second reason pertains to data constraints: the annual
aggregation of pollution data limits the first stage of our analysis to only children
born in January, resulting in the exclusion of approximately 75% of the sample.
Consequently, while we also present results using a two-stage least squares (2SLS)
method with this restricted first stage in the appendix, our primary focus is on
the ITT approach.21

Identification strategy. Our identification strategy is to compare children
who have been exposed to an above-normal number of thermal inversions during
their first year to others, where the “normal level” varies across locations and
years. The key identifying assumption is that after controlling for municipality
fixed-effects, year fixed-effects, and weather variables, the local changes in the
number of thermal inversions are unrelated to changes in the health outcomes
of children except through their influence on air pollution. In this context, we
interpret our binary treatment as a positive shock of air pollution exposure. We
use this treatment for both estimating average treatment effects and conducting
the heterogeneity analysis.

The binary treatment variable Ti serves as a quasi-random assignment to higher
levels of air pollution exposure. It assigns children either to the more exposed or

21Moreover, weather-related IVs impact pollutants beyond PM2.5, complicating the identifica-
tion of effects attributable to a specific pollutant. This complexity challenges the interpretation
of 2SLS estimates, as demonstrated by Godzinski and Suarez Castillo (2021).
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less exposed groups based on their exposure to temporary surges in air pollution,
as measured by an above-average number of days with thermal inversions before
their first anniversary. The reference level of number of thermal inversion days for
each infant i, denoted N i, is calculated at the municipality c and year t level. This
baseline accounts for regional and temporal variations, including geographical
factors like topography and annual fluctuations potentially linked to climate
change. Figure 6 illustrates the relationship between thermal inversions and
topographical characteristics, which are irrelevant to our identification strategy.
Appendix B.1 is devoted to our model of N i.

Figure 6: Topography in the UERRA model (source: UERRA user guide) and annual
share of days with thermal inversions UERRA 1999-2017 (right).

For each infant i, we calculate the exposure to ni = Ni − N i additional days
of thermal inversion compared to the local long-term average N i, which varies
across birth year t and municipality c. Here, Ni represents the actual number of
days with thermal inversion experienced by child i in their first year. We define a
cohort as exposed when the number of days with local thermal inversion during
the child’s first year of life exceeds the reference level by a threshold value denoted
as n > 0. The binary treatment variable is formally defined as follows:

T n
i = 1

{
Ni − N i ≥ n

}
. (1)

We also conduct our analysis using Ti as an instrumental variable for PM2.5,
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which yield estimates of average treatment effects closely aligned with our reduced-
form results.22 However, we have made a deliberate choice not to emphasize these
results in the main specifications of the paper and instead focus on the ITT for
the reasons mentioned above.

Econometric specifications. We estimate the average treatment effects on
health outcomes with the following model

Yi = βTi + XI
i γI + XW

i γW + µc + δt + ϵi, (2)

where the dependent variable Yi is the health care outcome of interest for child
i, born in municipality c. We control for individual-level variables XI

i , weather
variables XW

i , as well as municipality fixed effects µc to control for local and time-
invariant determinants of health and pollution, and birth-year fixed effects δt to
control for unobserved time-varying shocks common to children born in the same
year t. Ti is constructed to represent that child i is exposed to an air pollution
shock before their first anniversary, which is mediated by exposure to an above
normal number of thermal inversions. This approach ensures that the air pollution
exposure is arguably exogenous to the child’s unobservable characteristics, as will
be demonstrated shortly.

At the individual level, we control for a very large set of variables aimed
at capturing observed heterogeneity: gender, parental income (introduced in
decile and linearly), mother’s characteristics (age and an indicator for being born
abroad), gestational age (as an indicator for premature birth and linearly), birth
weight (low birth indicator and linearly), as well as six other health indicators
derived from the hospital stay at birth.23 In addition, XW

i includes an extensive
range of weather conditions characterizing the child’s exposure during the first
year, i.e. the number of days in each of 20 temperature bins, the number of days in
each of 12 wind strength bins, and second-order polynomials for average pressure

22Appendix B.2 provides the results of a two-sample two-stage least squares regression, where
the first-stage is given by (3) and the second-stage corresponds to (2), using P̂M i instead of Ti.

23These health indicators include (i) neonatalogy department stay, (ii) respiratory or cardio-
vascular diagnoses, (iii) electrocardiogram, (iv) respiratory system, (v) no pathology diagnosis,
(vi) a birth labeled as “normal” for national insurance reimbursement purposes.
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and humidity.
The parameter of interest is β, interpreted as the average treatment effect

associated with the quasi-experimental binary shock of exposure to air pollution
Ti ∈ {0, 1}. All standard errors are clustered at the UERRA grid level, the
geographical level of measure of the treatment status.

Quasi-experimental pollution exposure shocks. The estimates derived
from (2) can be seen as the ITT effects, capturing the reduced-form impact of
the treatment variable Ti which serves as an instrumental variable used to quasi-
randomly assign infants to air pollution shocks. We investigate the threshold
choice n using the corresponding first-stage regression

PMi = θnT n
i + XW

i λ + ρc + ξt + ei, (3)

where PMi measures concentrations of fine particulate matter for child i given its
municipality c of residence and year of birth t, varying n. We control for weather
variables, XW , as well as municipality and year fixed effects, respectively ρc and
ξt. Recall that PM2.5 data is only available at the annual level. Therefore, we
estimate (3) for children born in January, whose first year coincides with the
calendar year. This restriction reduces the sample size by four. Additionally,
including controls XI reduces the sample by approximately 40% due to missing
values.

In our analysis, we opt for the threshold n = 7, which corresponds to an
intermediate pollution shock equivalent to approximately one standard deviation
of ni (sd = 7.7). This approach leads to categorizing 14% of the sample as
the exposed group. Figure 7 displays the estimation results for θ, showing a
dose-response relationship between PM2.5 levels and local changes in thermal
inversions from both reference data sources on pollution (ACAG and Ineris).24 We
further evaluate how this quasi-experimental shock impacts the annual number of

24These estimates align with daily estimates from Godzinski and Suarez Castillo (2021) when
aggregated yearly (see Appendix B.1).
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thermal inversions experienced by children with the following specification

Ni = bTi + XI
i gI + XW

i gW + mc + dt + ui. (4)
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Figure 7: Days with thermal inversion from birth to first anniversary and PM2.5
Exposure in first year. Notes: Infants born in January from the primary sample. θn estimates
from (3) for increasing values of threshold n.

Table 1 reports the corresponding estimates from (3) and (4). According to
column (1), children in the exposed group, on average, experience an additional
10.8 days of thermal inversion before their first anniversary. Depending on the
PM2.5 source, this corresponds to an increase in annual average exposure by either
0.12 or 0.24 µg/m3. The estimates in Table 1 remain robust when including XI

in column (2) despite the reduced sample size. However, for the ACAG source,
the coefficient is slightly reduced and not significant at the 5% level. Columns (3)
and (4) report estimates when excluding children who are intermediately treated,
i.e. ∀ni ∈ [0; n]. In this case, the treated and control groups differ by almost
15 days of thermal inversions, leading to a larger PM2.5 exposure difference of
approximately 0.3 µg/m3 in both sources.25

25The impact of excluding intermediately treated children appears to be more pronounced
with ACAG data, but it is also noticeable with Ineris data, particularly for larger threshold
values n, as shown by Figure B5 in the Appendix.
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Table 1: Design of the quasi-experimental treatment and exposure to air pollution:
when days with thermal inversion in first year exceed by n = 7 days the prediction

All Children Excluding those
intermediately treated

Outcome (1) (2) (3) (4)

Additional days with thermal inversion in first year
10.79 10.60 14.71 14.65

[10.48;11.11] [10.32;10.89] [14.31;15.11] [14.33;14.97]
XI no yes no yes

Sample size 336169 217859 235380 147042

Additional exposure to PM2.5 (ACAG source) in first year for those born in January
0.12 0.055 0.28 0.21

[0.022;0.22] [-0.044;0.15] [0.17;0.40] [0.075;0.35]
XI no yes no yes

Sample size 82164 49703 49133 29732

Additional exposure to PM2.5 (Ineris source) in first year for those born in January
0.24 0.23 0.29 0.23

[0.12;0.37] [0.085;0.37] [0.14;0.45] [0.043;0.43]
XI no yes no yes

Sample size 73354 49214 44530 29462

Notes: This Table presents the results of twelve distinct regressions, with three outcomes in rows
and four specifications in columns. Each outcome is regressed on the binary exposure dummy
Ti = 1{n̂ > n = 7}, on ground-level weather controls, with or without individual characteristics XI ,
and with municipality and year fixed effects. Standard errors are clustered at the UERRA grid level.

We conduct a comparison exercise to validate the assumption that the exposure
dummy provides a reliable exogenous variation of air pollution. In (2), we replace
Yi with infant characteristics XI

i , excluding them from the set of explanatory
variables. The resulting coefficients in Table 2 represents the conditional correlation
between the treatment status and child characteristics. These results indicate
a high level of comparability between treated and non-treated births regarding
children’s characteristics, both unconditionally (columns 2 and 3) and conditionally
(columns 4 and 5). This comparability provides credibility to using the exposure
dummy based on thermal inversions as a reliable proxy for as-good-as-random
variations in air pollution.26 Additionally, we demonstrate that the temporal

26Comparing births based on extreme PM2.5 exposure levels (e.g., the 10% most exposed
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variation in children’s exposure to thermal inversion days across urban areas is free
from specific trends in Figure B4 in Appendix B. This ensures that our analysis
is not influenced by particular temporal biases.

Table 2: Characteristics of the sample and birth comparability across treated and non
treated infants.

Mean values Conditional Equality Test
N Treated Non treated Estimate p-value

(1) (2) (3) (4) (5)

Treatment definition
Days with thermal inversion in first year 336, 169 50.9 32.8 10.8 0.00

Outside Cities 336, 169 0.06 0.05
Urban Area <50,000 336, 169 0.12 0.10
Urban Area 50,000 - 200,000 336, 169 0.19 0.16
Urban Area 200,000 - 700,000 336, 169 0.23 0.21
Urban Area >700,000 336, 169 0.24 0.21
Urban Area of Paris 336, 169 0.16 0.26
Born in 2012 or before 336, 169 0.35 0.54
Born after 2012 336, 169 0.65 0.46

Birth hospital stay
Missing birth hospital stay 336, 169 0.13 0.15 -0.00 0.42
Birth weight 287, 517 3252.6 3260.0 -1.01 0.80
Gestational age 266, 795 39.0 39.0 0.03 0.09
Healthy birth (absence of diagnosic) 287, 518 0.83 0.81 0.00 0.58
Duration 287, 518 4.9 5.0 -0.01 0.79
Respiratory or cardiovascular affections 287, 518 0.18 0.17 0.00 0.44
Electrocardiogram 287, 518 0.05 0.05 0.00 0.69
Respiratory system radiography 287, 518 0.04 0.04 -0.00 0.36

Household characteristics (tax data)
Missing household disposable income 336, 169 0.13 0.19 0.00 0.62
Percentile of household disposable income 275, 054 49.3 49.6 0.05 0.79
Household number of persons 199, 942 4.0 4.0 -0.01 0.54
Household number of dependents 199, 981 1.9 2.0 -0.01 0.42
Household below poverty line 200, 103 0.10 0.10 0.01 0.03
Household owns its housing 200, 103 0.49 0.48 -0.00 0.50

Household characteristics (Civil registry)
Girl 336, 169 0.49 0.49 0.00 0.44
Mother age 335, 719 30.4 30.5 -0.11 0.00
Mother born abroad 334, 865 0.18 0.20 -0.00 0.76
Father born abroad 330, 367 0.19 0.21 0.00 0.54
Mother born abroad, no French nationality 332, 666 0.12 0.14 -0.00 0.35
Father born abroad, no French nationality 328, 403 0.13 0.14 -0.00 0.94

Notes: For each variable, column (1) indicates the number of observed children, and among observed values:
column (2) gives the mean for the exposed cohort (Ti = 1 with n = 7) and column (3) for the control cohort
(Ti = 0). Column (4) gives the coefficients for (2) using the row variable as dependent variable instead of Y ,
and column (5) shows the associated p-value.

versus the 50% least exposed) would not be suitable primarily because of the spatial sorting
driven by household characteristics, which could introduce biases.
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4.2 Uncovering Inequalities with Machine Learning

The primary purpose of our study is to document children’s health inequalities
related to air pollution in three ways. We aim at: (a) confirming that children
react heterogeneously to air pollution; (b) quantifying the distribution of negative
effects across children; and (c) drawing a portrait of the most affected children, in
terms of parental income and vulnerability factors.

Our descriptive evidence on exposure and health care use suggests that the
effects of air pollution may be vastly heterogeneous across children of different
income groups. However, adding interactions terms to model (2) would provide
a limited portrait of the most vulnerable children by choosing ex-ante a limited
number of groups to compare based on some variables. Therefore, we study the
heterogeneous treatment effects of our binary quasi-experimental shock using
the generic machine learning approach developed in Chernozhukov et al. (2023).
We propose an intuitive description of this procedure below and provide all the
technical details in Appendix C.

We maintain the same exposure groups (treated and control) as described
above, but we introduce propensity scores to replace the large set of municipality
fixed effects for computational reasons, and also to address potentially remaining
group imbalances.27 We search for heterogeneity using all explanatory variables
listed in Table C1, denoted Zi, i.e. the same variables XI

i used in (2) in addition
to extra local characteristics: a measure of local concentrations of PM2.5 before
birth, a measure of accessibility to GPs and to pediatricians, and the type of
urban areas as depicted in Figure A3. To predict the health care use of children,
we train and tune two machine learning algorithms using 100 random splits of the
data, where each split randomly assigns half of the data to a main sample and
the other half to an auxiliary sample. The algorithms aim to predict the health
outcome of infant i conditional on all observable covariates Zi, separately for the
infants in the exposed group and the control group, and use only the auxiliary
samples for both training and tuning. We use these machine learning predictions,
denoted Ŷ T (Zi) and Ŷ C(Zi), respectively, to form proxy predictors in the main

27The propensity score p(XI
i ) is specified as a logit model, where XI

i includes the same
individual variables used in (2).
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sample of: (1) the outcome of interest of each infant in absence of pollution shock
b0(Zi) = E[Yi|Zi, Ti = 0] with b̂(Zi) = Ŷ C(Zi), and (2) the conditional average
treatment effect (CATE) of each infant s0(Zi) = E[Yi|Zi, Ti = 1] −E[Yi|Zi, Ti = 0]
using Ŝ(Zi) = Ŷ T (Zi) − Ŷ C(Zi).

The output Ŝ(Zi) is used as a single index capturing each infant’s sensitivity to
the air pollution quasi-experimental variation. This index represents the likelihood
of infant i, with characteristics Zi, to need healthcare services for respiratory issues
resulting from increased air pollution exposure in their first year. It is possible
to conduct valid inference about important features of the true CATE s0(Zi),
even when Ŝ(Zi) is a biased estimate, by using the main samples across all data
splits (Chernozhukov et al., 2023). The two proxy predictors and the estimated
propensity scores are used to address our three aims by: (a) estimating the Best
Linear Predictor of the conditional average treatment effect s0(Zi) (BLP); (b)
estimating the Group-Average Treatment Effects by sensibility groups (GATES);
and (c) performing a classification analysis to describe the vulnerability groups
(CLAN, for classification analysis).

The BLP of s0(z) is an affine function β̂1 + β̂2Ŝ(z) where Ŝ(z) acts as a
proxy for treatment effect heterogeneity. We estimate it using Ordinary Least
Squares (OLS) on the main sample, projecting the outcome Yi onto the treatment
interacted with the proxy variable Ŝ(Zi) and incorporating additional control
variables. Typically, this interaction method is used to explore heterogeneity across
specific dimensions of Zi. However, in our approach, the heterogeneity dimension
is not predetermined by the researcher but is instead determined through Ŝ(.), by
dedicating half of the sample to this learning process. The estimated coefficient
β̂2 is a consistent estimate of the correlation between the treatment sensitivity, as
measured by Ŝ(z), and the true CATE.28 Testing the null hypothesis β2 = 0 hence
provides a way to investigate the presence of heterogeneous treatment effects, i.e.
that s0 varies with Z. Rejecting β2 = 0 means both that s0 varies with Z and
that Ŝ(·) is a relevant proxy predictor of the heterogeneity. If not rejected, it
could be that s0 does not vary with Z or that Ŝ(·) does not capture well the true

28For clarity, we have omitted a key estimation step for consistency of (β̂1, β̂2): the treatment
needs to be residualized with the propensity scores, and the OLS needs to be weighted with the
Horvitz-Thompson transform of propensity scores (Chernozhukov et al., 2023).
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heterogeneity.
We create four groups k = 1, 2, 3, 4 based on increasing predicted average

treatment effects, using the 50th, 75th, and 90th quantiles of Ŝ(Zi). We estimate
the GATES by OLS, under the same rationale: using half of the sample to
form sensitivity groups facilitates estimating interactions with the treatment
dummy in the main sample to represent average effect for each group. The
resulting estimates γ̂k’s corresponds to the expected s0(z) for each group k. By
construction, the GATES are expected to satisfy γ̂1 ≤ γ̂2 ≤ γ̂3 ≤ γ̂4 reflecting the
average treatment effects correlating to each group’s sensitivity. This approach
provides valuable insights into the distribution of the negative health impacts of
the quasi-experimental pollution shock across children in our data. Absence of
heterogeneity or an ineffective proxy would result in statistically indistinguishable
GATES across groups.

Finally, we investigate the compositions of these groups defined in the GATES
using the vector of CLAN parameters containing the average characteristics of
each group k, denoted δk, along the multiple dimensions of Z. This approach
hence allows drawing a portrait of the different groups, in particular the most
affected.

The parameters of interest are therefore β1, β2, γk’s, and δk’s, which are
separately estimated for each main sample across all 100 data splits. We report
their median across the splits, and their confidence intervals of coverage 1 − α, as
calculated by Chernozhukov et al. (2023) as the median across the splits of CIs
with coverage 1 − α/2, which is rather conservative.29

5 Results

The next two subsections include the main results: average effects and heterogene-
ity analysis. The appendices provide further insights, including an examination of
emergency admission avoidability (A.1.2), a placebo test (B1), IV estimates (B.2),

29We adapt the numerical routines from the GenericML R package (Welz et al., 2022) to
allow for propensity scores outside of [0.05,0.95], as well as random sample splits with up to 95%
of control units (90% in source codes). In our implementation, we compare the performance of
the lasso and random forest to form the two proxy predictors.
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additional outcomes (B.4), robustness regarding seasonality and quarter-of-birth
(B.1 and B.3), and an additional heterogeneity analysis including measures of
healthcare accessibility (C1).

5.1 Average effects on health care use

We first estimate the average effects of the air pollution shock on antiasthmatic
drug deliveries and emergency admissions. Table 3 reports the parameter estimates
and standard errors associated with T n=7

i from (2). The first two columns report
the average treatment effect for a baseline exposure shock, where the exposed
group consists of infants with ni > n = 7, and the control group comprises infants
with ni ≤ n = 7. The last two columns show the same specifications but omit
infants with intermediate exposure, comparing infants with ni > n to infants with
ni < 0. In both instances, the second column limits the sample to infants with
(non-missing) individual characteristics XI for robustness. The results are largely
insensitive to the inclusion of XI , aligning with the absence of correlation between
an infant’s exposure status and its characteristics, as shown in Table 2.

Exposure to an air pollution shock, corresponding to an additional 0.1 to
0.2 µg/m3 in the first-year average exposure to PM2.5 (n̂ > n), causally in-
creases the risk of infants being admitted to the emergency room for asthma
(resp. bronchiolitis) before the third anniversary by 0.2 percentage points (resp.
0.3). This corresponds to 14% (resp. 8%) of the baseline risk of 1.4% (resp.
3.6%). Notably, the risk of receiving anti-asthma medications before the first
anniversary significantly increases only when treated and controls have larger
exposure differences (column 3), corresponding to an additional 0.3 µg/m3 in
first-year average PM2.5 exposure. Note that, given the disparity between PM2.5
data sources and the variety of pollutants affected by thermal inversion, these
estimates provide evidence of a causal link rather than a precise quantification.30

30In Appendix B.4, we further examine the number of doctor visits as an additional outcome,
although non-specific to respiratory diseases, and find a modest yet significant increase that
remains consistent across all four specifications.
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Table 3: Average treatment effect of the quasi-experimental air pollution shock

All Children Excluding those intermediately treated
Outcome (1) (2) (3) (4)

Having drug delivery for obstructive airway diseases before first anniversary
0.003 0.003 0.008 0.006

[-0.003;0.009] [-0.004;0.010] [0.001;0.014] [-0.002;0.014]
XI no yes no yes

Sample size 336169 217859 235380 147042

Hospital emergency admissions: bronchiolitis or asthma before third anniversary
0.005 0.007 0.004 0.006

[0.002;0.009] [0.003;0.011] [0.000;0.008] [0.002;0.011]
XI no yes no yes

Sample size 246075 189722 163071 124262

Hospital emergency admissions: asthma before third anniversary
0.002 0.003 0.002 0.003

[0.000;0.005] [0.001;0.006] [-0.000;0.005] [-0.000;0.005]
XI no yes no yes

Sample size 246075 189722 163071 124262

Hospital emergency admissions: bronchiolitis before second anniversary
0.003 0.003 0.004 0.004

[0.000;0.006] [-0.000;0.006] [0.001;0.007] [0.000;0.008]
XI no yes no yes

Sample size 277271 207825 188460 139968

Notes: This table presents the results of 16 distinct regressions, with 4 outcomes in rows and 4 specifications
in columns. Each outcome is regressed on the binary treatment designed to capture a positive variation in air
pollution exposure, Ti = 1{n̂ > n = 7}, quantifying whether a child was over-exposed to thermal inversion in
its first year, on ground-level weather controls, with or without individual characteristics XI , municipality
and year fixed effects. Standard errors are clustered at the UERRA grid level.

Due to the somewhat arbitrary nature of selecting the threshold, we also
present the estimates for various choices in Figure 8. We observe dose-response
relationships like in Figure 7 for PM2.5 concentrations, suggesting that our
treatment design effectively captures the consequences of air pollution on infants’
health care use. Specifically, the risk of receiving antiasthmatic drugs before the
first anniversary is significantly increased at the 5% level starting at n = 10, while
the risk of emergency admission for asthma or bronchiolitis and the number of
visits to doctors are significantly increased at the 5% level starting at n = 5. The
average treatment effect for medication becomes more pronounced when excluding
moderately treated infants, whereas the point estimates for emergency admissions
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barely change. This suggests a stronger dose-response relationship for medication
and possibly a threshold effect for emergency admissions.

In a placebo test, we identify a cohort of placebo-treated infants residing in
municipalities that experience an increase in thermal inversions (n̂ > n) after their
healthcare consumption period. These children belong to areas where an unusual
number of thermal inversions occur in the year following their n-th anniversary,
hence the exposure occurs after the considered period, with the outcome measured
from birth to their n-th anniversary. We estimate (2), without individual controls
to maintain a large sample size, among never-treated children from birth to
their n-th anniversary. The results, reported in Table B1 in Appendix B, show
no significant effects from this placebo treatment, providing evidence for the
credibility of our analysis.
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Figure 8: Days with thermal inversion and health outcomes. Notes: Model (2) (without
XI) for increasing values of n.

5.2 Heterogeneity of the effects

Evidence of heterogeneity. Table 4 presents the best linear predictor of the
CATE for each outcome. In almost all cases, we reject homogeneity at the 5%
level, based on the p-values associated with the coefficient β̂2, which captures the
correlation between the CATE and the proxy. The most relevant proxy, in terms of
their correlation with the CATE, is found for bronchiolitis emergency admissions,
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with β̂2 estimated at 0.33 (p-value < 0.001). For antiasthmatic medication in
the first year, β̂2 is estimated at 0.11 (p-value = 0.003). For asthma emergency
admissions before the third anniversary, β̂2 is estimated at 0.162 (p-value =
0.001). These results indicate that our algorithms effectively capture significant
heterogeneity in treatment effects.31

We also experimented with another choice of n. In general, the machine
learning-derived heterogeneity correlates better with the ground truth for an
intermediate treatment level compared to high treatment levels because the
latter substantially reduces the size of the treatment group. For instance, the
intermediate threshold n = 7 yields a treatment group with about 14% of infants
compared to about 8% for n = 10. The results are nevertheless qualitatively
similar, though less precise.

Table 4: Testing for heterogeneity and proxy relevance: Best Linear Predictor

Having drug delivery for obstructive airway diseases before first anniversary
ATE(β̂1) 0.006 [-0.003;0.014] p=0.201
HTE(β̂2) 0.114 [0.038;0.190] p=0.003

Hospital emergency admissions for bronchiolitis or asthma before third anniversary
ATE(β̂1) 0.004 [-0.000;0.009] p=0.066
HTE(β̂2) 0.136 [0.038;0.237] p=0.007

Hospital emergency admissions for asthma before third anniversary
ATE(β̂1) 0.002 [-0.000;0.005] p=0.067
HTE(β̂2) 0.162 [0.063;0.258] p=0.001

Hospital emergency admissions for bronchiolitis before second anniversary
ATE(β̂1) 0.003 [-0.001;0.006] p=0.141
HTE(β̂2) 0.325 [0.248;0.401] p=0.000

Notes: Medians over 100 splits. The reported confidence intervals are the median across the splits of CIs with
coverage 1 − α with α = 0.05. Associated p-values are computed as two times the median across the splits of
the p-values that the parameter is equal to zero against the two-sided alternative, and could be divided by
two under a mild assumption (see Appendix C).

Concentrated effects. For anti-asthma drug deliveries and emergency admis-
sions for bronchiolitis, we find compelling evidence that the pollution exposure

31In comparison, Deryugina et al. (2019) report a lower correlation, between 0.013 and 0.015,
for wind-induced exposure’s impact on elderly mortality. This may be attributed to the higher
difficulty of predicting individual-level daily mortality risk, given the rarity of the event.
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effect is concentrated in 10% of the infants, which consists of infants between the
90th and 100th percentile of the proxy predictor for each outcome, as shown in
Table 5 and illustrated in Figure 9. Exposed infants in these groups have a 2.4
p.p. (p-value = 0.053) higher probability of using antiasthmatic medication in
the first year and a 1.7 p.p. (p-value = 0.002) higher probability of emergency
admission for bronchiolitis.

Table 5: Average effect by sensitivity group

Having a drug delivery for obstructive airway diseases before first anniversary
GATE(γ̂1), bottom 50% -0.001 [-0.012;0.010] p=0.809
GATE(γ̂2), 50th-75th percentile 0.007 [-0.007;0.022] p=0.313
GATE(γ̂3), 75th-90th percentile 0.009 [-0.010;0.028] p=0.206
GATE(γ̂4), top 10% 0.023 [-0.001;0.046] p=0.053

GATE(γ̂4) − GATE(γ̂1) 0.024 [-0.001;0.049] p=0.065

Hospital emergency admissions for bronchiolitis before second anniversary
GATE(γ̂1), bottom 50% 0.000 [-0.004;0.005] p=0.855
GATE(γ̂2), 50th-75th percentile 0.002 [-0.005;0.008] p=0.634
GATE(γ̂3), 75th-90th percentile 0.001 [-0.008;0.009] p=0.856
GATE(γ̂4), top 10% 0.017 [0.006;0.028] p=0.002

GATE(γ̂4) − GATE(γ̂1) 0.017 [0.006;0.029] p=0.004

Notes: Medians over 100 splits. The reported confidence intervals are the median across the splits of CIs with
coverage 1 − α with α = 0.05. Associated p-values are computed as two times the median across the splits of
the p-values that the parameter is equal to zero against the two-sided alternative, and could be divided by
two under a mild assumption (see Appendix C).

We observe progressive increases in the group average treatment effects for
obstructive airways disease drugs, with significance observed primarily in the top
decile. In comparison, the top 10%’s effects for bronchiolitis are more pronounced.
In the third group (infants in the 75th to 90th percentile of predicted impacts),
the parameter estimates are near zero and not significant. These results indicate
that the significant effects of air pollution exposure are largely concentrated in
the most affected 10% of infants, diminishing quickly for the less sensitive groups.

Portraying the most vulnerable children. Table 6 shows the CLANs for the
two outcomes identified by the GATES, focusing on the top 10% of most affected
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Figure 9: Average effect by sensitivity group. Notes: Medians over 100 splits. The
reported confidence intervals are the median across the splits of CIs with coverage 1 − α with
α = 0.05.Associated p-values are computed as two times the median across the splits of the
p-values that the parameter is equal to zero against the two-sided alternative, and could be
divided by two under a mild assumption (see Appendix C). The dashed lines report the ATE.

infants. This table describes the mean characteristics of this group compared to
the bottom 50%. The results for both outcomes reveal the following patterns.
Primarily, infants with pre-existing health challenges (such as preterm birth, low
birth weight, cardio-respiratory pathology, electrocardiogram abnormalities, and
respiratory X-rays at birth) are more adversely affected by excessive exposure,
as reflected in both outcomes. The top 10% most affected infants for emergency
admissions for bronchiolitis are particularly vulnerable. For instance, they are
almost three times more likely of being born prematurely (18.7% risk compared
to 5.9% for the 50% least affected) and have an 18.9% risk of low birth weight. In
contrast, the differences between the 10% most affected and 50% least affected
in terms of medication are relatively modest, showing only a 2.6 p.p. difference.
Regarding emergency admissions for bronchiolitis, the most affected infants are
often economically disadvantaged on several dimensions. Specifically, the bottom
10% in parental income represents 17.4% of this group, and beneficiaries of the
universal health coverage are disproportionately represented as discussed below.
For anti-asthma medications, there is only a slight over-representation of the
lowest income decile (11.1% in the most affected versus 9.4% in the least affected).
However, this finding, particularly for anti-asthmatic medication usage, should be
approached cautiously as it pertains to healthcare use. It may not fully represent
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the actual healthcare needs of the poorest children, who could be underrepresented
due to limited access or utilization.

For any given health outcome, such as emergency admissions for respiratory
issues or prescriptions for respiratory medications, it is pertinent to compare
the group of children most affected by air pollution exposure with the broader
cohort of all infants experiencing these health outcomes due to any cause. While
air pollution exposure is a significant factor, it represents only one of many
potential causes for such health issues in infants. This comparison helps to
contextualize the specific impact of air pollution relative to other contributing
factors. Figure 2 in the introduction provides a visual summary of our results.
When comparing with the overall population distribution, we observe that the 8th
decile of parental income suffers relatively the least, while the 1st decile suffers
the most. Additionally, when comparing with the income distribution among
children suffering from bronchiolitis due to all causes, we find that both ends of
that distribution experience relatively more severe effects from bronchiolitis caused
by air pollution compared to other causes. Specifically, the top decile in parental
income accounts for 6.7% of all-cause emergency admissions for bronchiolitis,
compared to 11.1% for admissions linked to air pollution. This result suggests that
the top income decile may have a similar risk of seeing their children admitted
to emergency for bronchiolitis due to air pollution as the rest of the population,
while having a lower overall risk of being admitted to emergency for bronchiolitis
due to all causes. One interpretation of this finding is related to their baseline,
long-term exposure, potentially increasing their susceptibility to adverse effects
from short-term pollution shocks.

Table 6 also shows that access to general practitioners (GP) and pediatricians
is lower for those most affected, particularly regarding anti-asthma medication use,
indicating potential accessibility challenges for more vulnerable groups. Concerning
bronchiolitis, while access to a general practitioner is also lower for the most
affected, access to a pediatrician appears to be relatively higher. This finding can
be linked to the concentration of the most affected children in large urban areas,
including Paris, where access to pediatricians is generally above average.

In an effort to better understand the role of health care accessibility, we incor-
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porate variables measuring eligibility for CMU-C, an income-based complementary
health insurance plan in France that eliminates all financial constraints on primary
care for the poorest individuals. However, not all eligible individuals enroll, often
due to lack of awareness or marginalization.

Our analysis, limited to 2010-2016 due to the need for fiscal income data,
utilizes a CMU-C eligibility indicator based on household eligibility at birth or
within two years thereafter, minimizing bias against low-income children.

We find that in the most affected group for anti-asthma medications, there is
a higher likelihood of being in the bottom income decile, and a lower likelihood of
unenrolled yet eligible CMU-C individuals, as Figure C1 shows. In contrast, for
emergency bronchiolitis admissions, this group is more likely to be in the bottom
income decile and eligible for CMU-C, but not necessarily enrolled. Given that
these admissions are less avoidable, our results imply that observed healthcare
consumption may underestimate the true effects, especially for non-emergency
treatments, due to financial barriers limiting access to care. However, this bias is
likely minor for emergency admissions.

Our results show that 79.4% of the most affected children (group 4) resided in
areas where the annual PM2.5 exposure exceeded 10 µg/m3 in 2008, the European
Commission’s 2030 target and the 2006 World Health Organization (WHO)
guidelines. A higher baseline PM2.5 exposure correlates with increased sensitivity
to air pollution for both analyzed outcomes, particularly bronchiolitis. Notably,
the most affected group resides in municipalities where annual exposure levels
are 1.7 µg/m3 higher than those least affected, measured in the year preceding
birth to prevent the inclusion of endogenous variables as individual characteristics.
This supports the interpretation that elevated baseline exposure intensifies the
risk during short-term pollution spikes. We discuss in Appendix B an alternative
explanation for this observation, which might stem from our study’s design: a
thermal inversion may have a larger short-term impact on concentration levels
in more polluted areas. We find supporting evidence for this hypothesis in one
of the PM2.5 data sources, indicating that thermal inversions may have a more
pronounced effect in highly polluted regions. Conversely, our other data source
suggests a more uniform impact of the shock across different baseline exposure

33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.07.24302381doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.07.24302381
http://creativecommons.org/licenses/by-nc-nd/4.0/


levels.
In summary, our results suggest that infants from the bottom 10% of parental

income distribution face a higher risk of suffering the most from an air pollution
shock. Conversely, the infants from the top 10% of parental income, who generally
have a lower baseline risk, experience a relatively greater impact from air pollution
compared to all other causes of bronchiolitis. Our research also provides evidence
that factors such as healthcare accessibility and baseline exposure, which are
influenced by the municipality of residence, may significantly contribute to these
outcomes.

Table 6: Comparison of the least and the most affected by air pollution, depending on the
outcome

Average of the characteristics for :
(i) the 10% the most affected,

(ii) the 50% the least affected, and (i)-(ii) difference most - least
Bronchiolitis emergency Antiasthmatic medication

before second anniversary before first anniversary
(i) (ii) (i)-(ii) (i) (ii) (i)-(ii)

Girl 0.459 0.477 -0.017(p=0.001) 0.424 0.490 -0.065(p=0.000)
Birth weight 3094.33 3283.20 -188.807(p=0.000) 3229.00 3275.66 -45.606(p=0.000)
Gestational age 38.24 39.08 -0.838(p=0.000) 38.87 39.03 -0.164(p=0.000)
No pathology 0.693 0.831 -0.136(p=0.000) 0.800 0.821 -0.020(p=0.000)
Cardio-respiratory pathology 0.242 0.166 0.077(p=0.000) 0.178 0.169 0.010(p=0.007)
Monitoring electrocardiogram 0.116 0.039 0.076(p=0.000) 0.060 0.043 0.017(p=0.000)
Premature birth 0.187 0.059 0.127(p=0.000) 0.095 0.069 0.026(p=0.000)
Low birth weight 0.189 0.056 0.133(p=0.000) 0.086 0.070 0.016(p=0.000)
Birth without significant issues 0.581 0.741 -0.160(p=0.000) 0.689 0.731 -0.043(p=0.000)
Disposable income percentile 43.56 49.74 -5.813(p=0.000) 49.38 49.84 -0.499(p=0.088)
Neonatology stay 0.228 0.082 0.145(p=0.000) 0.115 0.095 0.021(p=0.000)
Respiratory system radiography 0.087 0.030 0.057(p=0.000) 0.044 0.033 0.011(p=0.000)
Accessibility : GP 3.97 4.10 -0.127(p=0.000) 4.04 4.10 -0.051(p=0.000)
Accessibility : Paediatrician 3.66 3.48 0.168(p=0.000) 3.45 3.54 -0.103(p=0.000)
Decile 1 0.174 0.090 0.083(p=0.000) 0.111 0.094 0.018(p=0.000)
Decile 10 0.111 0.083 0.026(p=0.000) 0.098 0.099 -0.001(p=0.786)
CMU beneficiary 0.171 0.133 0.036(p=0.000) 0.121 0.130 -0.010(p=0.005)
PM2.5 13.38 11.66 1.74(p=0.000) 12.13 11.86 0.270(p=0.000)
Mother Age 30.34 30.64 -0.276(p=0.000) 30.20 30.79 -0.595(p=0.000)
Mother Born abroad 0.238 0.164 0.074(p=0.000) 0.167 0.166 0.003(p=0.390)
Outside Cities 0.064 0.052 0.014(p=0.000) 0.056 0.055 -0.000(p=0.867)
Urban Area <50,000 0.094 0.112 -0.018(p=0.000) 0.112 0.108 0.004(p=0.128)
Urban Area 50,000 - 200,000 0.138 0.182 -0.046(p=0.000) 0.179 0.171 0.008(p=0.027)
Urban Area 200,000 - 700,000 0.176 0.231 -0.054(p=0.000) 0.203 0.225 -0.023(p=0.000)
Urban Area >700,000 0.166 0.207 -0.039(p=0.000) 0.211 0.206 0.004(p=0.287)
Urban Area of Paris 0.361 0.216 0.146(p=0.000) 0.239 0.233 0.006(p=0.186)
Areas not EU-compliant 0.794 0.729 +0.066 (p=0.000) 0.719 0.744 -0.025 (p=0.000)

Notes: (i) corresponds to group 4, with proxy predictor in the top 10% and group average treatment effect γ̂4; (ii)
corresponds to group 1, with proxy predictor in the bottom 50% and group average treatment effect γ̂1. Medians
over 100 splits. Confidence intervals and p-values are as described in previous tables.
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6 Policy implications

Effective air quality policies that yield tangible health benefits hinge on identifying
and addressing the specific root causes of emissions and vulnerability factors unique
to each area. As we detail below, doing so requires a comprehensive approach that
includes data-driven analysis and tailored policy implementation. This section is
devoted to the policy implications of our study, using the EU’s proposed revision
of the Ambient Air Quality Directives as a framework for discussion.

This proposed policy package, aiming to align with the WHO’s guidelines by
2050, introduces interim air quality standards for 2030 and zero pollution targets
by 2050, as part of a broader EU-wide climate neutrality objective. The framework
includes three key elements which resonate with the findings of our study. First, it
emphasizes the importance of public transparency, requiring improved air quality
monitoring, reporting, and standardized indices across member states. Second,
it is backed by a legal framework, including citizen compensation for air quality
standard breaches. Lastly, the directives would require member states to create
Air Quality Roadmaps to meet air quality standards, allowing for flexibility at
the national and local levels to accommodate diverse economic and geographic
conditions. This policy mirrors the framework of the Clean Air Act in the United
States, where the State Implementation Plans enable states to tailor their own
regulatory approaches to achieve and maintain national air quality standards. The
2008 Ambient Air Quality Directive already requires Member States to comply
with pollution standards, based on local monitoring of concentrations. The French
state was declared non-compliant with this directive by its highest administrative
court in 2017 and has been fined 10 million euros every six months, recently
reduced to 5 million euros.32

Our study underscores the need for enhanced air quality monitoring and
harmonized indices in the EU, focusing on reducing measurement errors and

32This fine reduction decision acknowledges air-quality improvement plans in non-compliant
areas like Paris and Marseilles. Local initiatives include the Plan de protection de l’Atmosphère,
that detail local measures such as with low emission zones or portside electricity for boats.
Nationally, actions encompass funding for air quality efforts, eco-friendly vehicle subsidies,
electric charging infrastructure, and building sector reforms like banning new oil/coal boilers
and promoting energy efficiency and sobriety.
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providing detailed, accessible data for effective policymaking. Indices tailored to
specific vulnerabilities, such as those of children and the elderly, could enhance
the identification of “high-risk zones” for focused public health interventions and
timely responses in areas most affected by pollution.

In addition, our findings also support the EU’s initiative to strengthen com-
pensation rights for health damages from air pollution, particularly for vulnerable,
often lower-income, populations. Emphasizing these groups in compensation
strategies is important, considering their health care access challenges and fi-
nancial constraints. Developing targeted compensation schemes could provide
necessary financial relief, lessen health care burdens for these families, and promote
adherence to air quality standards, functioning as both support and incentive to
public and private entities.

More importantly, our results offer valuable insights for designing effective
national air quality roadmaps. Our results suggest that these roadmaps should
prioritize regions with vulnerable populations to mitigate severe health impacts
of air pollution as early as possible. We illustrate the relevance of this targeted
approach in our subsequent comparison of three different strategies for achieving
the EU’s interim 2030 air quality targets for PM2.5 (annual average limit value of
10 µg/m3) in France.

Air Quality Roadmaps: a tool for target interventions. Policies often tar-
get areas with high pollution levels. However, considering population vulnerability
might offer a preferable strategy to maximize health benefits (Deryugina et al.,
2021). Given the financial constraints associated with air pollution reduction, a
priority ranking system that takes into account population characteristics could
more effectively mitigate morbidity and mortality associated with exposure to air
pollution. Such a targeted approach could accelerate the realization of benefits
like reduced health care expenditures, fewer workdays lost to illness, and enhanced
overall well-being, as compared to the conventional strategy of focusing solely on
the most polluted areas.

From a practical standpoint, effective targeting necessitates identifying local
PM2.5 emission sources, which may stem from vehicle emissions, industrial ac-
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tivities, energy consumption, agricultural practices, wildfires, or transboundary
pollution. There is already a host mitigation policies available that, once local
sources are identified, can be tailored accordingly. For example, measures to
encourage the fast post-spreading burial of nitrogenous fertilizers and the use
of covers for slurry pits in the agricultural sector are examples of targeted rural
strategies to reduce emissions in the French National Plan for the Reduction of
Atmospheric Pollutant Emissions for the period 2022-2025.33

We examine three distinct strategies for prioritizing the compliance of French
municipalities with the 10 µg/m3 PM2.5 exposure threshold: one based on
annual PM2.5 exposure levels, another on median income, and a third on the
number of premature births. Over our study period, nearly 80% of most affected
children were born in municipalities that did not meet the 10 µg/m3 exposure
threshold. Assuming that the spatial distribution of the most vulnerable children
across municipalities remains constant, our aim is to identify the most effective
strategy for ensuring that these children reside in areas that comply with the
exposure threshold as early as possible. Remark that targeting areas with a higher
concentration of premature infants, not only addresses the immediate health
impacts of PM2.5 exposure on these infants but also aligns with mitigating one of
its possible root causes (Sun et al., 2015).

We employ two alternative methods for ranking municipalities. In the first
approach, municipalities are grouped into small clusters that each represent 5%
of all municipalities in France, regardless of the number of births. These clusters
are formed based on similar values for either PM2.5 exposure, median income, or
the number of premature births. Nonetheless, achieving the same reduction in
a major city and in a smaller municipality may not be equally feasible. In the
second approach, municipalities are grouped into clusters that account for 5%
of total births nationwide, again based on similar values for the aforementioned
variables. When we consider groups of municipalities that each account for an
equal share of total births, achieving broad impact may require to prioritize a
lower number of municipalities, but with greater population. For each clustering
approach, the roll-out of compliance is then prioritized for clusters with either

33“Arrêté du 8 décembre 2022 établissant le plan national de réduction des émissions de
polluants atmosphériques.” Journal Officiel de la République Française, Texte 27 sur 110.
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the highest levels of PM2.5 exposure, the lowest median income, or the greatest
number of premature births.

Figure 10 provides the results when rolling-out compliance starting from the
first group of municipalities (denoted p5) and extending to all (p100) municipalities
that were non-compliant with the threshold in 2008. The results are presented
for two different groupings: Figure 10a represents clusters that each account for
5% of all municipalities (irrespective of their size), while Figure 10b represents
clusters that each account for 5% of total births nationwide (to account for size
effects).

When clustering by municipalities, the most effective policy design appears to
be targeting the top 5% of municipalities with the highest number of premature
births, as this approach would immediately benefit 60% of the most vulnerable
children. These municipalities account for nearly half (49.9%) of all births nation-
wide. Consequently, the financial burden of enforcing compliance in these areas
could be substantial due to their large population. In contrast, focusing on the
10% of municipalities with the highest pollution levels (comprising 35.7% of all
births) would reach 47% of the most affected children. Targeting based on median
income proves to be the least effective approach in this case.

When clustering by number of births, the most effective approach remains
to prioritize municipalities based on the number of premature births, provided
that the target encompasses more than 20% of municipalities weighted by births.
Targeting the lowest median income municipalities may be effective to achieve a
short-term goal (maximize impact within the first 15% of municipalities weighted
by births). Targeting municipalities with the highest PM2.5 exposure levels
becomes the least effective strategy.
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Figure 10: Comparative analysis of targeting strategies for achieving compliance with
the 10 µg/m3 PM2.5 2030 target. Notes: Non-compliant municipalities are ranked based on
three criteria: PM2.5 exposure levels in 2008, incidence of premature births in 2018, and median
income in 2018. Then, they are grouped into percentiles, either unweighted (left) or weighted by
the number of births (right).

In both approaches, the conventional strategy that prioritizes the most polluted
areas without considering local population characteristics is consistently dominated
by at least one of the two alternatives. These alternatives, based on simple metrics,
can be regarded as realistically implementable. Therefore, our study suggests that
a more targeted approach, focusing on the most vulnerable populations, could
more effectively deliver health benefits. Such an approach should inform the design
of country-specific air quality roadmaps, ensuring that interventions are both
effective and meaningful. It is important to note that our recommendations are
primarily based on the effects of PM2.5 on young children and short-term health
impacts; other pollutants, populations, and long-term effects are not considered,
underscoring the need for further research and improved pollution data.
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7 Conclusion

In this paper, we have examined the differential impacts of early childhood
exposure to air pollution on children’s health care use across parental income
groups using French administrative data. Our results provide quasi-experimental
evidence linking vulnerability factors and pollution exposure on health measures
during the first three years of life. In particular, we find causal evidence that
short-term surges of air pollution affect the likelihood of emergency admissions
and drug consumption related to respiratory issues for young children. We uncover
substantial treatment effect heterogeneity using generic machine learning inference.
Our analysis reveals that significant health effects of short-term variations of air
pollution are concentrated in about 10% of the infant population. These infants
are characterized by a combination of poor health indicators at birth, and are
more likely to be from the lowest parental income decile. These effects should be
seen as lower bounds, as they are measured using actual health care consumption,
which only responds to adverse shocks when access is not an issue.

In light of our empirical findings, we advocate for a nuanced policy approach
that goes beyond merely targeting regions with high pollution levels. Our analysis
provides insights for the design of air quality policies, indicating that targeted
interventions in regions with vulnerable populations may potentially lead to more
immediate and substantial health benefits. However, it is important to carefully
consider the composition of the population in these regions and evaluate the
impact on all demographic groups to ensure a comprehensive and effective policy
framework.
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Appendix A Data

A.1 Hospital Discharge Data - PMSI

Our study relies on data from the PMSI MCO databases, which provide com-
prehensive information on each hospital admission in France, including inpatient
stays and visits to emergency rooms. We identify hospital admissions for asthma
or bronchiolitis that are associated with an emergency room visit using the main
diagnoses codes (J45-J46 for asthma and J21 for bronchiolitis). These data ac-
counted for patients whose entry mode was recorded as “home” and whose origin
was “with emergency room visit”. However, these admissions do not include
visits to the emergency room that did not result in hospitalization, or unplanned
admissions with direct access to a hospital service other than the emergency
department. Descriptive statistics of our main outcomes are provided in Table
A2.
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Table A1: Descriptive statistics on main outcomes (1/2)

By year Through years
Birth year First Second Third First to Third By Third N

anniversary anniversary

Drug delivery for obstructive airway diseases
2008 0.238 0.217 0.184 0.296 0.393 35, 831
2009 0.248 0.229 0.205 0.320 0.417 34, 034
2010 0.244 0.246 0.202 0.328 0.420 33, 892
2011 0.261 0.243 0.194 0.322 0.426 33, 256
2012 0.270 0.247 0.208 0.333 0.437 34, 910
2013 0.269 0.249 0.214 0.340 0.440 35, 089
2014 0.266 0.252 0.206 0.338 0.439 34, 658
2015 0.283 0.258 0.207 0.338 0.447 32, 366
2016 0.278 0.255 31, 254
2017 0.276 30, 879

All years 0.263 0.244 0.202 0.327 0.427 336, 169

Visits to the Paediatrician
2008 4.357 2.506 1.350 3.855 8.212 34, 908
2009 4.437 2.515 1.355 3.869 8.307 33, 441
2010 4.434 2.548 1.336 3.884 8.318 33, 414
2011 4.441 2.517 1.302 3.818 8.259 32, 845
2012 4.489 2.491 1.296 3.786 8.275 34, 537
2013 4.600 2.428 1.254 3.682 8.282 34, 769
2014 4.576 2.363 1.202 3.566 8.141 34, 336
2015 4.494 2.279 1.168 3.447 7.941 32, 101
2016 4.495 2.294 1.177 3.488 7.838 30, 972
2017 4.581 2.348 30, 518

All years 4.490 2.437 1.280 3.733 8.208 331,811

Visits to the GP
2008 7.265 6.520 5.201 11.721 18.986 34, 908
2009 7.298 6.377 5.162 11.539 18.837 33, 441
2010 7.182 6.341 5.003 11.343 18.526 33, 414
2011 7.247 6.325 4.894 11.218 18.465 32, 845
2012 7.252 6.219 4.815 11.034 18.286 34, 537
2013 7.287 6.128 4.712 10.841 18.128 34, 769
2014 7.201 6.040 4.490 10.530 17.730 34, 336
2015 7.259 5.906 4.417 10.324 17.582 32, 101
2016 7.185 5.807 4.344 10.239 17.334 30, 972
2017 7.163 5.892 30, 518

All years 7.235 6.182 4.825 11.049 18.294 331,811
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Table A2: Descriptive statistics on main outcomes (2/2)

By year Through years
Birth year First Second Third By Second By Third N

anniversary anniversary

Emergency admission for asthma
2009 0.004 0.005 0.004 0.009 0.012 34, 034
2010 0.003 0.006 0.005 0.011 0.013 33, 892
2011 0.004 0.007 0.005 0.012 0.015 33, 256
2012 0.004 0.007 0.005 0.011 0.014 34, 910
2013 0.004 0.006 0.006 0.012 0.015 35, 089
2014 0.004 0.007 0.005 0.011 0.014 34, 658
2015 0.005 0.008 0.006 0.013 0.017 32, 366
2016 0.005 0.008 0.005 0.013 31, 254
2017 0.006 30, 879

All years 0.004 0.007 0.005 0.011 0.014 300, 338
Emergency admission for bronchiolitis

2009 0.023 0.004 0.0005 0.026 0.027 34, 034
2010 0.028 0.005 0.001 0.032 0.033 33, 892
2011 0.032 0.005 0.001 0.036 0.037 33, 256
2012 0.036 0.005 0.0005 0.040 0.040 34, 910
2013 0.034 0.005 0.001 0.038 0.039 35, 089
2014 0.031 0.005 0.001 0.036 0.036 34, 658
2015 0.039 0.004 0.0005 0.043 0.043 32, 366
2016 0.037 0.005 0.0003 0.041 31, 254
2017 0.044 30, 879

All year 0.034 0.005 0.001 0.036 0.036 300, 338
Emergency admission for bronchiolitis before second anniversary
or asthma before third anniversary

2009 0.026 0.009 0.005 0.036 34, 034
2010 0.030 0.011 0.006 0.043 33, 892
2011 0.035 0.012 0.006 0.048 33, 256
2012 0.038 0.011 0.005 0.050 34, 910
2013 0.036 0.011 0.007 0.051 35, 089
2014 0.034 0.012 0.006 0.047 34, 658
2015 0.043 0.012 0.006 0.056 32, 366
2016 0.040 0.013 0.006 31, 254
2017 0.047 30, 879

All year 0.036 0.010 0.005 0.041 300, 338
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A.1.1 Birth hospital stay and baseline health indicators

Our data accounts for 99.6% of births in Metropolitan France (Quantin et al.,
2013) , with the remaining 0.4% of births taking place outside of hospitals (Blondel
et al., 2011). Newborn stays are identified in the PMSI using the criteria of the
Scan Santé reference perinatal indicators. We also identify stays in neonatology
units by the presence of a neonatology billing supplement (codes NN1, NN2, and
NN3). We establish a general health status indicator based on principal diagnoses
associated with the child’s stay. A child is considered healthy if its only primary
diagnosis falls into codes Z38 “Children born alive, according to place of birth”
or Z76.2 “Medical surveillance and care of other infants and children in good
health”. The presence of a principal diagnosis associated with a condition, coded
for example in chapter P “Certain conditions originating in the perinatal period”,
is thus associated with at least one condition, without prejudging its severity.

A second indicator is proposed based on homogeneous groups of patients
(GHM), a medico-economic nomenclature which makes it possible to describe
and bill the health insurance system for the care of patients. This nomenclature
evolved significantly in 2012 with regard to the major diagnostic category 15
“Newborns, premature babies and conditions of the perinatal period”, to be based
firstly on age, then on the mode of entry, the presence of surgical procedures,
the mode of discharge (in particular death) before looking at, by gestational age
and weight group, the principal diagnosis with a closed list to detect “significant
problems”. Newborns with “no significant problems” are classified as such by
default, if there are no problems of greater severity that would have led to a
different classification. In this approach, children are considered healthy at birth
when they fall within codes 15M05A and 15M06A, i.e. “Newborns of 3300g and
gestational age of 40SA and above with no significant problems” and “Newborns
of 2400g and gestational age of 38SA and above with no significant problems”.

Furthermore, we introduced dummy variables based on the information from
the child’s birth stay that indicate (i) whether any diagnosis pertains to respiratory
or cardiovascular pathology codes, (ii) whether a radiography of the respiratory
system was coded or not (PMSI MCO, Table A, if CDC-ACT starts with ZBQK00
or GEQH00 or LJQK00 or ZBQK003, encoded in Common classification of medical
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acts CCAM), and (iii) whether an electrocardiogram was reported (PMSI MCO,
Table A, if CDC-ACT starts with "DEQP00", in CCAM code).

A.1.2 Infant emergency hospital admissions by day of the week

We observe no significant seasonality in asthma emergency admissions on weekdays
and weekends, whereas we see significantly fewer admissions on weekends for all
respiratory admissions and bronchiolitis. (Table A3). This suggests that any
episode of breathlessness in an infant with asthma or suspected asthma will lead
to an emergency admission and is unavoidable regardless of the circumstances.
This implies that the observed data is not biased by parental behavior or health
care usage constraints. We obtain similar results for children less than 2 years old.
For children less than 3 years old, there is evidence of fewer emergency admissions
on weekends, in particular for the bottom 50% of parental income on Saturdays.
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Table A3: Emergency admissions of EDP infants (less than one year old) by day
of the week.

Emergency admissions of EDP infants (less than one year old) - 2009-2017
All J J21 J45-J46

Respi. Bronchiolitis Asthma
(1) (2) (3) (4)

Tuesday (ref: Monday) 0.292 0.475 0.098 0.292
(0.750) (0.706) (0.523) (0.183)

Wednesday -0.537 -0.235 -0.281 0.156
(0.750) (0.706) (0.523) (0.183)

Thursday -1.096 -0.763 -0.159 -0.002
(0.749) (0.706) (0.523) (0.183)

Friday -0.740 -0.582 -0.366 -0.053
(0.749) (0.706) (0.523) (0.183)

Saturday -3.366∗∗∗ -2.516∗∗∗ -1.366∗∗∗ -0.247
(0.749) (0.706) (0.523) (0.183)

Sunday -3.064∗∗∗ -2.139∗∗∗ -1.193∗∗ -0.045
(0.749) (0.706) (0.523) (0.183)

Constant 15.932∗∗∗ 13.414∗∗∗ 6.872∗∗∗ 2.134∗∗∗

(0.530) (0.499) (0.370) (0.130)

Observations 3,287 3,287 3,287 3,287

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A.2 Drug delivery data

We use data on drug dispensing for obstructive airway diseases from the DCIR
database (Données de Consommation Inter-Régimes), which provides information
on all reimbursed outpatient health care expenditures in France. A dispens-
ing/delivery event corresponds to a pharmacy delivery medicine reimbursed by the
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health insurance fund for a medicine of class R03 “Drugs for obstructive airway
diseases” of the Anatomical, Therapeutic, and Chemical (ATC) classification. The
most common drugs are shown by parental income in Figure A1. The delivery
of such medications is included in a reference algorithm for identifying chronic
respiratory diseases. According to this criterion, the French National Health
Insurance identifies individuals with chronic respiratory diseases as those who
have received three dispensings of these drugs on separate occasions, except for
those diagnosed with cystic fibrosis. Similar algorithms have been utilized in
the medical literature, e.g. in Belhassen et al. (2016) and (Naiim et al., 2019),
to identify cases of recurrent wheezing in infants and evaluate the short and
long-term therapeutic management of asthmatic children, respectively. In a study
combining the 2006 ESPS survey to health insurance reimbursement data, Delmas
and Fuhrman (2012) demonstrated that one dispensing in 2005 and another in
2006 in ATC class R03 characterized 51.3% of self-reported asthmatics (both
intermittent and persistent) aged 5 to 44 years, and those with such dispensings
constituted 64.9% of self-reported asthmatics.
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Figure A1: Drug deliveries to infants in their first year by income decile and
main medications
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A.3 Air pollution data

Data on PM2.5 exposure is derived from two sources. The French National
Institute for Industrial Environment and Risks (Ineris) produces historical data
(2009-2020) as an annual average at the level of municipalities in metropolitan
France (Ineris Cartothèque; Real et al. (2022)), based on a statistical comparison
of observations from measurement stations and concentrations simulated by a
numerical air quality model. Based on satellite observations, the Atmospheric
Composition Analysis Group (Hammer et al., 2020) proposes annual average data
at the European level on a one-kilometre grid (V4EU03, 2001-2018).
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Area with less than 50 000 inhabitants Area with 50 000 − 200 000 inhabitants Area with 200 000 − 700 000 inhabitants

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

0.0

0.4

0.8

0.00

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.0

0.5

1.0

Decile of household adjusted income

P
M

2.
5 

E
xp

os
ur

e 
on

 b
ir

th
 y

ea
r 

(2
00

8−
20

17
)

(µ
g/

m
3  y

ea
rly

 a
ve

ra
ge

 c
om

pa
re

d 
to

 d
ec

ile
 5

)

Atmospheric Composition Analysis Group 
 Hammer et al. (Environ. Sci. Technol. 2020)

Carthothèque de l'Ineris 
 Real et al. (Earth Syst. Data 2022)

Figure A2: PM2.5 Exposure For Children in their Birth Year, By Urban Area,
Relative to Fifth Decile of parental income
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Figure A3: Urban areas by number of inhabitants in 2017 (Insee, 2020)

A.4 Local weather data

The meteorological data, including the one used to identify days with thermal
inversions, are those from the European atmosphere and surface reanalysis model
(UERRA). This model generates hourly estimates of various meteorological vari-
ables such as temperature, humidity, and wind across multiple atmospheric layers,
at a ground resolution of 11km x 11km. The UERRA project is laying the
groundwork for a pan-European reanalysis with an extremely high resolution (5.5
km) forced by the global ERA-5 reference reanalysis system. As explained in
UERRA’s user guide, atmospheric reanalysis is a technique used to reconstruct
past weather conditions by combining historical observations (both in-situ and
remote sensing via surface and satellite) with a dynamical model. The process
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generates a coherent description of the atmospheric state that is both physically
and dynamically consistent. The model assimilates observational data to closely
replicate the conditions it records. The main advantage of reanalysis is that it
provides a multivariate, spatially complete, and coherent record of the atmospheric
state, which is far more complete than any observational dataset.

These open-access data are available on the Copernicus website, in the Climate
Data Store. We classify a day as a day with a thermal inversion when the
difference between the daily average temperatures at 500 metres and 15 metres is
positive. We count the number of such days over the first year of a child’s life.
The meteorological control variables we use include the number of days in the year
across 20 temperature intervals and 12 wind speed intervals (as per the Beaufort
scale), as well as the annual average humidity and pressure.34

A.5 EDP sample and linkage issues

The Echantillon Démographique Permanent (EDP) tracks individuals born on 16
specific birth dates (2nd to 5th of January; 1st to 4th of April, July, and October)
across multiple survey and administrative sources. These sources are connected
by a common identifier. Of the 364,105 EDP individuals with birth dates from
2008 to 2017, 340,897 have a recorded municipality of residence in metropolitan
France. This information is issued from the birth certificate.

Out of these, 336,169 children are found in the National Health Insurance
affiliates referential and consist of the main sample of our study. Approximately
98% had access to health care in their birth year. Given that France provides
universal health insurance to its residents, the lack of access at this age likely
suggests either absence from the territory or linkage issues.

A.6 Adjusted income by birth cohort

We compute the adjusted disposable income per consumption unit at the household
level for each infant. It is defined as the sum of earnings, self-employment income,

34Neither the European Commission nor the European Centre for Medium-Range Weather
Forecasts (ECMWF) bears responsibility for the use of Copernicus data in this report.
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capital income, and social transfers, minus direct taxes, and divided by the number
of consumer units. The consumption units are computed using the modified OECD
scale, which assigns 1 consumption unit to the first adult in the household, 0.5 to
individuals aged 14 years or older, and 0.3 to children under the age of 14 years
(Blanpain, 2019).

We rank infants within their birth cohort by the percentile of their household’s
adjusted disposable income. We compute the corresponding percentile for each
year from their birth year to two years later. 90% of infants in our primary
sample born between 2008 and 2016 have at least one non-missing of these three
percentiles. We define their income percentile as the average across the fiscal
years in which the infant is observed. Restricting to the percentile in the birth
year would result in attributing a percentile to only 66% of infants, forcing us to
drastically limit our sample.

Moreover, among infants with at least one attributable percentile over their
first three years, missing data about yearly adjusted income is correlated with
being at the lower end of the income distribution, as depicted in Figure A4. If we
limit the analysis to those infants for whom we only measure income in the birth
year (y-axis of the Figure), we lose more children from low-income families than
from high-income families (x-axis, when measured over up to 3 years). Specifically,
this sample excludes all children born in 2017, as no measure of parental income
is available for that year.
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Table A4: Disposable parental income in 2016 Euros (precisely Niveaux de vie,
equivalised disposable income in Eurostat terms)

Decile Interval Median

1 < 10, 550 8, 648
2 10, 550 − 12, 850 11, 748
3 12, 850 − 14, 970 13, 908
4 14, 970 − 16, 990 16, 004
5 16, 990 − 19, 030 18, 026
6 19, 030 − 21, 100 20, 044
7 21, 100 − 23, 100 22, 073
8 23, 100 − 26, 350 24, 574
9 26, 350 − 31, 550 28, 472
10 > 31, 550 38, 384
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Figure A4: Household income missingness by birth year and decile of adjusted
household income. Left: Share of missing values in birth year by final adjusted
income decile. Right: Share of missing values in final adjusted income percentile
(over up to 3 yearly observation if available in fiscal years 2010 to 2016).

To complete the descriptive statistics, Figure A5 shows the characteristics of
childbirth stays by decile of adjusted household income for all non-premature
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births, and Table A5 reports the risk ratio between the bottom and the top of
parental income distribution. This breakdown offers a comprehensive view of the
socioeconomic factors influencing childbirth conditions and the care received. In
addition, Figure A6 visualizes the frequency of emergency admissions for asthma
and bronchiolitis by income decile, which reveal potential disparities in health
outcomes or health care access among different socioeconomic groups.

Table A5: Risk Ratio (probability in the bottom tenth of parental income over
probability in the top tenth of parental income)

D1/D10
Birth with a significant issue (GHM) 1.04 [1.01;1.08]
Birth with at least one pathological diagnosis (DP des UM) 1.08 [1.03;1.13]
Electrocardiogram at birth 1.39 [1.23;1.56]
Neonathology at birth 1.48 [1.35;1.60]
Respiratory radiography at birth 1.75 [1.47;2.02]
Low birth weight (<2,5kg) 1.77 [1.57;1.98]
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Figure A5: Characteristics of childbirth stays by adjusted household income
among all non-premature births

2.0%

4.0%

6.0%

1.0%

2.0%

3.0%

1 2 3 4 5 6 7 8 9 10
Decile of household adjusted income

W
ith

 a
n 

em
er

ge
nc

y 
ad

m
is

si
on

 
 fo

r 
br

on
ch

io
lit

is

W
ith an em

ergency adm
ission 

 for asthm
a

Figure A6: Respiratory Health indicators by adjusted household income

59

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.07.24302381doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.07.24302381
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix B Treatment definition

B.1 Thermal inversions

While thermal inversions have been used as instrumental variables in many studies
due to their potential to generate as-good-as-random variations, they cannot be
treated as completely random. Specifically, thermal inversion phenomena can be
influenced by local topography, such as the presence of a deep valley, which can
initiate or amplify the phenomena (Joly and Richard, 2018). Figure B1 illustrates
how certain regions experience more thermal inversions than others over the years.

In our study, we aim to compare children born in the same municipality but
at different times, thereby controlling for this local variation. We define the
“usual” or “expected” number of days with thermal inversions by considering this
long-term local average. This is achieved using the following linear model at the
municipality and year level:

Figure B1: Share of days with thermal inversions for three example years

Nct = νc + ϕt + nct, (5)

where νc represents the long-term annual average of the number of days with
thermal inversion, ϕt is a national yearly shock, and nct is a local idiosyncratic
shock. According to its year of birth (t) and its municipality of residence (c)
in its first year, each child (i) is assigned to the predicted local long-average
N i = N̂ct = ν̂c + ϕ̂t. Figure B2 illustrates the geographical distribution of treated
infants when using the adjusted number of days with thermal inversion, for two
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different thresholds. Compared to Figure B1, this map displays a more uniform
distribution of treated cohorts than what we would have obtained if we had used
the unadjusted number of days with thermal inversion to define the treated and
untreated cohorts.

Thermal inversions typically follow a seasonal pattern, with a greater occur-
rence in winter. However, when these inversions are aggregated over the twelve
months following a child’s birth, this seasonality tends to fade away as illustrated
in Figure B3. Moreover, there are no clear trends based on the quarter of birth.
On average, children born in January experience 36.4 days of thermal inversions
in their first year, compared to 34.9 days for children born in April, 35.1 days for
those born in July, and 35.2 days for those born in October. At most, there is
a 1.5-day difference in total days of exposure to thermal inversion for children
born in different quarters, which is significantly less than the threshold and size
of the shock considered. However, one shortcoming of our approach is that we
treat identically an additional 10 days of inversion happening in the first and the
twelfth month of the child, whereas consequences may be quite distinct.

Table 2 shows that the characteristics of treated and non-treated children
are remarkably similar. This similarity provides credibility to the assumption of
exogeneity of our quasi-experimental shock, as it suggests that the exposure to
thermal inversions is not systematically related to observable characteristics of
the children.
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Figure B2: Municipality with at least one treated birth cohort over 2008 to 2017

Figure B3: Temporal variations in the number of days with thermal inversions
quarter by quarter, and in total the next 12 months
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Table B1: Placebo treatment: average treatment effect of the quasi-experimental binary
shock of exposure to air pollution after health care use

Intermediate exposure shock Large exposure shock
n = 7 n = 10

Drug delivery for obstructive airway diseases
- before first anniversary

0.001 0.000
[-0.005;0.007] [-0.007;0.007]

Sample size 288875 309758

Hospital emergency admissions
- bronchiolitis or asthma before third anniversary

0.001 -0.001
[-0.002;0.004] [-0.005;0.002]

Sample size 220155 233953
- asthma before third anniversary

-0.0004 -0.001
[-0.002;0.001] [-0.003;0.001]

Sample size 220155 233953

- bronchiolitis before second anniversary
0.001 0.0002

[-0.001;0.004] [-0.003;0.003]
Sample size 231904 251430

The estimates in Table 1 aligns well with daily findings presented by Godzinski
and Suarez Castillo (2021), when considering an annual aggregation. According
to their study, in days when thermal inversion occurs at each hour of the day,
the mean concentration of PM2.5 rises by roughly 3 µgm−3. Additionally, other
pollutants such as carbon monoxide and nitrogen dioxide also show significant
increases. Therefore, if there is an extra 10 days with thermal inversion in a year,
the annual mean concentration of PM2.5 would increase by approximately +(10×
3)/365 ≈ +0.1 µgm−3. We find slightly higher annual estimates, which may be
explained by the fact that the daily estimates of the elasticity of PM2.5 to thermal
inversion that we use for this back-of-the-envelope calculation are conditional on
the inverse of planetary boundary layer height, an related instrument but different
from to thermal inversions.
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In Figure B5, we present a comparison of the exposure between the exposed
group to the control group as a function of n which is equivalent to the data
presented in columns (1) and (3) from Table 1. This data is broken down for
both PM2.5 data sources, supplementing the information provided in Figure 7.
Additionally, to supplement the information in Figure 8, we present in Figure B6
the data for emergency admissions, separately for bronchiolitis and asthma.

ACAG Ineris
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Figure B5: Days with Thermal inversion from birth to first anniversary and PM2.5
Exposure in first year. Notes: Infants born in January from the primary sample.
Equation 3, coefficient θn, excluding or not children with an intermediate level of
treatment.
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Figure B6: Days with Thermal inversion and Health Outcomes. Equation 2
(without XI)

Baseline exposure levels. Thermal inversions may have a greater impact on
PM2.5 concentrations in already polluted areas. Thus, one additional day with a
thermal inversion could generate a greater increase in PM2.5 exposure, thus have
stronger health impacts on those who live in large urban areas.

Our findings that the most affected children often reside in areas with higher
baseline pollution levels can be interpreted in two ways: as a result of our
instrumental variable approach, or as living in a highly polluted area being an
additional risk factor for the effects of short-term air pollution fluctuations.

To explore the first channel, we modify (3) by including an interaction term
with the treatment Ti. This term considers whether, in the year prior to a child’s
birth, their municipality had a PM2.5 concentration above the annual average, or
if the child resides in an urban area with over 200,000 inhabitants. The outcomes
of this analysis are detailed in Table B2. We find no heterogeneity by baseline
exposure levels when considering the ACAG data source, but we do find some
evidence of a greater impact of thermal inversions in overexposed areas with a
significant interaction term of 0.453 (column (2) of Table B2).
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Table B2: Design of the quasi-experimental treatment and exposure to air pollution
depending on baseline pollution

Additional exposure to PM2.5 in first year for those born in January
ACAG

Baseline Interacted

(1) (2) (3)

Ti 0.120 0.173 0.138
[0.022;0.22] [0.095;0.252] [0.041; 0.235]

Ti × 1{PM2.5c(i),t−1 −0.146
> ¯PM2.5c(i),t−1} [−0.346, 0.054]

Ti × 1{i lives an urban area - - −0.116
of more than 200,000 inhabitants} [−0.271, 0.039]

XI no no no
Sample 82164 82164 82164

Ineris
Baseline Interacted

(1) (2) (3)

Ti 0.244 0.116 0.251
[0.117; 0.372] [−0.011, 0.243] [0.121, 0.381]

Ti × 1{PM2.5c(i),t−1 - 0.453
> ¯PM2.5c(i),t−1} [0.161, 0.746]

Ti × 1{i lives an urban area - - 0.084
of more than 200,000 inhabitants} [-0.136; 0.303]

XI no no no
Sample 73354 65527 73354

Notes: This Table presents the results of 6 distinct regressions, with PM2.5 exposure measured from two
distinct data sources (ACAG or Ineris), and three specifications in columns. Each outcome is regressed
on the binary exposure dummy Ti = 1{n̂ > n = 7}, on ground-level weather controls, with or without
individual characteristics XI , and with municipality and year fixed effects. Standard errors are clustered
at the UERRA grid level.
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B.2 IV results

We present in this section the results of Instrumental Variable (IV) estimates
using the quasi-experimental shock as an instrumental variable for PM2.5 annual
exposure. We consider the equation (3) seen as a first stage with instrument Ti

for PM2.5 annual exposure of our two-sample two-stage instrumental variable
estimator. We use a second-stage related to (2) to analyze a given health outcome
as given by

Yi = β ˆPMi + XW
i γW + µc + δt + ϵi, (6)

where ˆPMi was obtained from the first-stage (3) estimated for a subsample, but
we then extrapolate it to our full sample. Notably, we do not have observations
of PM2.5 exposure before their first anniversary for the majority of children in
our sample. We only have these observations for children born in January. This
constraint necessitates a nonstandard approach to IV estimation (that is, not
using the same sample for the first and the second stage) to maintain a fair sample
size.

To be precise, we need to slightly modify the key identifying assumption stated
in the main text, “after controlling for municipality fixed effects, year fixed effects,
and weather variables, the local changes in the number of thermal inversions
are unrelated to changes in the health outcomes of children except through its
influence on air pollution” to “except through its influence on PM2.5”.

In addition, we must explicitly assume that the estimate we obtain for the first
stage (relationship between PM2.5 and thermal inversions) from the subsample of
children born in January would not differ significantly from the corresponding
estimates had we been able to run the estimation for all children. Given the
well-documented relationship between PM2.5 and thermal inversion, we believe
that the positive and significant relationship we found would still hold, though the
exact magnitude could potentially vary. However, given the size of the confidence
intervals obtained in the first stage, as shown in Table 1, and the consistency
with estimates from Godzinski and Suarez Castillo (2021), it is likely that such
estimates would fall within a similar range.
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The two-sample two-stage instrumental variable estimation is described in
Inoue and Solon (2010), and is asymptotically more efficient that a two-sample IV
estimator. Zhao et al. (2019) emphasize the key assumption that the structural
relations in the two samples should be the same: the exposure model should
be correctly specified and in particular relies on the linearity assumption more
heavily than in the one sample case. In our empirical application, the samples
are not inherently different as they do not originate from separate populations;
instead, the exposure model is estimated based on a subset. This approach offers
certain advantages but also necessitates the above assumptions.

To perform inference, we take into account the geographically clustered nature
of the data and of the treatment assignment process with a clustered pair-boostrap
procedure. We first (1) form clustered bootstrap samples by resampling X(b) =
{X

(b)
1 , · · · , X

(b)
G } with replacement B = 500 times from the original sample X =

{X1, · · · , XG}, where Xg represents all the individual data attached to the g-th
cluster, that is the UERRA grid unit (G = 4580), (2) compute on X(b) the two-
sample two-stage instrumental variable estimates β̂ (3) compute the confidence
interval at level at level α = 5% with the 2.5 and 97.5 percentiles of the estimates
in step (2).

Table B3 reports the results, which are found to align with the corresponding
reduced-form estimates presented in Table 3. The latter estimates correspond to
the average treatment effects when scaled by a factor of 1

0.12 (source: ACAG) or
1

0.24 (source: Ineris).35 In our primary analysis, these average treatment effects
were assessed as the consequence of an increase in PM2.5 annual exposure by 0.12
to 0.24 µg/m3, along with potential impacts of other pollutants, resulting from
approximately 10 days of substantial increase in air pollution exposure during the
child’s first year of life. The IV estimates, while bearing the caveats discussed
earlier, can be directly interpreted as the causal effect of a 1 µg/m3 increase in

35For instance, the point estimate 0.007 for outcome 4 in column (2) in Table 3 when multiplied
by 1/0.12 equals to 0.058, which is statistically close to 0.057, the corresponding estimate in the
fifth row and first column of Table B3, and equates 0.029 when multiplied by 1/0.24 whereas
the corresponding estimate in B3 is 0.024.
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PM2.5 annual exposure during the first year.

Table B3: IV estimates with endogenous variables PM2.5 (annual mean exposure). 500
bootstraps of the two-sample two-stage instrumental variable estimation.

Source: ACAG Source: Ineris
Outcome (1) (2)

Having drug delivery for obstructive airway diseases before first anniversary
0.048 [-0.017;0.167] 0.023 [-0.005; 0.053]

Hospital emergency admissions for bronchiolitis or asthma before thrid anniversary
0.057 [0.006;0.207] 0.024 [0.005; 0.062]

Hospital emergency admissions: asthma before third anniversary
0.026 [0.002;0.083] 0.011 [0.002;0.027]

Hospital emergency admissions: bronchiolitis before second anniversary
0.028 [0.002;0.11] 0.014 [0.001;0.038]

B.3 Controlling for quarter of birth

The incidence of respiratory diseases depends on infant quarter-of-birth because
quarter-of-birth is related to the age at the epidemic season onset, a risk factor
well-known for bronchiolitis (Fauroux et al., 2020). In our sample, infants born in
October are at significant higher risk of bronchiolitis emergency admission than
infant born in April, which are older than six months when the winter season
occurs, as shown in Figure B7. We first note no discernible seasonal pattern
in the annual count of thermal inversions children experience based on their
quarter-of-birth, a factor which could have indicated an incidental confounding
factor. Nonetheless, it is essential to explore how incorporating the quarter-of-birth
variable might influence our overall analysis.

We first define a new long-term average as the “expected” quarterly number of
days with thermal inversions from Ncyq = νc + ϕy + αq + ncyq, and assign to each
child i resident of municipality c a prediction of the number of “expected” days
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Figure B7: Seasonality of Outcomes and Exposure

with thermal inversions N i as the sum of N̂cqt over the four first quarters y, q of
child i. Except for this adjustment to take into account quarterly dynamics in the
prediction, exposed and unexposed cohorts are defined as before (13.4% are in
the treated group against 14.1% in our baseline model), and we obtain very close
results to Table 1 (relationship between PM2.5 and being in the exposed cohort)
and Table 3 (relationship between respiratory diseases outcomes and being in the
exposed cohort) without additional adjustment.

In Table B4, we show how our main set of results are modified when controlling
for quarter-of-births. As for emergency admission for bronchiolitis, if anything,
the quarter model in column (3) and (4) points to more precise estimates. In
line with the absence of quarter-of-birth seasonality in emergency admissions for
asthma, the point estimates are very close but precision slightly drops. Finally, the
point estimate for anti-asthma medication, already non-significant in the baseline,
remains non-significant and changes sign. To obtain a positive and significant
estimates, whereas in the baseline specification, a threshold of 10 additional days
with thermal inversion was enough, in this case, one has to choose a threshold
higher than 15 days (point estimates of 0.009 [-0.002; 0.019], p-value = 0.10).
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All-in-all, opting for a quarterly model has little to no implications for our results
concerning emergency admissions for respiratory diseases, but render results for
anti-asthma medication more fragile.

Table B4: Average treatment effect of the quasi-experimental air pollution shock

Baseline Quarter-of-Birth Model
Outcome (1) (2) (3) (4)

Having drug delivery for obstructive airway diseases before first anniversary
0.003 0.003 -0.004 -0.007

[-0.003;0.009] [-0.004;0.010] [-0.010;0.002] [-0.014;0.000]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 336169 217859 3336169 217859

Hospital emergency admissions: bronchiolitis or asthma before third anniversary
0.005 0.007 0.004 0.004

[0.002;0.009] [0.003;0.011] [-0.000;0.007] [0.000;0.008]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 246075 189722 246075 189722

Hospital emergency admissions: asthma before third anniversary
0.002 0.003 0.002 0.002

[0.000;0.005] [0.001;0.006] [-0.000;0.004] [-0.001;0.005]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 246075 189722 246075 189722

Hospital emergency admissions: bronchiolitis before second anniversary
0.003 0.003 0.003 0.004

[0.000;0.006] [-0.000;0.006] [0.001;0.006] [0.001;0.007]
Quarter-of-birth control no no yes yes

XI no yes no yes
Sample size 277271 207825 277271 207825

Notes: This table presents the results of 16 distinct regressions, with 4 outcomes in rows and 4
specifications in columns. Each outcome is regressed on the binary treatment designed to capture
a positive variation in air pollution exposure, Ti = 1{n̂ > n = 7}, quantifying whether a child was
over-exposed to thermal inversion in its first year, on ground-level weather controls, with or without
individual characteristics XI , municipality and year fixed effects. In columns (3) and (4), a control for
quarter-of-birth is introduced. Standard errors are clustered at the UERRA grid level.
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B.4 Another outcome: doctor visits.

Finally, we can consider another outcome that is not specific to respiratory diseases
but is related to children’s use of health care: doctor visits. We consider all doctor
visits, and GP and paediatrician separately and present the results in Table B5.
For total doctor visits, we find a modest yet significant increase that remains
consistent across all four specifications. An increase of 0.1 to an average of 11.7
visits represents an increase of about 1%, which appears to be mainly driven by
an increase in visits to paediatricians, i.e. specialists, a finding consistent with the
need to first see a doctor who can diagnose and prescribe anti-asthmatic drugs.
In unreported results, we find evidence of heterogeneity in the BLP sense, but do
not succeed in separating groups of impact in the GATEs sense.

Table B5: Doctor’s visits: Average treatment effect of the quasi-experimental air
pollution shock

All Children Excluding those intermediately treated
Outcome (1) (2) (3) (4)

Visits to GP or Paediatrician before first anniversary
0.10 0.099 0.14 0.12

[0.022;0.18] [0.014;0.18] [0.041;0.25] [-0.002;0.23]
XI no yes no yes

Sample size 331811 216814 232331 146337

Visits to Paediatrician before first anniversary
0.064 0.064 0.082 0.060

[0.001;0.13] [-0.011;0.14] [0.008;0.16] [-0.037;0.16]
XI no yes no yes

Sample size 331811 216814 232331 146337

Visits to GP before first anniversary
0.037 0.035 0.062 0.056

[-0.050;0.12] [-0.062;0.13] [-0.038;0.16] [-0.063;0.18]
XI no yes no yes

Sample size 331811 216814 232331 146337

Notes: This table presents the results of 12 distinct regressions, with 3 outcomes in rows and 4
specifications in columns. Each outcome is regressed on the binary treatment designed to capture
a positive variation in air pollution exposure, Ti = 1{n̂ > n = 7}, quantifying whether a child was
over-exposed to thermal inversion in its first year, on ground-level weather controls, with or without
individual characteristics XI , municipality and year fixed effects. Standard errors are clustered at the
UERRA grid level.
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Appendix C Generic machine learning estima-
tion of heterogenous treatment ef-
fect

In this section, we discuss the methodology introduced by Chernozhukov et al.
(2023) and its application in our context. The method aims to: (1) detect any
observable heterogeneity in treatment effects; (2) determine the specific treatment
effects across different impact groups; and (3) identify covariates linked to this
heterogeneity. Given a large array of potential covariates influencing vulnerability
to treatment (Table C1), testing each for heterogeneity risks overfitting. Conversely,
limiting the analysis to a pre-selected subset of variables could omit crucial
insights. This approach systematically utilizes all available covariates to identify
meaningful heterogeneity. Its strength lies in its applicability to any machine
learning algorithm and its provision of a valid inference procedure.

Socio-economic charac. Gender
Mother age
Mother born abroad (indicator)
Decile (indicators) and percentile (linearly) of parental income
Benefit from the CMU-C

Baseline health Birth weight (indicator of low birth and linearly)
(from birth hospital stay) Gestational age (indicator of being premature and linearly)

Healthy birth
Normal Birth
Stay in the neonatology department
Respiratory or cardiovascular diagnosis
Electrocardiogram at birth
Radiography of the respiratory system at birth

Local charac. PM2.5 exposure (the year before birth)
Accessibility to GP
Accessibility to paediatrician
Type/size of the urban area (6 modalities)

Table C1: List of Z features

Each of the objectives (1), (2) and (3) is associated with estimates based
on a proxy predictor Ŝ(z) of the conditional average treatment effect s0(Z) and
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were named as follows: (1) the best linear predictor of the conditional average
treatment effect (BLP), (2) the sorted group average treatment effects or the
average treatment effects by group induced by the proxy (GATES) and (3) the
classification analysis or the average characteristics of the least and most affected
units (CLANS).

We aim to characterize the conditional average treatment effect function,
Z → s0(Z) = E[Y |Z, T = 1] −E[Y |Z, T = 0]: which set of Z’s characterizes those
who are the most affected? if not all children are affected, what proportion of the
children population has a significant average treatment effect? The basic step
requires to randomly divide the sample in two, an auxiliary sample A and a main
sample M . Sample A is used to estimate a proxy (non necessarily consistent) of
s0, z → SA(z), and while using sample M , SA can be treated as a fixed map and
applied to each infant to obtain a vulnerability index, to later confirm (or not) its
relevance in term of heterogeneity of the treatment effects, in the same way we
could use with a pre-defined covariate : statistical inference is then conceptually
straightforward. However, repeating sample split requires to appeal to quantile-
aggregated inference – which aggregates inferential results by taking medians of
estimates and medians of upper and lower confidence intervals obtained from
different splits.

C.1 Estimation

Let us denote each observation by i (infant). Our numerical implementation makes
use of S = 100 random splits of the data. Over each random split, we define a
main sample M and an auxiliary sample A over each half of the sample split. We
train and tune two ML algorithms (random forest and lasso) to predict: (1) the
conditional average treatment effect s0(Zi) = E[Yi|Zi, Ti = 1]−E[Yi|Zi, Ti = 0] and,
(2) the outcome for infants in the control group b0(Zi) = E[Yi|Zi, Ti = 0], using
sample A: (Yi, Ti, Zi)i∈A. We proceed by separately estimating E[Yi|Zi, Ti = 1]
and E[Yi|Zi, Ti = 0], an approach known as “T-learners”. An alternative approach
would be to use the Horvitz-Thompson transformation, multiplying the outcome
by the standardized treatment H = D−p(Z)

p(Z)(1−p(Z) , so that the expectation of HY is
the conditional average treatment effect itselft, which can directly be fitted in one
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step, in an approach known as “causal regression”.

We thus obtain two proxies for these functions of interest (for each ML method):
z → SA(z) and z → BA(z). We use them to estimate the best linear predictor
(BLP), the group-average treatment effects (GATES), and perform a classification
analysis (CLAN) as follows.

BLP. For each main sample, we estimate the best linear predictor by weighted
OLS, with weights {p̂(Xi)(1 − p̂(Xi))}−1, from the equation

Yi =α0 + α1b̂(Zi) + α2Ŝ(Zi) + β1(Ti − p̂(Xi))

+ β2(Ti − p̂(Xi))(Ŝ(Zi) − Ŝ) + λXW
i + γt + ϵi,

(7)

where Zi combines individual-level variables XI
i and exposure variables, such as

PM exposure, GP and pediatrician accessibility, and size of urban areas. We also
control for XW

i surface-level weather variables and for year-of-birth fixed effects.
The best linear predictor of s0(z) is β̂1 + β̂2Ŝ(z). It provides information about
treatment effect heterogeneity. Specifically, β̂2 is a consistent estimate for the cor-
relation between the sensibility to treatment, as measured by the proxy predictor,
and the true conditional average treatment effect, Cov(s0(Z), S(Z))/V ar(S(Z)).
Testing the null hypothesis β2 = 0 hence provides a way to investigate the presence
of heterogeneous treatment effects, i.e. that s0 varies with Z, and the relevance
of S(Z), i.e. that it is correlated with s0. In practice, we may include any
“noise-reducing” proxy function of Z in this equation. In practical experiment,
Chernozhukov et al. (2023) indicate that including B̂ significantly improves the
precision of estimation of the BLP. In the last version of their working paper,
they also mention including p̂(Z), and its interaction with Ŝ(Z). In further
investigation, we could test whether in our case, such modifications improve or
not precision.

GATES. For each main sample, we create four groups k = 1, 2, 3, 4 of increasing
predicted average treatment effects based on the 50th, 75th, and 90th quantiles of
Ŝ(Zi). We use these groups to estimate the group-average treatment effects by
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weighted OLS, with weights {p̂(Xi)(1 − p̂(Xi))}−1, from

Yi = a0 + a1b̂(Zi) + a2Ŝ(Zi) +
∑

k

γk(Ti − p̂(Xi))1 {i ∈ Gk} + λXW
i + νt + ϵi,

where γ̂k denotes the expectation of s0 in group k, and Gk’s denote group member-
ship. By construction of Ŝ(Zi), the GATES should be such that γ̂1 ≤ γ̂2 ≤ γ̂3 ≤ γ̂4

since these parameters are interpreted as the respective average treatment effects of
each group of sensibility to the treatment. This approach delivers valuable informa-
tion about the distribution of the negative health impacts of the quasi-experimental
pollution shock across children in our data. In absence of heterogeneity or if the
proxy fails to capture it, it should be that all the GATES are statistically the
same. Here as well, we may include any “noise-reducing” proxy function of Z

in this equation. In the last version of their working paper, they also mention
including p̂(Z), and its interaction with 1{i ∈ Gk}.

CLAN. Finally, for each main sample, we investigate the compositions of the
Gk groups defined in the GATES using the vector of CLAN parameters

δ̂k = 1
nGk

∑
i∈Gk

Zi. (8)

These estimates correspond to the average characteristics of each group Gk along
the multiple dimensions of Z. They hence allow drawing a portrait of the different
groups, in particular the most affected children in G4 for which Ŝ(Zi) exceeds its
90th quantile.

C.2 Inference

Conditionally on a single split, the estimate θ̂ ∈ (β̂, γ̂, δ̂) is approximately Gaussian,
as the sample size N , leading to a partition (⌊N/2⌋, ⌊N/2⌋), goes to infinity
following standard statistical inference.

The median aggregated p-values across split to test whether one of these
estimates is distinct from zero is defined as the minimum between p+, the median
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across split A of p+
A = 1 − Φ( θ̂A

σ̂A
) and p−, the median across split A of p−

A = Φ( θ̂A

σ̂A
).

Under weak assumption, the probability that this p-value, multiplied by two, is
below the level α is close to α when (⌊N/2⌋, ⌊N/2⌋) goes to infinity, that is the
standard property. In addition, under the median concentration condition, the
factor 2 is not necessary. This condition states that the approximate median
over-the-splits t-statistics Med( θ̂A

σ̂A
) tend to concentrate more than any single-

split t-statistic θ̂A

σ̂A
, a condition that Chernozhukov et al. (2023) find mild and

supported by their computational experiments. Although they do not recommend
multiplying by 2, we do so in this version for presenting p-values, which may be
rather conservative. P-values should be divided by two otherwise.

Median confidence intervals behave similarly: if the final level of coverage α

is required, without the median concentration condition, one should aggregate
by taking the median the lower and upper bound confidence interval at level
α/2. With the median concentration condition, the factor 2 is not necessary. We
present confidence intervals which may be read as 90% confidence intervals under
the conservative view or 95% confidence intervals under the median concentration
assumption.

We report their median across the splits, and their confidence intervals of
coverage 1 − α = 95%, as the median across the splits of CIs with coverage
1 − α/2. We adapt the numerical routines from the GenericML R package (Welz
et al., 2022) to allow for propensity scores outside of [0.05,0.95], as well as random
sample splits with up to 95% of control units (90% in source codes). In our
implementation, we compare the performance of the lasso and random forest to
form the two proxy predictors.

The performance metrics are based on the two empirical counterpart of
respectively Λ = |β2|2Var(S(Z)) = Corr(s0(Z), S(Z))2Var(s0(Z)), and Λ̄ =
E(∑K

k=1 γk1{i ∈ Gk})2 = ∑K
k=1 γ2

kP (i ∈ Gk). The first is used to choose the
best algorithm for the BLP analysis as the maximizer of the correlation between
the proxy S(Z) and the CATE s0(Z) to find heterogeneity. The second is used to
choose the best algorithm for the GATES and CLAN analysis, as the maximizer
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of the R2 of the regression of s0(Z) on ∑K
k=1 γk1{S(Z) ∈ Gk}. We report these in

Table C2.

Table C2: ML performance metrics

Best BLP (Λ) Best Gates (Λ̄)
|β2|2Var(S(Z))

∑K
k=1 γ2

kP (i ∈ Gk)
Lasso Random Forest Lasso Random Forest

Having drug delivery for obstructive airway diseases before first anniversary
3.216 114.101 43.077 141.480

Number of drug deliveries for obstructive airway diseases before first anniversary
7.609 16.762 26.822 28.315

Visits to GP or Paediatrician before first anniversary
6.269 4.497 2.620 3.230

Hospital emergency admissions for bronchiolitis or asthma before third anniversary
2.680 39.627 34.438 40.815

Hospital emergency admissions for asthma before third anniversary
10.725 18.785 11.377 10.938

Hospital emergency admissions for bronchiolitis before second anniversary
1.706 179.189 10.779 34.385

Median over 100 splits, multipled by 106. For the BLP, the chosen algorithm is the
one that reaches the highest estimated Λ. For the GATES and the CLAN, the chosen
algorithm is the one that reaches the highest estimated Λ̄.

Access to healthcare: CMU-C. Figure C1 provides the CLANs focused on
variables measuring accessibility to healthcare.
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Figure C1: CLANs of CMU-C variables. Top: Obstructive Airways Diseases -
Drug Consumption. Bottom: Emergency admission for bronchiolitis.
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