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Clinical Perspective 22 

 23 

What is New: 24 

 Our study presents a deep learning (DL) guidance system that enables novice users to 25 

perform Abdominal Aortic Aneurysm (AAA) screening with POCUS, yielding image 26 

quality comparable to experienced physicians. 27 

 The DL algorithm accurately identifies AAA from scans conducted by novice users, 28 

maintains consistent performance across patients with varying BMIs, and demonstrates 29 

increased scan efficiency with repeated use. 30 

 31 

Clinical Implications: 32 

 DL-guided POCUS can potentially expand AAA screening capabilities to non-specialist 33 

settings and increase throughput for screening at risk individuals. 34 

 The implementation of our DL model for AAA screening could enhance early detection, 35 

particularly in underserved areas, but also optimize clinical workflows by decreasing 36 

diagnostic wait times and increasing ultrasound utilization efficiency.  37 
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Abstract 38 

Background: Abdominal Aortic Aneurysm (AAA) is a critical condition that can lead to fatal 39 

consequences if not detected and treated early. Despite the high prevalence in smokers and 40 

guideline recommendation for screening, AAA often remains undetected due to availability of 41 

diagnostic ultrasound examinations. This prospective clinical trial aimed to investigate the use of 42 

a Deep Learning (DL) algorithm to guide AAA screening. 43 

Methods: This prospective, comparative diagnostic study was conducted at the Kaohsiung 44 

Chang Gung Memorial Hospital. We developed and deployed an object detection-based DL 45 

algorithm providing real-time guidance for novice users performing AAA screening using point 46 

of care ultrasound. 10 registered nurses with no prior ultrasonography experience were recruited 47 

and performed at least 15 scans on patients over 65 years old to acquire abdominal aorta videos. 48 

These scans were compared with those of physicians using the same ultrasound hardware but 49 

without DL guidance. 50 

Results: A total of 184 patients (median [IQR] age of 72 [67-79], and 105 (57.1%) male) 51 

completed this study. The DL-guided novices achieved adequate scan quality in 87.5% (95% CI: 52 

82.7 - 92.3%) of patients, comparable to the 91.3% (95% CI: 87.2-95.4%) rate of physician scans 53 

(p=0.310). This performance did not vary by BMI. The DL model predicted AAA with an AUC 54 

of 0.975, showing 100% sensitivity and 94.3% specificity. The DL model predicted the maximal 55 

width of abdominal aorta with mean absolute error of 2.8mm compared to physician 56 

measurements. 3 AAA with maximal width of aorta > 3cm were found in this study cohort.  57 

Conclusion: DL-guided POCUS is an effective tool for AAA screening, providing comparable 58 

performance to experienced physicians. The use of this DL system could democratize AAA 59 

screening and improve access, thereby aiding in early disease detection and treatment. 60 
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Introduction 61 

An abdominal aortic aneurysm (AAA) is the gradual dilation of the abdominal aorta, and if left 62 

untreated, it may rupture, posing a high risk of fatal consequences
1
. This life-threatening 63 

condition contributes to a crude mortality rate of approximately 150,000–200,000 deaths per year 64 

worldwide
2
. More than two-thirds of patients with a ruptured abdominal aortic aneurysm present 65 

without a prior diagnosis of AAA
3
. Early detection and treatment can considerably decrease 66 

AAA-related mortality, especially in the elderly 
4
. Previous guidelines recommend 67 

ultrasonography for general AAA screening in at-risk populations, specifically men over 65, with 68 

smoking history
5,6

. 69 

Ultrasonography, the most common imaging screening modality for AAA, has proven to be 70 

effective and less costly compared to standard computed tomography (CT) scans.
7
. Nonetheless, 71 

ultrasound is generally performed by highly trained sonographers and interpretation carried out 72 

by board-certified physicians. This challenge is further compounded by the restricted 73 

accessibility of sophisticated ultrasound equipment. Both of these factors contribute to 74 

ultrasound examinations having the longest waiting times compared to other imaging modalities 75 

and reduce the cost-effectiveness for general screening for AAA
8–10

. 76 

In the past decade, Point-of-Care Ultrasound (POCUS) has seen extensive use across various 77 

hospital settings, including outpatient clinics, emergency departments, wards, and operating 78 

rooms
11,12

. It has played a crucial role in medically underserved areas, from rural regions in 79 

developed countries to low-income nations, and is even used in manned space flights
13

. Portable 80 

ultrasound machines have facilitated the acquisition of high-quality images suitable for 81 

diagnostic purposes
14

. However, the limited familiarity among hospital staff with ultrasound its 82 

current utilization
15

. Therefore, integrating AI guidance into ultrasound could benefit novice 83 
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operators. This has the potential to enhance diagnostic capabilities, especially in remote areas 84 

where experienced sonographers may not be readily available. 85 

AI revolutionizes healthcare by rapidly interpreting images, detecting abnormalities, segmenting 86 

organs and lesions, and facilitating early disease identification. Prior study suggests that AI 87 

empowers individuals with no previous experience in ultrasonography to perform diagnostic 88 

transthoracic echocardiographic studies, encompassing the evaluation of left and right ventricular 89 

function, as well as the identification of pericardial effusion
21

. In addition, AI can guide novices 90 

to capture satisfactory diagnostic images of the Morison pouch during Focused Assessment With 91 

Sonography in Trauma (FAST) exam
22

. The objective of this study is to develop and validate a 92 

Deep Learning (DL) model that guides abdominal aorta scanning and to investigate its potential 93 

in assisting novices to obtain qualified scans. This approach could aid in the screening of 94 

potential AAA patients by advancing the detection of symptomatic aneurysms, screening 95 

asymptomatic AAAs in at-risk groups, and monitoring aneurysm growth until treatment is 96 

necessary.  97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 
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 107 

Method 108 

Ethical Approval 109 

The study was approved by the institutional review board at the Kaohsiung Chang Gung 110 

Memorial Hospital (IRB number: 202102311B0). Written consent was obtained from each 111 

participant. 112 

Development and Function of AI-Guided Image Acquisition Software 113 

The DL-guided image acquisition algorithm is detailed in the Supplemental Methods. It offers 114 

real-time, continuous guidance during scanning to assist users in obtaining videos for AAA 115 

screening. The software, which emulates physician expertise, utilizes a You Only Look Once 116 

(YOLO) architecture, known for its real-time object detection capabilities. It is specifically 117 

tailored to analyze ultrasonographic images, focusing on identifying anatomical structures 118 

including the abdominal aorta, spine, and inferior vena cava (Supplemental Figure S1). 119 

The algorithm operates solely based on ultrasonographic images, eliminating the need for 120 

external trackers, fiducial markers, or additional sensory inputs. This streamlines the diagnostic 121 

workflow and enhances screening efficiency. In this research, we installed the software on a 122 

commercially available POCUS system (Telemed MicrUs EXT-1H). After integration, the 123 

software monitors and processes the ultrasound display continuously through its application 124 

programming interface (Supplemental Figure S2). It detects and provides the anatomical location 125 

of the abdominal aorta on the ultrasound display, thereby guiding users to improve image 126 

acquisition during scanning. 127 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.06.24302423doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.06.24302423
http://creativecommons.org/licenses/by-nc-nd/4.0/


The DL algorithms were trained using 2,101 POCUS images focusing on AAA screening from 128 

the studied hospital and externally validated in 492 images from a local hospital. These images 129 

were retrospectively collected from routine scans conducted in the Emergency Departments 130 

(EDs) of both hospitals. The performance of the algorithm achieved an average precision of 131 

0.973 in internal validation and 0.843 in external validation. Supplemental Methods depicts the 132 

DL model training data set, expert labeling for image quality, algorithm optimization, and 133 

integration of DL system to POCUS hardware in the study. 134 

Study Design 135 

Patients at least 65 years old visiting the outpatient clinic of the Cardiology department at the 136 

studied hospital were recruited between June and August 2023. Individuals were excluded if they 137 

were unable to lie flat or were unable or unwilling to provide informed consent.  138 

10 registered nurses without prior experience performing or interpreting ultrasonography were 139 

recruited for the trial from hospital personnel. Each nurse underwent a 15-minute tutorial to 140 

become familiarized with the POCUS machine and DL guidance. After that, they were asked to 141 

perform 15-20 scans to acquire a 10-second standard abdominal aorta tracing video under DL 142 

guidance. For control, a duplicate scan was obtained by a physician using the same POCUS 143 

machine on the same day but without AI guidance. The physician also labeled the maximal width 144 

of the aorta for the control scan. The nurse scans were conducted independently, solely with DL 145 

guidance, and always preceded the control scans. Following each scan, the Telemed POCUS 146 

machine stored two ultrasonography videos at 20 frames per second, which the DL system then 147 

processed to predict the maximal width of the abdominal aorta. Figure 1 illustrates the study 148 

design. 149 
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Upon completion of all study and control scans, a panel of 3 expert physicians (Y.C.C, X.H.L., 150 

and F.J.C.) independently and blinded to whether a nurse or a physician performed the study, 151 

assessed whether each scan was of diagnostic quality, served as the primary endpoint. All expert 152 

readers were certified board physicians in Cardiology or Emergency Medicine. The time to 153 

complete the study, defined as the interval from placing the probe on the patient's abdomen to 154 

completing the scan, was recorded. The maximal aortic width predicted by the DL model was 155 

compared with expert measurements for the secondary endpoint. 156 

Statistical Analysis 157 

The study sought to evaluate the performance of nurses conducting AAA screening under DL 158 

guidance, with continuous variables reported as medians and interquartile ranges (IQR), and 159 

categorical variables as numbers and percentages. The proportion of qualified studies as judged 160 

by the expert panel was compared between DL guidance and physician scans for the primary 161 

endpoints. The maximal abdominal aortic width measurement and time to complete the study 162 

were evaluated as secondary endpoints. For both primary and secondary parameters, the 163 

proportion judged clinically evaluable is reported with 95% confidence intervals (CIs).  164 

 165 

 166 

 167 

 168 
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 170 

 171 

Result 172 

During the study period, 185 patients were included. 1 patient refused to be enrolled before the 173 

scan started, while 184 patients completed both the nurse and physician examinations (Figure 1). 174 

Their median (IQR) age was 72 (67-79), 57.1% were male, and the median (IQR) Body Mass 175 

Index (BMI) was 25.1 (23.3-28.1). 131 (71.2%) of them had Hypertension, 64 (34.8%) had 176 

Diabetes Mellitus, 83 (45.1%) had heart disease, and 41 (22.3%) had a smoking history. AAA 177 

was diagnosed by physicians in 3 patients, representing 1.6% of the study cohort. Table 1 shows 178 

the demographics of the included patients.  179 

Regarding primary outcome, no significant difference was found in the rate of qualified videos 180 

between DL-guided scans 87.5% (95% CI: 82.7 - 92.3%), and physician-performed scans 91.3% 181 

(95% CI: 87.2-95.4%), with p value of 0.310. Furthermore, the qualified rate for DL guidance 182 

remained consistent across patients with varying BMI levels: 87.6% (95% CI: 80.9 - 94.1%) in 183 

patients with BMI > 25 and 87.4% (95% CI: 80.4 - 94.3%) in patients with BMI < 25. After 5 184 

rounds of examination, the proficiency of scans slightly increased, reaching an 88.1% (95% CI: 185 

82.3 - 93.9%) qualification rate, as detailed in Table 2. 186 

The time to complete the study was longer with DL guidance, averaging 37 seconds (IQR 21-60), 187 

compared to 20 seconds (IQR 16-33) for physician-led scans (p<0.001). For nurses using DL 188 

guidance, the completion time was longer in patients with a BMI over 25, taking 42 seconds 189 

(IQR 27-67), as opposed to 30 seconds (IQR 18-54) for those with a BMI under 25. Physicians' 190 

scan showed similar pattern between different level of BMI. With increased use of the DL 191 
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system, nurses' scan times decreased; after five scans, the average time was reduced from 53 192 

seconds (IQR 38-82) to 30.5 seconds (IQR 18-55) as reported in Table 2. 193 

Of the 161 scans under DL guidance classified as diagnostic quality, the predicted maximal 194 

aortic widths showed a mean absolute error of 2.8mm compared with physician measurements, 195 

as depicted in Figure 2. Of these scans, 159 (98.8%) had a discrepancy of less than 1cm when 196 

compared to physician labeling. Three patients (1.6%) were diagnosed with AAA in this study 197 

based on the physician’s ultrasound findings. The DL model can predict AAA with an AUC of 198 

0.975 (95% CI: 0.943-1). While using 2.5cm as the cut-off threshold, the DL model has 100% 199 

sensitivity in detecting AAA in these patients, along with 94.3% specificity, 33.3% positive 200 

predictive value, and 100% negative predictive value (Table 3). 201 

 202 

Discussion 203 

In this study, we developed and validated a DL algorithm for guiding novice users performing 204 

AAA screening with POCUS, which notably demonstrated parity with experienced physicians in 205 

producing diagnostic-quality videos. This finding suggests DL guidance can compensate for a 206 

lack of extensive sonography experience, potentially broadening AAA screening accessibility. 207 

Moreover, the DL model exhibited robust performance across a range of patient body mass 208 

indexes and showed a notable learning curve, with improved scan times after repeated use. The 209 

precision of our DL model in predicting the presence of AAA was quantitatively reflected by an 210 

AUC of 0.973 in our sample population. This high level of accuracy not only demonstrates the 211 

DL model's capability to distinguish between normal and pathological findings but also suggests 212 

its potential as a reliable tool for early detection. These results underscore the practicality and 213 

efficiency of implementing AI in clinical ultrasound practice, that may help to reduce waiting 214 
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time for ultrasound examination especially in resource-limited settings where access to skilled 215 

sonographers is challenging.  216 

The utility of POCUS is well recognized for its convenience and the immediacy with which it 217 

delivers diagnostic imaging at the patient's bedside. However, its effective use is traditionally 218 

limited by the operator's expertise, with the quality of the interpretation being heavily reliant on 219 

the sonographer's experience. Current protocols require at least a 3-month training program for 220 

technicians to become familiar with examining the abdominal aorta using ultrasound23. This 221 

presents a significant challenge in resource-limited settings where access to highly trained 222 

professionals is scarce
24,25

, which led to ongoing debate about the cost-effectiveness and 223 

relevance of AAA screening. Given its low prevalence, with historical data shows the prevalence 224 

rate of AAA 1.3% to 4.9 in selected risk population, the balance between the costs and benefits 225 

of widespread screening is called into question
26,27

. This is precisely where the integration of DL 226 

guidance in AAA screening could play a transformative role. By potentially reducing the time 227 

and expertise required for accurate screening, DL guidance can lower operational costs and 228 

improve the efficiency of screening programs. Moreover, the enhanced accuracy of DL-guided 229 

screening might lead to more effective identification of AAA cases even in a landscape of lower 230 

prevalence, ensuring that resources are optimally utilized.  231 

Advances in cardiovascular ultrasound interpretation using AI have been significant in recent 232 

years, with numerous studies demonstrating automated quantification of cardiac structures and 233 

function, and AI-driven disease identification showing less variability than semi-automated or 234 

manual analyses
28–31

. The convergence of AI-guided acquisition with automated interpretation 235 

could expand ultrasound's reach, improving the recognition of pathology. Our study's DL 236 
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algorithm addresses this by providing real-time guidance to novice users, effectively bridging the 237 

gap between the ease of use of POCUS and the expertise required for accurate diagnosis. By 238 

supplementing the user's limited experience with sophisticated AI, we facilitate a higher standard 239 

of care that could potentially revolutionize the screening process for conditions like AAA, where 240 

early detection is crucial. 241 

Several potential explanations for our findings emerge upon examination of the DL algorithm's 242 

performance. The ability of the algorithm to offer real-time, continuous guidance likely played a 243 

professional guiding role in enabling novice operators to achieve a high rate of qualified videos. 244 

This real-time feedback is particularly useful during scanning, as it assists users in adjusting the 245 

ultrasound probe to optimize the visualization of the aorta. Such immediate guidance can 246 

improve image quality, a benefit observed in previous studies where AI support enhanced the 247 

outcomes of sonography procedures, such as in the Echocardiography
21

 or Focused Assessment 248 

With Sonography in Trauma exams
22

. The similarity between these findings and our own 249 

suggests a shared advantage of AI assistance across different ultrasound applications. The 250 

learning curve evidenced by the reduction in scan times with repeated use indicates that users are 251 

not only becoming more adept at operating the AI system but are also gaining a better 252 

understanding of the aortic structure. This suggests a synergistic enhancement in the operator's 253 

ability to acquire diagnostic images, pointing to a productive interaction between human users 254 

and the AI tool over time. 255 

The architecture of our DL model, which delineates the abdominal aorta with a bounding box in 256 

each frame of the ultrasound video, serves two critical functions. First, it offers real-time 257 

feedback during the scanning process, guiding users in adjusting their probe to achieve optimal 258 
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imaging. Second, it enables precise diagnostic measurements post-scan. By accurately capturing 259 

the anatomy of the aorta, our algorithm processes each frame to determine the aortic width, 260 

subsequently calculating the maximal width from the entire video. The minimal average error of 261 

2.8mm between the expert measurements and those obtained via DL guidance, along with the 262 

high AUC for detecting an AAA, attest to the DL model's effective training. For further 263 

evaluation, a threshold of 2.5cm led to expert review for 9 (4.9%) of the 184 scans guided by 264 

DL. Within this group, three AAA cases were accurately identified, resulting in a sensitivity of 265 

1.0 and a specificity of 0.94 in our cohort (Table 3). Notably, there were two scans where the 266 

discrepancy in maximal width measurements between expert interpretation and DL guidance 267 

exceeded 1cm (Figure 2). Manual review of these outliers showed that the DL algorithm had 268 

incorrectly identified a 6.0 cm liver cyst and a 4.8 cm fluid-filled small bowel loop. These cases 269 

of misclassification demonstrate that when videos with predictive diameters suspicious for AAA 270 

are scrutinized, physicians can readily discern true positives from false positives. 271 

Limitations 272 

There are a few limitations of the study. First, the study was conducted in a controlled clinical 273 

setting in the outpatient clinic, which allowed access to a large patient population but may not 274 

fully replicate POCUS use conditions in remote or underserved areas. Second, while the sample 275 

size was sufficient for the primary endpoints, the relatively small number of patients and nurses 276 

limits the assessment of generalizability; larger studies could yield more robust data. 277 

Additionally, there was no control group for the nurse scanners. The comparison in the study was 278 

against physician’s acquisitions, but an additional control group of novices untrained with the 279 

algorithm was not used. Furthermore, the study location was one tertiary academic hospital. 280 
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Further validation across a variety of settings would help strengthen the results of the study. The 281 

DL model's performance in a real-world screening scenario may differ from our controlled 282 

environment. Notwithstanding these limitations, the strengths of the study included a rigorous 283 

methodology, integration of the DL to the use of a commercially available POCUS system. 284 

Conclusion 285 

In conclusion, our study indicates that a DL-guided POCUS can serve as an effective tool for 286 

AAA screening, achieving diagnostic accuracy that is on par with experienced physicians. This 287 

innovative approach has the potential to democratize AAA screening, enhancing accessibility 288 

and cost-effectiveness. By harnessing the capabilities of AI, we can streamline the screening 289 

process, reduce the need for extensive sonographic training, and potentially improve patient 290 

outcomes through early detection. 291 

 292 
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Figure 1. Study design. 380 

 381 
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Figure 2. Scatter Plot of Maximal Aortic Width Measurements by Deep Learning Predictions and 384 

Physician Labels 385 

 386 
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Table 1. Demographic of included patients. 388 

 Median (IQR) / N (%) 

Total patients 184 

Age 72 (67-79) 

Male 105 (57.1%) 

BMI 25.1 (23.3-28.1) 

Underlying disease  

Hypertension 131 (71.2%) 

DM 64 (34.8%) 

Heart disease 83 (45.1%) 

PAOD 1 (0.5%) 

CKD 24 (13.0%) 

Abdominal operation 48(26.1%) 

Smoking 41(22.3%) 

Family history  

  Heart disease 31 (16.8%) 

  Aortic disease* 1 (0.5%) 

AAA 3 (1.6%) 

DM=Diabetes Mellitus; PAOD=Peripheral Artery Occlusive Disease; CKD=Chronic Kidney Disease; 389 

*AAA or Aortic dissection 390 

 391 

 392 
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Table 2. Comparison of Nurse-Acquired and Physician-Acquired Studies for Primary and Secondary 394 

Clinical Parameters 395 

 Physician DL guidance p-value 

Qualified Video No. (%) [95% CI]   

    

Total 168 (91.3) [87.2 - 95.4] 161 (87.5) [82.7 - 92.3] 0.310 

BMI>25 (N=97) 91 (93.8) [87.6 - 99.8] 85 (87.6) [80.9 - 94.1] 0.137 

BMI<25 (N=87) 77 (88.5) [81.5 - 95.4] 76 (87.4) [80.4 - 94.3] 0.816 

Before 5 scans (N=50) 45 (90.0%) [81.7-98.3] 43 (86.0%) [76.4-95.6] 0.613 

After 5 scans (N=134) 123 (91.8) [86.5 – 97.1] 118 (88.1) [82.3 - 93.9] 0.659 

    

Time to Complete Study Median (IQR), Seconds   

    

total 20 (16-33) 37 (21-60) <0.001 

BMI>25 (N=97) 21 (16-35) 42 (27-67)  

BMI<25 (N=87) 18 (15-28) 30 (18-54)  

Before 5 scans (N=50) 20 (16-35) 53 (38-82)  

After 5 scans (N=134) 20 (15-30) 30.5 (18-55)  

  396 
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Table 3. Diagnostic performance for predicting AAA by DL algorithm. 397 

 DL-guidance 

AUC 0.975 (0.943-1) 

Sensitivity 100% 

Specificity 94.4% 

Positive Predictive Value 33.3% 

Negative Predictive Value 100% 

 398 

 399 
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Supplemental Material  401 

Supplemental Methods. Development of the DL-Guidance Algorithm 402 

Table S1. DL model performance in internal and external validation. 403 

Figure S1. An example of label over abdominal aorta, spine, and inferior vena cava. 404 

Figure S2. User interface of the DL guidance for image acquisition on POCUS. 405 

Videos S1. Demo of real-time bounding box guidance displayed on POCUS. 406 

 407 
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Supplemental Methods  409 

Data Curation: For developing the DL model, we collected ultrasound images from the 410 

ultrasound machines, include Sonosite Edge II and Hitachi Noblus, in the ED of Kaohsiung 411 

Chang Gung Hospital from Jan 2019 to Dec 2021. Ultrasound images focusing on abdominal 412 

area were collected. Images that were not related to abdominal aorta examination were excluded 413 

and eventually a dataset comprising 2,101 labeled ultrasound images was used. We also 414 

collected 492 ultrasound images from a regional hospital for external validation. 415 

Each ultrasound image was cropped into 600*400 in size and get rid of the information that may 416 

reveal personal identification. Two medical experts on point of care ultrasound then manually 417 

labeled the selected anatomical structures - the aorta, inferior vena cava (IVC), and spine (Figure 418 

S1) with polygon mask. We adopted 6 commonly used labeling software, Labelme, for this study 419 

and save the labeling file under COCO dataset format. This large, annotated dataset served as the 420 

foundation for training the AI models, enabling them to recognize and correctly identify these 421 

structures in ultrasound images. 422 

DL Model Development and Validation: Two DL models were developed. The first was an 423 

object-detection-based AI model aim to provide real-time feedback and the second was trained to 424 

automatically identify and outline the aorta, inferior vena cava, and spine within each frame of 425 

the ultrasound video. These models were trained and initially validated using the annotated 426 

dataset, reserving a portion for later testing. The first architecture employed in our study is 427 

YOLOv5 instance segmentation. The input is an ultrasound image with a resolution of 600 x 600, 428 

and the inference output includes bounding boxes and pixel area identification for each category 429 

(abdominal aorta, spine, and inferior vena cava). As the original ultrasound images vary in size, 430 

we opted for the 'letterbox' preprocessing method to standardize them to the model's required 431 
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dimensions. Letterboxing scales the image while maintaining the original aspect ratio; any 432 

remaining space after scaling is filled with the background, mimicking the effect of placing a 433 

picture into an envelope, hence the term 'letterbox'. YOLOv5, in terms of its architecture, 434 

originates from YOLOv4's CSPDarknet53, and incorporates several improvements to enhance 435 

speed and inference outcomes. For instance, it replaces the Spatial Pyramid Pooling (SPP) with 436 

SPPF to boost computational speed and utilizes techniques such as Copy-Paste for data 437 

augmentation. The result of validation was shown in Table S1.  438 

Integrated DL model with POCUS: The POCUS equipment used in this study is the ArtUs-439 

EXT-1H from Telemed, a FDA-certified platform for capturing raw ultrasound signals. It can be 440 

used in conjunction with a portable tablet computer. The tablet runs on a Windows 11 441 

environment and uses an Intel CPU (detailed specifications are listed below). To accelerate the 442 

inference speed of the deployed model, the trained YOLOv5 model was converted from the 443 

PyTorch (.pt) format to the OpenVINO IR (FP16) format and utilized via OpenVINO Runtime. 444 

We used Python's built-in ctypes library to load the dll (dynamic link library) provided by 445 

Telemed, allowing real-time ultrasound images to be captured within the Python program. The 446 

program also allows for model inference and uses OpenCV to visually represent the identified 447 

Aorta (Figure S2). Additionally, to accommodate for the need to adjust parameters such as TGC 448 

(time gain compensation) during scanning, a control panel interface is displayed using Tkinter 449 

for the operator to adjust as necessary. 450 

  451 
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Table S1. DL model performance in internal and external validation. 452 

 Box Precision Box Recall Box mAP@0.5 

Internal Validation 0.921 0.987 0.973 

External Validation 0.627 0.943 0.843 

 453 
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Figure S1. An example of label over abdominal aorta, spine, and inferior vena cava. 455 

 456 

 457 
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Figure S2. user interface of the DL guidance for image acquisition on POCUS 459 

 460 
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