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Abstract
Importance: Deep learning methods have recently gained success in detecting left ventricular

systolic dysfunction (LVSD) from electrocardiogram waveforms. Despite their impressive

accuracy, they are difficult to interpret and deploy broadly in the clinical setting.

Objective: To determine whether simpler models based on standard electrocardiogram

measurements could detect LVSD with similar accuracy to deep learning models.

Design: Using an observational dataset of 40,994 matched 12-lead electrocardiograms (ECGs)

and transthoracic echocardiograms, we trained a range of models with increasing complexity to

detect LVSD based on ECG waveforms and derived measurements. We additionally evaluated

models in two independent cohorts from different medical centers, vendors, and countries.

Setting: The training data was acquired from Stanford University Medical Center. External

validation data was acquired from Cedars-Sinai Medical Center and the UK Biobank.

Exposures: The performance of models based on ECG waveforms in their detection of LVSD,

as defined by ejection fraction below 35%.

Main outcomes: The performance of the models as measured by area under the receiver

operator characteristic curve (AUC) and other measures of classification accuracy.

Results: The Stanford dataset consisted of 40,994 matched ECGs and echocardiograms, the test

set having an average age of 62.13 (17.61) and 55.20% Male patients, of which 9.72% had

LVSD. We found that a random forest model using 555 discrete, automated measurements

achieves an area under the receiver operator characteristic curve (AUC) of 0.92 (0.91-0.93),

similar to a deep learning waveform model with an AUC of 0.94 (0.93-0.94). Furthermore, a

linear model based on 5 measurements achieves high performance (AUC of 0.86 (0.85-0.87)),

close to a deep learning model and better than NT-proBNP (0.77 (0.74-0.79)). Finally, we find
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that simpler models generalize better to other sites, with experiments at two independent,

external sites.

Conclusion: Our study demonstrates the value of simple electrocardiographic models which

perform nearly as well as deep learning models while being much easier to implement and

interpret.
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Introduction

Left ventricular systolic dysfunction (LVSD) is a characteristic feature of patients with heart

failure, historically with limited options for screening1. NT-proBNP, a laboratory biomarker that

has been proposed for heart failure screening, is inexpensive, but has demonstrated only modest

performance2,3. Transthoracic echocardiogram (TTE) screening provides a gold-standard

diagnosis, but is expensive and time-consuming4. An ideal screening tool would be inexpensive

and use information already available during routine care while offering high accuracy. One

candidate is the electrocardiogram (ECG), an inexpensive and common diagnostic tool.

Historically, no reliable methods existed to diagnose LVSD as defined by reduced ejection

fraction from the ECG5, but recently deep learning methods based on the ECG waveform have

demonstrated promising performance6, spurring multiple clinical trials7–9. This same trend is true

for other important tasks including detecting atrial fibrillation in sinus rhythm10, detecting

valvular disease11, and predicting future mortality12,13, leading to a great deal of excitement

around the deployment of deep learning models for electrocardiography14.

While highly performant, deep learning has several key limitations. Domain shifts, which are

difficult to track in complex distributions such as waveforms and can occur such as when a

model is applied at a new hospital15, population16,17, or imaging vendor18, can degrade model

performance significantly. Spurious correlations can allow the model to “cheat” without learning

clinically salient features, for example by detecting the presence of a pacemaker or laterality

marker in a chest x-ray19,20 or a surgical skin marking in a dermatology image21, leading to

unintended shifts in performance during deployment. The black-box nature of neural networks

can make it more difficult to interrogate them to understand the mechanisms they rely on, and
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attempts to remedy this issue have for the most part fallen short22. Technical challenges around

electronic health record system integration, institutional resistance, and regulatory issues around

acting on raw signals can also make model deployment prohibitively difficult23–25. These

limitations continue to motivate the development of simpler, more interpretable methods over

deep learning26.

Whether simpler ECG-based methods can offer similar performance to deep learning methods on

complex tasks such as detecting LVSD remains unclear. Historically, diagnostic criteria to

identify less complex conditions from the ECG have taken the form of simple criteria27,28,

decision trees29, and linear models30 based on simple, hand-measurable features like the PR

interval and the amplitude of the T wave. In these simpler cases, deep learning offers only slight

gains over human over-reading31. There are multiple recent efforts to create these simple rules in

a data-driven way: recently a large dataset of such measurements was mined to build a simple

model to detect atrial fibrillation in sinus rhythm, though this model far under-performed deep

learning methods10,33, and at least one other deep learning model was presented alongside a

strong decision tree-based baseline based on automated measurements12.

In this study, we set out to understand how simpler models based on automated ECG

measurements compare to deep learning models in detecting LVSD from the ECG. Using a

dataset of matched 12-lead ECGs and TTEs from Stanford University Medical Center, we

trained a range of models with increasing complexity to detect low ejection fraction based on

ECG waveforms and derived measurements. We found that a random forest model on 555

discrete, automated measurements performs similarly to deep learning methods, and a linear
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model based on 5 automated measurements performs only slightly worse than deep learning but

much better than NT-proBNP. This continuum of models, trading off complexity and accuracy,

demonstrates that simpler methods can sometimes be substituted for deep learning models based

on derived measurements, allowing for greater interpretability and ease of implementation.
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Methods

Study populations and data sources

We trained and primarily evaluated a range of simple-measurement based and deep learning

models to detect left ventricular systolic dysfunction (LVSD), as defined as a left ventricular

ejection fraction below 35%, from electrocardiograms (ECG). Models were trained using a

dataset of paired 12-lead resting ECGs and transthoracic echocardiograms (TTEs) from Stanford

University Medical Center. This dataset consisted of all TTEs that were taken during the course

of clinical care between March 2008 to May 2018 with an ECG within two weeks. ECGs that did

not pass the Phillips TraceMaster quality control were removed. We extracted 39,019 TTE-ECG

pairs from 27,763 patients, which were then split by patient into train, validation, and test sets in

a 5:1:4 ratio. In the test set, we only included the first ECG per patient (Figure 2). These ECGs

were saved as 10 second signals from all 12 leads of the ECG, sampled at 500Hz. We extracted

ECG waveforms at 250Hz, along with measurements and text overreads from TraceMaster. We

included all 555 measurements which had numerical values pertaining to waveform structure.

Left ventricular ejection fractions (LVEF) were extracted from STARR-OMOP34, a common data

model of Stanford electronic health records, based on echocardiograms acquired using iE33,

Sonos, Acuson SC2000, Epiq 5G or Epiq 7C ultrasound machines and interpreted by cardiologist

during standard clinical practice. We included all measurements within two weeks of a record of

an echo procedure. We defined LVSD as LVEF below 35%. We also extracted NT-proBNP from

STARR-OMOP and included all records within 30 days of the reference ECG.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.06.24302412doi: medRxiv preprint 

https://paperpile.com/c/RkVSmj/Hebf
https://doi.org/10.1101/2024.02.06.24302412


A dataset from Columbia Irving Medical Center was used as a first external validation cohort.

The Columbia dataset was constructed similarly to Stanford’s, but a different ECG vendor (the

General Electric MUSE system) was utilized. After inclusion criteria were applied, a random

subsample of data was included for analysis. We additionally used a second external dataset from

the UK Biobank. This cohort is substantially different from the first two hospital-based datasets,

being made up of a cross-section of mostly healthy British patients. In the UK Biobank, all

patients with a 12-lead resting ECG and cardiac magnetic resonance imaging (cMRI) taken at the

first imaging visit were included. All paired ECG and cMRI studies took place on the same day;

details of the cMRI protocol are available in the literature35. A previously described deep

learning pipeline36 was used to estimate left ventricular ejection fraction from the cMRI. Other

ECG abnormalities were determined based on the ECG text overread using string matching,

validated by manual inspection. The UK Biobank ECGs were also recorded using General

Electric ECG machines.

Model development and training

Deep learning models were trained using Python 3.9 and PyTorch 1.11 on single Nvidia Titan Xp

GPUs using Stanford’s Sherlock computing cluster. We closely followed the architecture

described in previous literature for detecting LVSD6, and found that exploring different

architectures did not provide a significant increase in validation AUROC. To evaluate deep

learning models at other sites, we ran the model on data using a range of pre-processing

parameters (with and without band pass filters, wandering baseline filters, and per-lead

normalization) and reported the best performance, since different sites and vendors may use

different preprocessing and follow different distributions. Random forest models were trained

using Python 3.9 and XGBoost 1.7, using the binary logistic loss. We trained several models with
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different tree depths and numbers of trees using grid search, and selected the best model based on

validation AUROC. Linear models were trained using Python 3.9 and Scikit-Learn 1.2 using

standard logistic regression, without regularization or normalization unless otherwise mentioned.

All analyses were performed by training models on the training set and selecting variables,

hyperparameters, and models based on results in the validation set. After models were finalized,

performance was evaluated on the test set and external validation sets. To select a shortlist of

variables for smaller models, we selected a list of variables familiar to clinicians based on

inspection and iteratively fit increasingly lasso-regularized models while removing correlated

variables. We selected a model of a size where removing any one variable would cause a drop in

performance of greater than 1%, while adding any one variable would cause an increase in

performance less than 1%.

Statistical Analysis

We primarily compared models based on the area under the receiver operator characteristic curve

(AUROC), a standard metric used for evaluating a predictor’s performance across multiple

cutoffs in binary classification tasks. All AUROCs were computed using the scikit-learn Python

package. We additionally compute sensitivity, specificity, and positive predictive values using

standard definitions. We report balanced sensitivity and specificity (choosing the cutoff which

minimizes the difference between sensitivity and specificity), positive predictive value at the

same cutoff, sensitivity at 90% specificity, and specificity at 90% sensitivity. All confidence

intervals are 95% intervals generated through bootstrapping with 1,000 samples.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.06.24302412doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.06.24302412


Results

Study Population

We trained several models on ECGs paired with TTEs from Stanford University Medical Center

taken between March 2008 and May 2018 during the normal course of clinical practice (Figure

2). From the 96,361 resting TTEs (from 54,045 patients) with a recorded ejection fraction,

46,254 (32,361 patients) occurred within two weeks of a unique ECG. Among those, 40,994

ECGs (28,949 patients) passed the automated quality control test performed by the Philips

TraceMaster software. We randomized those pairs by patient 50%/10%/40% into train,

validation, and test sets, resulting in 20,269 training ECG-TTE pairs (14,448 patients), 4,276

validation ECG-TTE pairs (2,983 patients), and 16,449 ECG-TTE pairs (11,518 patients)

randomized to the test group, of which 11,518 first ECGs per patient were included in the test

set. In the train, validation, and test sets, 2,175 (10.73%), 462 (10.80%), and 1,119 (9.72%)

ECGs, respectively, were taken from patients with LVSD (in the test set, this was also the

number of patients). Detailed demographic data are shown in Table 1.

To understand how well models generalize across sites, we additionally evaluated our models on

ECGs from another healthcare system, Columbia Irving Medical Center, and a prospective

population of healthy individuals, the UK BioBank cohort. The Columbia cohort consisted of

36,975 patients who received an ECG and TTE at Columbia medical center within a two week

window. In that group, prevalence was similar to at Stanford (12.59%), and there were greater

proportions of Black and Hispanic patients (Table 1). The UK Biobank cohort consisted of

34,280 patients from the general population who prospectively received cardiac magnetic

resonance imaging, and had a much lower prevalence of LVSD, with just 96 (0.28%) cases.
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The population also had higher rates of normal ECGs (97.9% in the UK Biobank vs 77.6% at

Stanford) and contained a greater proportion of White patients (96.75% in the UK Biobank vs

56.38% at Stanford).

Simple models using discrete, automated measurements detect LVSD almost

as well as deep learning models

The convolutional neural network trained on 12-lead ECG waveforms achieved an area under the

receiver operator characteristic curve (AUROC) of 0.94 (0.93-0.94) in detecting LVSD,

comparable to the 0.93 previously reported6 (Figure 1, Figure 2; previous work did not report a

confidence interval on the computed AUC). Choosing a cutoff to balance sensitivity and

specificity resulted in values of 0.86 (0.84-0.88) and 0.86 (0.86-0.87) respectively. At that cutoff

it achieved a positive predictive value of 0.40 (0.37-0.42). At a sensitivity of 90%, it achieved a

specificity of 0.82 (0.81-0.83). The model consisted of 159,153 trainable parameters.

To understand how well discrete ECG measurements can be used to detect LVSD, we next

trained linear and random forest models to detect LVSD based on 555 ECG measurements

extracted by the Philips TraceMaster software (listed in Supp. Table 2). Examples of such

measurements (in order of increasing complexity) are the heart rate, the P wave amplitude in lead

I, the area under the QRS complex in lead aVL, and the maximal T wave angle through the

transverse plane. The random forest achieved an AUROC of 0.92 (0.91-0.93), not significantly

different from the deep learning model (P=0.08). The best-performing random forest consisted of

50 trees of depth 7, resulting in 6,350 binary cutoffs. The linear model achieved an AUROC of

0.90 (0.89-0.91), using only 556 trainable parameters. The weights of the linear model are shown

in Supp. Table 2.
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Acknowledging that a 555 measurement linear model is still not easily “interpretable,” we

reduced the number of measurements further, first limiting the list to familiar measurements and

then using lasso regression and removing correlated features. We arrived at a shortlist of five

measurements that can be easily manually assessed in a clinical setting (Table 2): the T-wave

amplitude in aVR; the QRS duration in V3; the mean QTc (corrected QT interval using Bazett’s

formula); the maximum negative QRS deflection in V3 (the greater of the Q and S amplitudes);

and the heart rate. In all cases the correlation was positive, except for the maximum negative

QRS deflection in V3 (i.e. a deeper Q or S wave in V3 indicates greater risk, while a shallower

or positively inverted T wave in aVR indicates greater risk). A random forest trained on these

five measurements achieved an AUC of 0.88 (0.87-0.89), while a linear model achieved an AUC

of 0.86 (0.85-0.87). The random forest consisted of 20 trees of depth 4, or 80 total parameters,

while the linear model used 6 trainable parameters, each one easily interpretable. Notably, the

linear model achieved only slightly worse performance than the deep learning model while using

only 6 versus 159,153 trainable parameters. This performance was significantly better than that

of NT-proBNP (P=8.5*10-10), which achieved an AUROC of 0.77 (0.75-0.79; based on the 2,097

ECG-TTE pairs with an NT-proBNP measurement within 30 days). Specificity at 90% sensitivity

followed a similar trend to AUC (Figure 2; Supp. Table 2).

Single ECG measurements detect LVSD as well as NT-proBNP

For each of the 555 numerical measurements taken by the Philips TraceMaster software, we

calculated the AUROC when using the measurement as an independent predictor of LVSD

(Supp. Table 2). For each of the five measurements used in the small linear model, we evaluated

their independent performance in detecting LVSD in the test set (Figure 2). The best-performing
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measurement was the T-wave amplitude in aVR, which independently achieved an AUROC of

0.77 (0.76-0.78), the same as NT-proBNP. The QRS duration in V3 and Mean QTc were also

similar to NT-proBNP, achieving AUROCs of 0.75 (0.73-0.76) and 0.75 (0.74-0.77)

respectively. When comparing at a 90% sensitivity cutoff however, those three ECG

measurements performed significantly worse than NT-proBNP in their specificity

(P=2*10-60-4*10-4).

Simpler models perform better across sites

To understand the ability of simple and deep learning models to generalize across sites, we

evaluated our models in two external cohorts, the UK Biobank cohort and Columbia cohorts. The

deep learning model did not perform as well on UK Biobank data, with an AUROC of 0.74

(0.69-0.78; Table 3), but achieved good performance in the Columbia cohort, with an AUROC of

0.88 (0.87-0.88). The large difference in the UK Biobank cohort may be due to subtle differences

in vendor waveform preprocessing, though we were unable to detect any differences through

inspection (differences in the population or due to use of cMRI versus echocardiogram are also a

plausible explanation, but are mostly ruled out by the following results). The simpler,

measurement-based models, on the other hand, performed similarly to Stanford: the linear model

achieved AUROCs of 0.83 (0.78-0.87) and 0.80 (0.80-0.81) in the UK Biobank and Columbia

cohorts respectively, versus 0.86 at Stanford, and the random forest model achieved AUROCs of

0.82 (0.77-0.87) and 0.81 (0.80-0.82), respectively, versus 0.88 at Stanford, demonstrating the

ability to generalize to radically different populations like the one in the UK Biobank cohort. The

T-wave amplitude in aVR achieved similar performance in both the UK Biobank, with an

AUROC of 0.78 (0.73-0.83), and Columbia, with an AUROC of 0.74 (0.74-0.75). Other

Individual measurements were similarly predictive in the UK Biobank and Columbia datasets
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(supp. figure 2). Due to a lack of available measurements, we were unable to evaluate the 555

measurement models at external sites.
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Discussion
We found that simple models based on discrete, automated ECG measurements detect LVSD

with impressive performance, almost as well as deep learning models using waveforms and

much better than standard laboratory tests. The first strength of this study is that it is among the

first to use a deep learning model using ECG waveforms, considered the optimal strategy, to

benchmark the performance of simpler ECG models, revealing simple strategies that perform

nearly as well as the best-performing complex models. The second strength is that it presents

tangible tools that could be easier to deploy than those deep learning models. The third is that it

demonstrates for the first time that these tools generalize better to different sites and populations.

While in an idealized setting medical systems would use tools with the highest accuracy

possible, using simpler models has a number of benefits with respect to real-world application.

As highlighted by our multicenter validation results, models with simpler inputs often exhibit

stronger performance when transferred to other sites with different vendors and demographics.

They are also easier to troubleshoot, and to detect unintended domain shifts in input data, since

the distribution of input measurements is much simpler. These simpler models are also much

more interpretable and can grant insight to physicians in ways that deep learning and even more

complicated linear and tree based methods cannot. In this work, we show a continuum of models

(Figures 1 and 3) which trade off complexity and performance. Notably, models based on

automated measurements have been enabled by the same big data revolution that has enabled

deep learning methods; previously, large datasets of automated measurements weren’t available,

and the measurements were not available in real time for inference.
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The five-variable linear model we trained can be directly interpreted and linked to known

electrophysiologic consequences of LVSD. The development of LVSD is marked by the

progressive accumulation of depolarization and repolarization abnormalities, such as abnormal

QRS complexes, delays in repolarization (with prolonged QT), and more prominent T wave

abnormalities, as captured by our model. Elevated heart rate37 and prolonged QT interval38,39 are

both well-known to be related to severity and prognosis of LVSD. Progressive LVSD leads to

decreased stroke volume and an elevated heart rate is frequently a compensatory mechanism to

maintain cardiac output in addition to being a marker of atrial arrhythmias which frequently

accompany heart failure. The highest weighted measurement in the regression is the T-wave

amplitude in aVR, which also independently predicts LVSD with an AUROC of 0.77. This

measurement was previously shown to be a strong predictor of cardiovascular and all-cause

mortality40, despite evidence that clinicians often ignore lead aVR completely when reading

ECGs41. An upward-facing T-wave in aVR is also correlated with ischemic etiology of

cardiomyopathy42. Deep Q or S waves in V3 are indicative of late QRS transition which has

previously been associated with risk of sudden cardiac death43, while prolonged QRS complexes

are known to be associated with LVSD44. The success of the small models we present both

confirms previous trends in the literature and finds new connections between the ECG and

LVSD, while also providing a new and simple diagnostic tool.

Our work has limitations. While we present strong, simple models for detecting LVSD, they do

not perform as well as deep learning models in terms of accuracy, but rather present different

points on the continuum between complexity and performance. We used NT-proBNP as a

baseline since it is the common screening tool which most closely predicts LVSD, but cases of
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well-compensated heart failure with low ejection fraction would not be captured by increased

NT-proBNP levels. Our conclusions about LVSD likely do not transfer to all phenotypes; for

example in the case of detecting atrial fibrillation in sinus rhythm, previous studies suggest deep

learning achieves much higher performance10,33. There are also many cases where deep learning

is easier to deploy or much more accurate than measurement-based methods, like when

measurements are unavailable or when only a single lead is available, for example on

smartwatches and other mobile devices. Our conclusion about the importance of using ECG

measurements as a baseline for modeling is not as easily applied to other domains, where there

are fewer high-quality interpretable features - in the specific case of ECG analysis, the available

derived measurements (especially more complicated measurements like the QTc and electrical

axis) are a result of over a hundred years of domain knowledge to find the optimal engineered

features, which other applications have not benefited from. Finally, our work is limited to the

populations which we describe, and accuracy might be diminished in different populations,

although we have the benefit of working with three diverse populations (two tertiary care centers

in the United States and one biobank in the United Kingdom).

We present here a set of simple methods to detect LVSD from the ECG, with performances

ranging between those of standard laboratory tests and state of the art deep learning methods. In

many cases, simpler methods with slightly lower accuracy based on discrete features may be

better to deploy than more complicated, uninterpretable methods, and may yield improved

insights into the underlying physiology. We believe there is benefit to presenting results of study

techniques along the continuum of complexity as different health care systems may opt for

employment of different models along this continuum based on resources and accessibility. In
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the setting of ECG interpretation, this is possible thanks to a wealth of domain knowledge about

important ECG measurements.

Model and code availability

For normalized inputs, the small linear model weights are shown in figure 1, and the large linear

model weights in supplementary table 1. XGBoost and deep learning models, and code to train

models, are available on github at [will be made available before publication].

Data availability

UK Biobank data is available through application. Data from Stanford and Columbia Irving

Medical Centers cannot be shared due to patient privacy constraints.
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Tables

Table 1.

Demographics in each split. Blank entries are missing: hispanic ethnicity was not tracked in the

UK Biobank, race and ethnicity were not tracked for all patients in the Columbia cohort, and

ECG findings were not available in the Columbia cohort.

Train Valid Test UK Biobank Columbia

LVSD
2,175
(10.73%) 462 (10.80%) 1,119 (9.72%) 96 (0.28%)

4,656
(12.59%)

LVEF 55.35 (13.31) 55.36 (13.36) 56.25 (13.21) 59.57 (6.16) 53.85 (13.49)

Age 61.46 (18.02) 61.71 (17.52) 62.13 (17.61) 63.65 (7.57) 64.02 (16.54)

Male gender
11,533
(56.90%)

2,385
(55.78%)

6,358
(55.20%)

16,396
(47.83%)

19,645
(53.13%)

Female gender
8,735
(43.10%)

1,891
(44.22%)

5,160
(44.80%)

17,884
(52.17%)

17,319
(46.84%)

Other/unknown gender 1 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 11 (0.03%)

White
11,427
(56.38%)

2,492
(58.28%)

6,500
(56.43%)

33,166
(96.75%)

14,106
(38.15%)

Asian
2,917
(14.39%) 586 (13.70%)

1,743
(15.13%) 459 (1.34%) 767 (2.07%)

Black or African American 1,089 (5.37%) 258 (6.03%) 590 (5.12%) 226 (0.66%)
5,781
(15.63%)

Other/unknown race
4,836
(23.86%) 940 (21.98%)

2,685
(23.31%) 429 (1.25%)

16,321
(44.14%)

Hispanic
2,647
(13.06%) 539 (12.61%)

1,374
(11.93%)

9,623
(26.03%)

Non-hispanic
17,622
(86.94%)

3,737
(87.39%)

10,144
(88.07%)

16,105
(43.56%)

Unknown ethnicity 0 (0.00%) 0 (0.00%) 0 (0.00%)
11,247
(30.42%)

Sinus Rhythm
15,587
(76.90%)

3,298
(77.13%)

8,940
(77.62%)

33,563
(97.91%)

Pacemaker 1,664 (8.21%) 330 (7.72%) 745 (6.47%) 55 (0.16%)
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Premature Ventricular
Complexes 1,367 (6.74%) 287 (6.71%) 757 (6.57%) 1,201 (3.50%)

Left Bundle Branch Block 975 (4.81%) 224 (5.24%) 535 (4.64%) 311 (0.91%)
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Table 2.

A logistic regression model for detecting LVSD. Coefficients for absolute and normed covariates

are shown, along with units for each absolute covariate and P-values for each coefficient

(normed and absolute P-values are the same), and AUCs for each covariate as an independent

predictor.

Units Coefficient
Normed
coefficient P-Value Independent AUC

aVR T
Amplitude µV

3.69E-3 (3.35E-3
- 4.04E-3) 0.52 (0.47 - 0.57) 7.22E-96 0.77 (0.75-0.78)

V3 QRS
Duration ms

2.03E-2 (1.82E-2
- 2.23E-2) 0.51 (0.45 - 0.56) 2.56E-81 0.75 (0.73-0.76)

Heart Rate bpm
1.97E-2 (1.73E-2
- 2.21E-2) 0.38 (0.34 - 0.43) 1.17E-58 0.63 (0.61-0.65)

V3 QRS
Minimum
Deflection µV

-4.76E-4
(-5.34E-4 -
-4.18E-4)

-0.34 (-0.38 -
-0.30) 7.07E-58 0.70 (0.68-0.72)

QTc ms
6.73E-3 (5.38E-3
- 8.08E-3) 0.27 (0.22 - 0.33) 1.50E-22 0.75 (0.73-0.77)

Intercept unitless
-9.10 (-9.66 -
-8.55)

-2.61 (-2.68 -
-2.55) 3.11E-225
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Table 3.

AUROCs of different predictors/models for LVSD across multiple sites.

aVR T Amplitude
5 Measurement
LR

5 Measurement
XGBoost AI-ECG

Stanford 0.77 (0.75-0.78) 0.86 (0.85-0.87) 0.88 (0.87-0.89)
0.94
(0.93-0.94)

UKB 0.78 (0.73-0.83) 0.83 (0.78-0.87) 0.82 (0.77-0.87)
0.72
(0.67-0.78)

Columbia 0.74 (0.74-0.75) 0.80 (0.80-0.81) 0.81 (0.80-0.82)
0.88
(0.87-0.88)
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Figures

Figure 1.

ROC curves for three risk scores for detecting LVSD. Left: the amplitude of the T-wave in lead

aVR, used directly as a risk score for LVSD. Center: a linear model based on five ECG

measurements. Weights based on normalized measurements are shown. Right: a deep learning

model based on the ECG waveform (diagram is a simplification for illustrative purposes only).
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Figure 2.

Top panel: a consort diagram for the Stanford cohort. Bottom panel: performance of several risk

scores in detecting LVSD, by AUROC (area under receiver operator characteristic) and

specificity at a cutoff providing 90% sensitivity. Error bars are 95% bootstrap confidence

intervals.
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