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Abstract

Sleep is a complex behavior regulated by genetic and environmental factors, and is

known to influence health outcomes. However, the effect of multidimensional sleep

encompassing several sleep dimensions on diseases has yet to be fully elucidated.

Using the Mass General Brigham Biobank, we aimed to examine the association of

multidimensional sleep with health outcomes and investigate whether sleep

behaviors modulate genetic predisposition to unfavorable sleep on mental health

outcomes. First, we generated a Polygenic Sleep Health Score using previously

identified single nucleotide polymorphisms for sleep health and constructed a Sleep

Lifestyle Index using data from self-reported sleep questions and electronic health

records; second, we performed phenome-wide association analyses between these

indexes and clinical phenotypes; and third, we analyzed the interaction between the

indexes on prevalent mental health outcomes. Fifteen thousand eight hundred and

eighty-four participants were included in the analysis (mean age 54.4; 58.6% female).

The Polygenic Sleep Health Score was associated with the Sleep Lifestyle Index

(β=0.050, 95%CI=0.032, 0.068) and with 114 disease outcomes spanning 12 disease

groups, including obesity, sleep, and substance use disease outcomes (p<3.3×10−5).

The Sleep Lifestyle Index was associated with 458 disease outcomes spanning 17

groups, including sleep, mood, and anxiety disease outcomes (p<5.1×10−5). No

interactions were found between the indexes on prevalent mental health outcomes.

These findings suggest that favorable sleep behaviors and genetic predisposition to

healthy sleep may independently be protective of disease outcomes. This work
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provides novel insights into the role of multidimensional sleep on population health

and highlights the need to develop prevention strategies focused on healthy sleep

habits.

Keywords: Multidimensional sleep; Polygenic scores; Lifestyle behaviors;

Phenome-wide association study; Clinical disorders; Mental health.
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Introduction

Sleep disturbance has numerous adverse health consequences, including psychiatric

and cardiometabolic disorders [1]. The impact of sleep on health outcomes has

predominantly been studied by considering individual aspects of sleep, such as

duration or timing separately. However, a shift in recent years has emphasized sleep

as a multidimensional construct and operationalized sleep health as a composite

measure encompassing several different aspects. Combining individual sleep

characteristics effectively generates an index reflecting overall ‘good’ or ‘bad’ sleep

[2–4]. Several recent studies have used composite sleep metrics to investigate the

relationship between sleep and health outcomes. These include studies reporting

associations between ‘unhealthy’ sleep scores, derived from self-report and

actigraphy, and more depressive symptoms [5] and higher risk of cardiovascular

conditions [6], and between ‘healthy’ sleep scores and be�er mental well-being [7],

cardiometabolic health [8], and lower psychological distress [9].

Sleep is a complex behavior regulated in part by environmental and genetic factors

[10,11]. Recent genome-wide association studies (GWAS) have identified genetic

variants robustly associated with composite sleep [12–14], enabling the computation

of Polygenic Scores (PRS) (predictors of genetic susceptibility to traits or diseases) of

multidimensional sleep [15]. Combining PRS with phenotypic risk factors could help

elucidate the interplay between genetic and environmental influences on disease risk

[16,17]. This inquiry is essential due to the large role of behavior and environmental
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constraints in sleep health in addition to sleep genetics [18]. Whether sleep behaviors

can modulate genetic predispositions remains poorly understood.

Large clinical biobanks combine electronic health records (EHR) with genetic data

and health surveys, providing resources to systematically interrogate genetic and

lifestyle factors that influence multidimensional sleep and their relationship with

hundreds of clinical phenotypes through phenome-wide scans [19–21]. In the present

study, we leveraged the Mass General Brigham (MGB) Biobank to examine the

association of multidimensional sleep (based on composite metrics of phenotypic

and genetic data) with health outcomes and to investigate whether sleep behaviors

can modulate sleep-related genetic predisposition. To achieve this, we (1) calculated

a Polygenic Sleep Health Score for each participant based on GWAS of a composite

sleep health score, (2) constructed an index of ‘healthy’ sleep based on data from

self-reported questions regarding sleep pa�erns and EHR, and calculated a

phenotypic Sleep Lifestyle Index for each participant, (3) conducted a

hypothesis-free phenome-wide association analysis (PheWAS) to identify health

outcomes associated with the genetic and phenotypic scores, and (4) analyzed the

interaction between the Polygenic Sleep Health Score and the Sleep Lifestyle Index

on the ‘top hits’ for mental health outcomes from the PheWAS.
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Methods

Sample

Study participants were patients from the Mass General Brigham (MGB) Biobank.

The MGB Biobank is a healthcare enterprise clinical cohort from the MGB healthcare

network in Massachuse�s. The MGB Biobank links EHR with genetic and lifestyle

data. Since 2009, patients have been recruited online through the patient portal or in

person across multiple MGB community-based primary care facilities and specialty

tertiary care centers [20,22,23]. The recruitment strategy has been described

previously [20]. Wri�en informed consent was obtained from all patients upon

enrollment (Spanish translation was available to promote patient inclusivity). The

present study protocol was approved by the MGB Institutional Review Board

(#2018P002276). At the time of the present analysis (03/2023), 140,915 patients had

enrolled in the biobank.

Polygenic Sleep Health Score

Among the enrolled patients, 64,639 patients (45.9% of the total) had provided blood

samples available for genotyping. DNA from samples was genotyped using the

Infinium Global Screening Array-24 version 2.0 (Illumina). Imputation was

performed using the Michigan Imputation server with the Trans-Omics for Precision

Medicine (TOPMed) (version r2) reference panel [24], and haplotype phasing was

performed using Eagle version 2.3. As previously described, the genetic data were

quality controlled, excluding low-quality genetic markers and samples [25]. Pairs of
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related individuals (kinship > 0.0625) were identified, and one sample from each

related pair was excluded. Using TRACE and the Human Genome Diversity Project,

principal components of ancestry were computed to correct for the population

substructure [26,27]. Participants of non-European ancestry (24.9% of the cohort)

were excluded from the analysis to limit genetic heterogeneity in the present study.

Effect estimates for the Polygenic Sleep Health Score were derived from the most

recent large-scale GWAS of composite sleep in UK Biobank participants of European

ancestry (n=413,904) [14]. In this GWAS, a clinical additive sleep health score was

derived from five favorable binary a�ributes of underlying ordinal sleep traits from

self-report (7-8 hours sleep duration, early chronotype, few insomnia symptoms, no

snoring, and no excessive daytime sleepiness) [28]. For each participant in the

present MGB Biobank study, a composite Polygenic Sleep Health Score was

generated using Polygenic Risk Score–Continuous Shrinkage (PRS-CS) [29]. This

method is based on Bayesian regression and places a continuous shrinkage prior on

single-nucleotide polymorphism effect sizes. The UKBiobank European ancestry

linkage disequilibrium (LD) panel was used for LD pruning. A total of 239,446

single-nucleotide polymorphisms were included in the score following clumping.

The score was standardized with a mean of 0 and a standard deviation (SD) of 1.
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Sleep Lifestyle Index

All participants enrolled in the MGB Biobank were invited to complete an optional

Health Information Questionnaire (HIQ) composed of lifestyle and family history

questions. The following four questions related to sleep habits were asked with

responses in half-hour increments: “In considering your longest sleep period, what

time do you usually go to bed on weekdays or work or school days?” and “In

considering your longest sleep period, what time do you usually wake up on

weekdays or work or school days?” (both also asked for “weekends or days off”). At

the time of analysis, 65,248 (46.30%) participants responded to the optional

questionnaire. Self-reported bedtimes between 08:00 am and 02:00 pm (weekday

n=329; weekend n=613) and self-reported wake times between 06:00 pm and 12:00 am

(weekday n=141; weekend n=287), likely resulting from am/pm misreporting, were

set to missing. Improbable time in bed <3 or >18 hours (weekday n=73; weekend

n=74) were set to missing, consistent with previous analyses [30].

Using responses from these questions, the following was calculated: (1) time in bed

as the weighted average weekly time in bed with 5/7 weighting for weekdays and 2/7

for weekends; (2) time in bed irregularity as the absolute value of the difference

between weekday and weekend time in bed; (3) sleep midpoint as the midpoint of

bed and wake times on weekends and; (4) social jetlag as the absolute difference in

weekend and weekday sleep midpoint. From EHR data, sleep medications and sleep

disorders, including insomnia and sleep apnea, based on the International
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Classification of Diseases (ICD)-9/-10 billing codes were determined. Participants

with at least two codes for the same diagnosis on two separate dates within five

years of completing the HIQ (to support cross-sectional analyses) were considered to

have a sleep disorder, and those with no relevant code within this five-year time

window were considered free of sleep disorders (those with only one code were set

to missing).

A Sleep Lifestyle Index was constructed based on comparable a�ributes considered

in the UK Biobank GWAS for a clinical additive sleep health score and other sleep

indices based on available data [6,31]. The index aggregated exposure to each of the

following sleep behaviors: (1) adequate time in bed (≥7 h and ≤9 h per night) [32,33];

(2) regular time in bed (difference <60 min between weekday and weekend time in

bed) [6]; (3) healthy sleep midpoint (between 2:00 am and 4:00 am) [31]; (4) absence

or mild/moderate social jetlag (<2 h) [34]; (5) not taking any medication known to

affect sleep, such as those used to treat insomnia, anxiety or circadian disorders (the

list of medication is shown in Supplementary Material Table 1); (6) no recent

diagnosis of any insomnia-related disorders; (7) no recent diagnosis of any

sleep-related breathing disorders; and (8) no recent diagnosis of any other sleep

disorder (the list of disorders is shown in Supplementary Material Table 2).

Participants were assigned one point for each healthy sleep behavior [2]. The Sleep

Lifestyle Index scores ranged from 0 to 8, with higher scores reflecting more

favorable (less problematic) sleep behaviors. Cross-trait correlations are presented in
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Supplementary Material Table 3. The associations between the index and each sleep

behavior are presented in Supplementary Material Table 4.

Clinical outcomes

The clinical phenotypes were determined from the ICD-9/-10 billing codes in the

EHR [20]. Codes were mapped to 1,846 phenome-wide association study (PheWAS)

codes (i.e., clinical phenotypes “phecodes”) based on clinical similarity. Same-day

duplicated diagnoses and non-ICD-9/-10 codes were removed. Participants with at

least two codes for a disorder within five years of completing the HIQ were

considered cases, and those with no relevant codes were considered controls [21,35].

Statistical analysis

We tested associations between the Polygenic Sleep Health Score and the Sleep

Lifestyle Index, and between the Polygenic Sleep Health Score and each sleep

a�ribute included in the Sleep Lifestyle Index using linear or logistic regression

models adjusted for age, sex, genotyping array, batch, and principal components of

ancestry (primary model) and further adjusted for employment, education, exercise,

smoking, alcohol intake, body mass index, and Charlson Comorbidity Index [36]

(fully adjusted model). The description of the covariates is shown in Supplementary

Material Table 5.
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We conducted a PheWAS for the Polygenic Sleep Health Score with 1,354 disorders

(with at least 100 cases in the analytical sample) in 47,082 unrelated adult

participants of European ancestry with high-quality genetic data using the PheWAS

R package [19]. We also conducted a PheWAS for the Sleep Lifestyle Index with 898

disorders in 15,884 patients (33.7% of genotyped European patients) diagnosed

within five years of completing the HIQ.

We tested associations between the Polygenic Sleep Health Score and each disorder

using logistic regressions adjusted for age, sex, genotyping array, batch, and

principal components of ancestry. We tested associations between the Sleep Lifestyle

Index and each disorder using logistic regressions adjusted for age, sex,

employment, education, exercise, smoking, alcohol intake, body mass index, and the

Charlson Comorbidity Index. Finally, we conducted interaction tests between the

Polygenic Sleep Health Score and the Sleep Lifestyle Index for the top five mental

health outcomes associated with both indexes in the PheWAS by further adding an

interaction term between the indexes.

Significance was determined at Bonferroni P value cut-offs accounting for the total

number of tests. Descriptive statistics are presented as mean ± standard deviation.

All analyses were performed using R statistical computing (version 2022.12.0; The R

Foundation for Statistical Computing, Vienna, Austria).
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Results

A total of 47,082 adult patients of European ancestry were included in the genetic

analysis (mean age = 60.4 ± 17.0; 53.8% female), and 15,884 patients were included in

the lifestyle analysis (mean age = 54.4 ± 16.3; 58.6% female) (Figure 1).

Figure 1. Flowchart of patients included in the analyses and exclusion criteria. HIQ: Health Information

Questionnaire. PheWAS: Phenome-wide association analysis.

The cohort averages for time in bed was 8.15 ± 1.13 h, time in bed regularity was 0.78

± 0.94 h (range: 0-12 h), sleep midpoint was 03:23 ± 01:41, and social jetlag was 0.86 ±

0.82 h (range: 0-10.5 h). The prevalence of insomnia-related disorders, sleep-related

breathing disorders, and any other sleep disorders based on recent diagnoses were

1.9%, 3.5%, and 2.9%, respectively. All participants presented at least one of the
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healthy sleep lifestyle traits, while 4421 participants (27.83%) presented with all 8

traits. Most participants presented with at least half of the healthy sleep behaviors

ascertained (adequate time in bed, time in bed regularity, healthy sleep midpoint,

and mild social jetlag) (Figure 2).

Figure 2. Histogram of Sleep Lifestyle Index scores based on self-reported sleep traits and data from electronic

health records. The scores ranged from 0 to 8, with higher scores reflecting more favorable (less problematic)

sleep behaviors.

The Polygenic Sleep Health Score was associated with the composite Sleep Lifestyle

Index (primary model: β=0.077, 95%CI=0.058, 0.095; fully adjusted model: β=0.050,

95% CI=0.032, 0.068). Each SD increment in the Polygenic Sleep Health Score was

associated with several components of the index, including less sleep irregularity

(primary model: β=-0.026, 95% CI=-0.041, -0.011; fully adjusted model: β=-0.018, 95%

CI=-0.033, -0.003), earlier sleep midpoint (primary model: β=-0.066, 95% CI=-0.093,
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-0.039; fully adjusted model: β=-0.057, 95% CI=-0.084, -0.030), less social jetlag

(primary model: β=-0.022, 95% CI=-0.034, -0.010; fully adjusted model: β=-0.018, 95%

CI=-0.030, -0.007) and, in the primary model only, higher odds of not having

sleep-related breathing disorders (primary model: OR=1.165, 95% CI=1.065, 1.275;

fully adjusted model: OR=1.075, 95% CI=0.980, 1.178) and higher odds of not having

any other sleep disorder (primary model: OR=1.165, 95% CI=1.057, 1.285; fully

adjusted model: OR=1.082, 95% CI=0.979, 1.196). The Polygenic Sleep Health Score

was not associated with adequate time in bed, insomnia-related disorders, and

medication (P value>0.05).

PheWAS results

PheWAS results for the Polygenic Sleep Health Score are presented in Figure 3 and in

Supplementary Material Table 6. Significant findings were evident for 114 disease

outcomes spanning 12 disease groups (p<3.3×10−5). The Polygenic Sleep Health Score

was negatively associated with mental health outcomes, accounting for 14.0% of all

findings. The 10 strongest associations for mental health outcomes were Tobacco use

disorder (OR=0.881, 95% CI=0.861, 0.902), Substance addiction and disorders

(OR=0.858, 95% CI=0.828, 0.889), Major depressive disorder (OR=0.905, 95% CI=0.882,

0.929), Depression (OR=0.906, 95%CI=0.883, 0.930), Anxiety disorder (OR=0.916, 95%

CI=0.893, 0.939), Alcoholism (OR=0.869, 95% CI=0.833, 0.908), Pos�raumatic stress

disorder (OR=0.848, 95% CI=0.806, 0.892), Alcohol-related disorders (OR=0.888, 95%

CI=0.850, 0.928), Mood disorders (OR=0.904, 95% CI=0.871, 0.939) and, Adjustment
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reaction (OR=0.924, 95% CI=0.897, 0.952) (Figure 5) (results were similar when

adjusting for body mass index (BMI), see Supplementary Material Table 7).

Figure 3. Manha�an plot of phenome-wide associations between the Polygenic Sleep Health Score and disease

outcomes (grouped by broad disease groups), in a model adjusting for age, sex, genotyping array, batch, and

principal components of ancestry. The -log10P value of the association is shown on the y-axis. The horizontal

lines represent Bonferroni corrected P value cut-offs (the red line represents P value = 5 × 10−5; the blue line

represents P value = 8 × 10−4). Upward triangles indicate positive associations, and downward triangles indicate

negative associations.

PheWAS results for the Sleep Lifestyle Index are presented in Figure 4 and in

Supplementary Material Table 8. Significant findings were evident for 458 disease

outcomes spanning 17 disease groups (p<5.1×10−5). Similarly, the Sleep Lifestyle

Index was negatively associated with mental health outcomes for 9.0% of significant

findings. The 10 strongest associations for mental health outcomes were Depression

(OR=0.668, 95% CI=0.640, 0.696), Major depressive disorder (OR=0.683, 95% CI=0.655,

0.711), Anxiety disorder (OR=0.693, 95% CI=0.666, 0.721), Generalized anxiety

disorder (OR=0.662, 95% CI=0.626, 0.700), Mood disorders (OR=0.630, 95% CI=0.588,

0.675), Adjustment reaction (OR=0.719, 95% CI=0.683, 0.756), Altered mental status
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(OR=0.654, 95% CI=0.612, 0.698), Dysthymic disorder (OR=0.550, 95% CI=0.500,

0.605), Bipolar (OR=0.641, 95% CI=0.593, 0.692) and, Memory loss (OR=0.676, 95%

CI=0.632, 0.724) (Figure 5).

Figure 4. Manha�an plot of phenome-wide associations between the Sleep Lifestyle Index and disease outcomes

(grouped by broad disease groups), in a model adjusting for age, sex, employment, education, exercise, smoking,

alcohol intake, body mass index, and the Charlson Comorbidity Index. The -log10P value of the association is

shown on the y-axis. The horizontal lines represent Bonferroni corrected P value cut-offs (the red line represents

P value = 5 × 10−5; the blue line represents P value = 8 × 10−4). Upward triangles indicate positive associations,

and downward triangles indicate negative associations.

Taking into account that five mental health outcomes were strongly associated with

both indexes (Figure 5 A, see description in Supplementary Material 9) and previous

work linking multidimensional sleep with mental health [5,7,9], we investigated

whether these indexes interact to explain them. No significant interactions were

observed between the indexes on these mental health outcomes (all P > 0.05) (Table

1).
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Figure 5. A) Phenome-wide associations between the Polygenic Sleep Health Score (blue) and the Sleep Lifestyle

Index (black) and the five mental health outcomes strongly associated with both indexes. B) Phenome-wide

associations between the Polygenic Sleep Health Score and the other five mental health outcomes strongly

associated with the index. C) Phenome-wide associations between the Sleep Lifestyle Index and the other five

mental health outcomes strongly associated with the index. Notes: OR, Odd ratio; 95% CI, 95% confidence

interval.
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Primary model Fully adjusted model

Disease OR (95% CI) P-value OR (95% CI) P-value

Adjustment reaction 0.984 (0.935, 1.036) 0.523 0.983 (0.934, 1.035) 0.501

Anxiety disorder 0.992 (0.954, 1.032) 0.704 0.988 (0.948, 1.030) 0.558

Depression 1.004 (0.963, 1.046) 0.863 1.002 (0.960, 1.046) 0.918

Major depressive disorder 0.996 (0.956, 1.038) 0.843 0.994 (0.954, 1.036) 0.795

Mood disorders 0.986 (0.921, 1.056) 0.696 0.975 (0.909, 1.047) 0.491

Table 1. Interactions between the Polygenic Sleep Health Score and the Sleep Lifestyle Index on disease

outcomes. Disease outcomes were limited to the five mental health outcomes strongly associated with both

indexes. Notes: OR, odd ratio; 95% CI, 95% confidence interval.

Discussion

In the present study, we examined the link between behavioral and genetic

multidimensional sleep indexes with health outcomes and investigated whether

sleep behaviors can modulate genetic predisposition. To achieve this, we calculated,

for the first time, a polygenic score for composite sleep and constructed a lifestyle

index based on sleep behaviors. Both indexes were associated with each other and

with health outcomes, including mental, neurological, and endocrine/metabolic

disorders. However, significant evidence of the specified parametric interactions

between the indexes was not observed for prevalent mental health conditions
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suggesting that improving sleep habits can mitigate the risk of disease irrespective of

genetic predisposition.

We found that each standard deviation increment in the genetic index was associated

with a 0.050-0.077 unit increase (0.625–0.963%) in the lifestyle index. Previous studies

have reported associations between polygenic scores for self-reported sleep duration,

insomnia, and chronotype with their corresponding traits [37–40]. Thus, our finding

contributes to validating sleep polygenic scores as proxies for sleep behaviors,

including multidimensional sleep. Moreover, we found that the genetic index was

consistently negatively associated with disease outcomes, suggesting that the genetic

predisposition to healthy sleep may be protective against multiple disorders;

however, a causal role for sleep in these disorders cannot be inferred from the

present analyses. Interestingly, the lifestyle index was also strongly associated with

several diseases, which is consistent with the role of healthy sleep behaviors in

improving overall health and the benefit of routine assessment of sleep disturbances

in clinical services. In this line, two recent systematic reviews have reported that

unhealthy sleep pa�erns, such as short and long sleep durations, high sleep

variability, and late sleep timing, are associated with adverse health outcomes

[41,42].

Mental disorders were strongly associated with both indexes, particularly mood,

anxiety, and reaction to severe stress and adjustment disorders. Specifically, the
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genetic index was associated with 8-10% lower odds of having these disorders, while

the lifestyle index was associated with 28-37% lower odds. Noteworthily, these

disorders are the most frequently diagnosed psychiatric conditions [43,44]. The link

between sleep difficulties and psychiatric illness is well recognized; however, the

effect of sleep on mental health is not fully understood. Current evidence suggests a

causal role of sleep behaviors in developing these disorders [45]. For example,

Mendelian randomization (MR) studies have found a decreased risk of depression in

individuals with morning chronotype [46,47], an increased risk of anxiety in those

with insomnia [48], and bidirectional associations between insomnia and depression

[49,50]. Further, a recent study has reported substantial polygenic overlap between

sleep-related traits and some mental conditions, including depression [51].

Moreover, the GWAS used to generate the genetic index reported genetic

correlations between the composite sleep health score and several mental health

conditions, including mental distress, anxiety, and depression [28]. In addition, a

meta-analysis of randomized controlled trials found that improving sleep quality

reduces depression and anxiety symptoms [52]. Nonetheless, some MR studies did

not find causal effects between chronotype or insomnia on depression [53,54]. This

knowledge emphasizes the importance of thoroughly investigating the connection

between sleep and mental health, offering new possibilities for therapeutic

interventions.
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Metabolic diseases were also associated with the indexes. Particularly, obesity was

the phenotype most strongly associated with the genetic index. The link between

sleep and obesity has been extensively reported [55,56]. Previous meta-analyses have

revealed that sleep durations outside the normal range increase the incidence of

obesity [57–59]. In agreement, prior research has reported U-shaped positive genetic

correlations between short and long sleep durations and BMI, waist circumference,

and waist-to-hip ratio [30]. However, it remains elusive whether the association

between sleep duration and BMI is causal [60]. Sleep breathing disorders are also

highly associated with obesity [61], and robust causal effects of insomnia on higher

BMI have been reported in MR studies [62,63]. Regarding genetic risk, a previous

study on the MGB Biobank indicated that a polygenic index for sleep duration was

associated with obesity [37].

Finally, we did not find statistical interactions of genetic and lifestyle sleep factors on

the five most prevalent mental health outcomes associated with both indexes. Recent

work has shown that short/long sleep duration modifies genetic risk for adverse lipid

profiles [64] and blood pressure [65]. Similarly, some gene-sleep interaction studies

suggest favorable sleep behaviors may a�enuate genetic predisposition to obesity

[55]. However, for other phenotypes, such as type 2 diabetes, li�le compelling data

supports gene-lifestyle interactions [66]. Thus, one possibility for our null findings is

that, as for diabetes, lifestyle factors independently predict the mental health

outcomes studied. It is also possible that we have inaccurate or incomplete patient
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diagnoses, which would contribute to the misclassification of cases. Nevertheless, the

absence of evidence for the tested statistical interactions may suggest that improving

sleep behaviors may ameliorate disease risk regardless of genetic background.

Our study has several strengths. First, unique to the MGB Biobank is the linking of

large and diverse medical data enriched for disease with genetic and sleep

information generally unavailable in other clinical biobanks. Second, using

composite sleep metrics has several advantages, including the recognition that sleep

dimensions do not occur in isolation and the possibility of analyzing gradients of

healthy sleep beyond the absence/presence of sleep disturbances [67]. Third,

composite metrics could enhance predictive power [4]. Finally, a score derived from

genetic markers should act independently of confounders that could influence the

associations between sleep and health outcomes.

Limitations of the study should also be acknowledged. The study was restricted to

participants of European ancestry, as the discovery GWAS was conducted in

Europeans [14]; future work in diverse racial and ethnic groups is necessary for the

generalization of findings and to promote health equity. Moreover, our results

cannot be generalized to other age groups and non-clinical cohorts. We focused on

the MGB biobank; thus, diagnosis data is likely incomplete as we did not consider

information from other medical facilities. Validating these indexes with diseases

from additional electronic medical records is necessary. The exclusion of rare
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diseases (i.e., <100 cases) in the PheWAS analyses due to small case numbers

warrants future exploration of multidimensional sleep effects on these disorders.

Furthermore, our analyses were based on self-reported data. The modest HIQ

response rate introduces potential selection bias, while the single survey

administration limits insights into behavior stability over time. Lastly, given the

cross-sectional nature of our study, as well as potential genetic pleiotropy, the

reported associations do not necessarily imply causal relationships.

Conclusions

The present study explored how genetic susceptibility to healthy sleep and beneficial

sleep habits were associated with various disorders within a clinical cohort. While

genetic and phenotypic sleep factors were linked to several diseases, no interactions

were evident between these factors on mental health outcomes. Overall, our findings

emphasize the relevance of sleep for a healthy life, demonstrate the pleiotropic

nature of sleep genetics, and underscore the importance of leveraging clinical

biobanks in advancing precision medicine research. Further research is needed on

the association between multidimensional sleep and health outcomes in diverse

clinical se�ings.
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