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Abstract 19 

 20 

Electronic Health Records (EHRs) are increasingly used to develop machine learning models in 21 

predictive medicine. There has been limited research on utilizing machine learning methods to 22 

predict childhood obesity and related disparities in classifier performance among vulnerable 23 

patient subpopulations. In this work, classification models are developed to recognize pediatric 24 

obesity using temporal condition patterns obtained from patient EHR data. We trained four 25 

machine learning algorithms (Logistic Regression, Random Forest, XGBoost, and Neural 26 

Networks) to classify cases and controls as obesity positive or negative, and optimized 27 

hyperparameter settings through a bootstrapping methodology. To assess the classifiers for bias, 28 

we studied model performance by population subgroups then used permutation analysis to 29 

identify the most predictive features for each model and the demographic characteristics of 30 

patients with these features. Mean AUC-ROC values were consistent across classifiers, ranging 31 

from 0.72-0.80. Some evidence of bias was identified, although this was through the models 32 

performing better for minority subgroups (African Americans and patients enrolled in Medicaid). 33 

Permutation analysis revealed that patients from vulnerable population subgroups were over-34 

represented among patients with the most predictive diagnostic patterns. We hypothesize that our 35 

models performed better on under-represented groups because the features more strongly 36 

associated with obesity were more commonly observed among minority patients. These findings 37 

highlight the complex ways that bias may arise in machine learning models and can be 38 

incorporated into future research to develop a thorough analytical approach to identify and 39 

mitigate bias that may arise from features and within EHR datasets when developing more 40 

equitable models. 41 

  42 
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Author Summary 43 

 44 

Childhood obesity is a pressing health issue. Machine learning methods are useful tools to study 45 

and predict the condition. Electronic Health Record (EHR) data may be used in clinical research 46 

to develop solutions and improve outcomes for pressing health issues such as pediatric obesity. 47 

However, EHR data may contain biases that impact how machine learning models perform for 48 

marginalized patient subgroups. In this paper, we present a comprehensive framework of how 49 

bias may be present within EHR data and external sources of bias in the model development 50 

process. Our pediatric obesity case study describes a detailed exploration of a real-world 51 

machine learning model to contextualize how concepts related to EHR data and machine 52 

learning model bias occur in an applied setting. We describe how we evaluated our models for 53 

bias, and considered how these results are representative of health disparity issues related to 54 

pediatric obesity. Our paper adds to the limited body of literature on the use of machine learning 55 

methods to study pediatric obesity and investigates the potential pitfalls in using a machine 56 

learning approach when studying social significant health issues. 57 

 58 

 59 

60 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.24302390doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.06.24302390


 4

Introduction 61 

 62 

 63 

Throughout most disciplines, massive amounts of data are being digitally generated, collected, 64 

and stored at a rapidly expanding pace. Additionally, advances in computational methods enable 65 

extraction of information from such datasets that produce useful insights and knowledge. (1) 66 

 67 

In healthcare, there is increasing use of large and variable data sources that include medical 68 

imaging, wearable devices, genome sequencing, and payer records among others; electronic 69 

health records (EHRs) are one particularly robust source of healthcare data. This data is available 70 

in an exceptionally high volume, spans the healthcare sector’s digital ethos, and is extremely 71 

variable in its structure, semantics, and information content. (2,3) 72 

 73 

Advanced data mining and analytical methods are necessary to obtain, transform, and analyze 74 

EHR data for secondary uses such as clinical and health policy research; machine learning 75 

methods are key to addressing challenges in secondary EHR uses. However, although EHR data 76 

and the models that may be trained with this data, hold tremendous potential to transform clinical 77 

care and research, caution must be exercised in how this data is utilized and interpreted 78 

analytically. (4,5) Bias is an inherent property to statistical models and within data collection, 79 

and can also be introduced algorithmically or found within the data used to train and test 80 

machine learning models.(6) 81 

 82 

Issues in using machine learning methods to analyze EHR data often arise when letting data 83 

speak for itself. Algorithms may be subject to biases that are present in EHR datasets from 84 

several sources including study population characteristics, systemic errors in how EHR data is 85 

collected, missing data, misclassification, and sample size. (7) Spurious correlations and other 86 

dataset deficiencies such as multicollinear, correlated predictors may lead to algorithms 87 

overfitting predictions to biased data and producing unstable estimates. In turn, this affects the 88 

models’ performance and generalizability, potentially causing or perpetuating health system 89 

disparities. Machine learning models may be subject to new biases not typically seen in more 90 

traditional observational studies or statistical methods, such as adjusting away healthcare quality 91 
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differences between patients or misinterpreting treatment outcomes when making therapy 92 

recommendations.(8,9) 93 

 94 

Bias Definitions 95 

 96 

Bias that is present in EHR data may result from numerous sources including measurement 97 

errors or selection bias in populations that are represented in EHR data versus the communities 98 

that they represent. (10) Biased data may reflect existing prejudices or disparities of the contexts 99 

from which data are collected. For example, inadequate access to insurance or under-diagnosis of 100 

certain conditions may lead to a misrepresentation of a condition’s prevalence among vulnerable 101 

populations. In EHR data, these pernicious biases may also manifest from inequities in usage and 102 

access to care or in the care that vulnerable subgroups may receive in healthcare settings. Bias 103 

may also be introduced algorithmically or in the model design processes, which makes 104 

measuring bias when evaluating machine learning models an important area for promoting 105 

equity. (11,12) In Figure 1, we conceptualize these EHR data bias sources and how they 106 

contribute to developing biased machine learning models in clinical research. In this study, we 107 

focus on contextualizing pernicious bias in a particular dataset and how such biases may be 108 

characterized.  109 

Figure 1. A Framework to Understand Bias in EHR Data and Machine Learning Models. We 110 

identify three sources of bias (pernicious, measurement, and sampling biases) that may occur in 111 

raw data that translates to biased datasets. Biased data along with bias introduced from design 112 

processes and algorithmically may lead to differential machine learning model performance, 113 

interpretation, and implementation, which in turn may perpetuate health system disparities.   114 

In this work, we investigate potential biases (which we define here to mean systemic errors or 115 

misrepresentations embedded within datasets) that may exist in machine learning models 116 

developed from EHR data in the context of a childhood obesity incidence case study.   Within 117 

the United States, approximately one third of children are overweight (age- and sex-specific 118 

body mass index (BMI) greater than or equal to the 85th percentile per Centers for Disease 119 

Control and Prevention (CDC) growth charts) or obese (age- and sex-specific BMI greater than 120 

or equal to the 95th percentile per CDC growth charts). (13,14) Obesity is linked with numerous 121 

comorbidities, including an increased risk of developing asthma, diabetes, hypertension, and 122 
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psychological conditions during childhood and later in life. (15,16) Pediatric obesity is a socially 123 

significant health issue that disproportionately impacts American Indian, African American, and 124 

Latino children, compared to non-Hispanic whites. Obesity prevalence is also higher among low-125 

income, rural, or less-educated population subgroups. (13,17) 126 

 127 

We developed a classification model to predict childhood obesity incidence using our previously 128 

published temporal condition patterns surrounding pediatric obesity that were derived from EHR 129 

data and patient demographic data. (18) Our study aims to address the following research 130 

questions:  131 

 132 

1. Can a machine learning classification model using temporal condition patterns and 133 

demographic information from EHR data accurately predict future childhood obesity 134 

incidence? 135 

2. How can machine learning models developed using EHR data be analyzed for bias in 136 

model performance amongst population subgroups? 137 

3. How can biased model performance be understood in the context of the individual 138 

condition that a researcher is working to address?  139 

 140 

Materials and Methods 141 

 142 

Setting 143 

 144 

EHR data was obtained from the Pediatric Big Data (PBD) resource at the Children’s Hospital of 145 

Philadelphia (CHOP). Patients in this study were from a retrospective cohort of newly obese 146 

patients and matched control patients with a healthy BMI identified in a previous study. (19) The 147 

PBD resource was created for secondary research use, and contains health-related information, 148 

including demographic, encounter, medication, procedure, and measurement (e.g. vital signs, 149 

laboratory results) elements for a large, unselected population of children.  150 

 151 

Ethics statement: Non-study personnel extracted all data from the EHR and removed protected 152 

health information (PHI) identifiers, except for dates, prior to transfer to the study database. Date 153 
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information was removed from the analysis dataset used in this study. The CHOP Institutional 154 

Review Board approved this study and waived the requirement for consent. 155 

 156 

Temporal Condition Pattern Mining Methodology 157 

 158 

 159 

In a previous study, (18) we applied a sequential pattern mining algorithm to a dataset from a 160 

large retrospective cohort of newly obese pediatric patients (n = 49 694) at CHOP from 2009-161 

2017. Patients were identified using the CDC definition of childhood obesity (BMI z-score at or 162 

above the 95th percentile for age and sex). (13,14) The BMI z-scores were centrally calculated in 163 

this analysis. The same definition of obesity was used across study sites for the entire study 164 

period. Patients had at least one obesity measurement during a CHOP primary care visit and at 165 

least one visit prior to the first obesity measurement where an obese BMI was not recorded. The 166 

analysis aimed to identify common temporal condition patterns derived from visits immediately 167 

before (pre-index) and after (post-index) the first visit with an obese BMI (index). We found 163 168 

condition patterns present in at least 1% of the obese patients, of which 80 were more 169 

significantly more common than in matched controls. Campbell, et al includes a full study 170 

diagram detailing the inclusion criteria implementation for obtaining the study population and 171 

derivation of the temporal condition patterns. (18)  172 

 173 

Study Population 174 

 175 

To obtain the study population for the machine learning case study presented here, we began 176 

with 49,694 pairs of matched cases and controls from the prior study. Patients in our final study 177 

population must have had both a BMI measurement in the pre-index and index visit (for control 178 

patients the index visit was the date for the visit that they were matched on with their 179 

corresponding case patient). For case patients, this meant that they needed to have a non-obese 180 

BMI measurement in the pre-index visit, and an obese BMI measurement in the index visit; 181 

15,522 case patients met these criteria. Control patients needed a healthy BMI measurement in 182 

both their pre- and index visits; 31,366 control patients met this criterion. Finally, only patients 183 

from case-control pairs where both patients met the BMI inclusion criteria were kept in the study 184 
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population; 4,843 case-control pairs met the criteria and 44,851 did not. A total of 9,686 patients 185 

met the BMI criterion for inclusion.  186 

 187 

Patients and their corresponding matched case or control were eliminated if they did not have 188 

insurance information within 2 years of the matched index visit. For controls, 45 were missing 189 

insurance information from within two years or altogether; these 45 controls and their matched 190 

cases were eliminated from the study population. Seven cases were missing this information and 191 

were eliminated from the study population (along with their matched controls). The final study 192 

population contained 4,777 matched pairs, and 9,554 total patients. The study population and 193 

data acquisition process are summarized in Figure 2.  Table 1 presents the demographic 194 

characteristics of the total study population, as well as the case and control populations 195 

respectively. 196 

 197 

Figure 2. A flow chart illustrating how patients in the final study population were obtained after 198 

filtering through the study’s inclusion criteria. M represents the total number of patients, and N 199 

represents the total number of matched case-control pairs.   200 

 201 

 202 

Feature Selection, Data Acquisition and Preprocessing 203 

 204 

The features selected for the machine learning case study included temporal condition patterns 205 

uncovered in Campbell, et al. (18) For obesity incidence prediction, only temporal condition 206 

patterns from the pre-index and index visits were considered in this model. Of the original 80 207 

patterns identified in the previous study, 70 temporal condition patterns were selected for 208 

inclusion in this analysis. Each temporal condition pattern is considered separately as a feature 209 

for this study. Patient EHR data were analyzed for the presence of each temporal condition 210 

pattern, and patients were assigned a binary value of 0 (indicating a patient did not have a record 211 

of the temporal condition pattern) or a 1 (indicating that a patient did have a record of the 212 

temporal condition pattern) for each variable. Diagnoses in the temporal condition patterns are 213 

coded using the Expanded Diagnostic Clusters (EDCs) from the Adjusted Clinical Group (ACG) 214 

System. (20,21) The temporal diagnoses that comprised the condition patterns used in this study 215 

may be found in Table 1 in the Supporting Information section.  216 

 217 
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Person-level characteristics including race, sex, ethnicity, age at index visit, and insurance were 218 

also extracted from EHR data within the PBD database and included in the final dataset. The 219 

demographic variables considered were sex assigned at birth, race, Medicaid enrollment (a proxy 220 

for socioeconomic status at the time of obesity incidence), (22,23) and age at index visit (coded 221 

as a categorical variable, for patients who were 2-5 years, 6-11 years, and 12-18 years). Patients 222 

were classified as Hispanic if their self-identified ethnicity was specified as Hispanic or Latino; 223 

otherwise, they were categorized by the value of their self-identified race from the EHR. Patients 224 

with missing race and ethnicity information were classified as unknown. Patients were classified 225 

as being enrolled in Medicaid if they used multiple insurance plans and one of those was 226 

Medicaid or Children’s Health Insurance Program (CHIP), Pennsylvania’s state program to 227 

provide health insurance to uninsured children and teens who are ineligible or not enrolled in 228 

Medicaid. (24) For patients who did not have insurance information recorded for their index 229 

visit, all insurance information for their visits within a year of their index visit was obtained from 230 

the PBD database and analyzed. If patients had a record of Medicaid/CHIP enrollment within a 231 

year of their index visit, they were classified in the Medicaid/CHIP enrollment category. 232 

 233 

 Machine Learning Analysis 234 

 235 

We trained four machine learning models (Logistic Regression, Random Forest, XGBoost, and 236 

Neural Networks) to classify cases and controls as obesity positive or negative, and optimized 237 

hyperparameter settings through a bootstrapping methodology. We randomly shuffled the data 238 

and split it into training and validation folds in a stratified fashion relative to the 50:50 class 239 

balance. We trained each model with all hyperparameter settings on the training fold and 240 

evaluated its Area Under the Receiver Operating Curve (AUC-ROC) on the validation fold. We 241 

repeated the process 200 times to obtain 200 validation AUC-ROCs for each hyperparameter 242 

setting for each model, then selected the hyperparameter combination with the highest mean 243 

validation AUC-ROC for a given model class. We implemented all algorithms using the Scikit-244 

learn library in Python 3. (25) We calculated the mean and standard deviation (SD) AUC-ROC 245 

values for the total study population and demographic subgroups for each algorithm.  246 

 247 

Permutation Analysis 248 

 249 
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We performed a permutation feature importance analysis on the data split with median validation 250 

AUC-ROC for the model with hyperparameters corresponding to the highest mean validation 251 

AUC-ROC. The feature importance is computed by measuring the change in the AUC-ROC on 252 

the validation set when the values in the dataset for a given feature are randomly shuffled among 253 

samples. Feature importance is reflected by a decrease in AUC-ROC as compared to when the 254 

feature is not permuted, with higher importance indicated by a larger decrease.  255 

 256 

 257 

Results 258 

 259 

Study Population 260 

 261 

 262 

Table 1 presents the demographic characteristics of the total study population, as well as the case 263 

and control populations respectively. 264 

 265 

Table 1. Demographic Characteristics of Obesity Incidence Study Case and Control Populations 266 

 267 

 
 
 

 Total Study 
Population 
(n= 9 554) 

 Case 
Population 
(n= 4 777) 

Control 
Population 
(n= 4 777) 

          n (%)        n (%)  
   
Sex   
Male 5 294 (55.4%) 2 647 (55.4%) 2 647 (55.4%) 
Female 
 

4 260 (44.6%) 2 130 (44.6%) 2 130 (44.6%) 

Race/ethnicity    

Non-Hispanic Asian  285 (2.9%)  114 (2.4%)  171 (3.6%) 
Non-Hispanic 
Black/African 
American 

2 417 (25.3%) 1 512 (31.7%)  905 (18.9%) 

Non-Hispanic White 5 744 (60.1%) 2 575 (53.9%) 3 168 (66.3%) 
Hispanic  334 (3.5%)  208 (4.4%)  126 (2.6%) 
Non-Hispanic Multiple 
Race 

124 (1.3%) 68 (1.4%) 56 (1.2%) 

Non-Hispanic 
Heterogeneous Other 

9 (<1%)  7 (<1%)  2 (<1%)  

Unknown   641 (6.7%)  292 (6.1%)  349 (7.3%) 
    
Medicaid Enrollment 
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Medicaid/CHIP 3 067 (32.1%) 1 822 (38.1%) 1 245 (26.1%) 
 
Age at index visit 
 

   

2-4 years 2 426 (25.4%) 1 213 (25.4%) 1 213 (25.4%) 
5-11 years 3 791 (39.7%) 1 896 (39.7%) 1 895 (39.7%) 
12-18 years 3 337 (34.9%) 

 
1 667 (34.9%) 

 
1 669 (34.9%) 

 
 268 

The study population is majority male (55.4%) and majority White (60.1%). African Americans 269 

are the second largest racial /ethnic group (25.3%).  Approximately 1/3 of patients (32.1%) were 270 

enrolled in Medicaid at the time of their index visit. The case population is majority male 271 

(55.4%) and majority White (53.9%) but is comprised of a higher proportion of African 272 

Americans (31.7% vs. 25.3%) and Hispanic patients (4.4% vs. 3.5%) patients compared to the 273 

entire study population. Additionally, a greater proportion of case patients (38.1%) were enrolled 274 

in Medicaid compared to the overall study population (32.1%). The control population has a 275 

higher proportion of White patients compared to the case population (66.3% versus 53.9%) and a 276 

lower proportion of racial minorities. The control population also had a lower rate of Medicaid 277 

enrollment than the case population (26.1% versus 38.1%). 278 

 279 

Machine Learning Results 280 

 Table 2. Mean(SD) AUC-ROC for Study Population and Demographic Subgroups by 281 

Classification Algorithm 282 

 283 

 
Logistic Regression Random Forest XGBoost Neural Net 
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 284 

Mean AUC-ROC values were consistent across algorithms, ranging from 0.72-0.80. On the full 285 

study population, Neural Net had a mean AUC-ROC value of 0.76, and mean AUC-ROC values 286 

ranged from 0.70-0.79 across demographic subgroups. On the full study population, Random 287 

Forest had a mean AUC-ROC value of 0.77, and mean AUC-ROC values ranged from 0.73-0.79 288 

across demographic subgroups. On the full study population, Logistic Regression had a mean 289 

AUC-ROC value of 0.77, and mean AUC-ROC values ranged from 0.73-0.80 across 290 

demographic subgroups. On the full study population, XGBoost had a mean AUC-ROC value of 291 

0.78, and mean AUC-ROC values ranged from 0.73-0.80 across demographic subgroups. 292 

XGBoost and Logistic regression tended to perform the best on the full study population and 293 

when evaluated by demographic subgroups. Some evidence of bias was identified, although 294 

surprisingly this was through the models performing better for minority subgroups. The highest 295 

mean AUC-ROC value (0.80) was observed among African American patients, patients enrolled 296 

in Medicaid, and patients ages 5-11 years.  297 

Permutation Analysis Findings  298 

 299 

Total Study Population 0.78 (0.01) 0.77 (0.01) 0.78 (0.01) 0.76 (0.01) 
Sex 

   
 

Male 0.78 (0.01) 0.77 (0.01) 0.78 (0.01) 0.76 (0.01) 
Female 0.78 (0.01) 0.77 (0.01) 0.78 (0.01) 0.77 (0.01) 
Race 

   
 

Asian 0.76 (0.05) 0.76 (0.05) 0.77 (0.05) 0.74 (0.06) 
Black/African American 0.79 (0.01) 0.79 (0.01) 0.79 (0.02) 0.78 (0.02) 
White 0.75 (0.04) 0.75 (0.04) 0.76 (0.01) 0.74 (0.01) 
Hispanic 0.75 (0.04) 0.75 (0.04) 0.77 (0.04) 0.74 (0.04) 
Multiple Race 0.73 (0.08) 0.73 (0.08) 0.76 (0.08) 0.75 (0.07) 
Unknown  0.73 (0.03) 0.73 (0.03) 0.73 (0.04) 0.72 (0.04) 
Medicaid Enrollment 

   
 

Medicaid/CHIP 0.80 (0.01) 0.79 (0.01) 0.80 (0.01) 0.79 (0.01) 
Not Enrolled in 
Medicaid/CHIP 0.76 (0.01) 0.75 (0.01) 0.76 (0.01) 0.74 (0.01) 
Age at index visit     
2-4 years 0.76 (0.02) 0.75 (0.01) 0.76 (0.02) 0.75 (0.01) 
5-11 years 0.80 (0.01) 0.79 (0.01) 0.80 (0.01) 0.79 (0.01) 
12-18 years 0.75 (0.02) 0.75 (0.02) 0.76 (0.01) 0.75 (0.02) 
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A permutation analysis was undertaken to investigate why models tended to perform slightly 300 

better for under-represented groups in the study population.  We hypothesized that the features 301 

that are most predictive of obesity may be more common among marginalized subpopulations. 302 

Thus, we undertook a permutation feature analysis to identify which features were most 303 

important in classifying patients as obese or not obese for each algorithm.  304 

 305 

Table 3. Most Predictive Variables by Classifier (Value (2 sigma)) 306 

 307 

 Classifier    
Variable 

Predictive 
Rank 

XGBoost Random Forest Neural Net Logistic 
Regression 

 
1 

 
1-ALL04 

2.04% (.37%) 

 
1-ALL04 

2.10% (.60%) 

 
1-ALL04 

1.13 % (.57%) 

 
race_3 

1.52 % (.55%) 
 

2 
 

2-MUS01 
1.36% (.32%) 

 
2-ALL03 

1.41% (.65%) 

 
2-MUS01 

0.93% (.30%) 

 
2-MUS01 

1.26% (.28%) 
 

3 
 

2-ALL03 
1.15% (.25%) 

 
2-NUR19 

1.31% (.62%) 

 
1-ALL03, 1-ALL04 

0.85% (.35%) 

 
1-ALL04 

1.11% (.41%) 
 

4 
 

2-SKN04 
0.83% (.29%) 

 
race_2 

1.05% (.41%) 

 
1-SKN02 

0.79% (.34%) 

 
2-MUS04 

0.99% (.20%) 
 

5 
 

1-SKN02 
0.79% (.33%) 

 
1-SKN02 

0.82% (.40%) 

 
2-ALL03 

0.79% (.40%) 

 
2-NUR19 

0.97% (.41%) 
 

6  
2-END05 

0.75% (.18%) 

 
2-MUS01 

0.82% (.32%) 

 
race_3 

0.70% (.62%) 

 
1-ALL03, 1-

ALL04 
0.87% (.20%) 

 
7 

 
race_2 

0.72% (.26%) 

 
2-RES01 

0.77% (.37%) 

 
2-SKN04 

0.61% (.22%) 

 
2-RES01 

0.69% (.41%) 
 

8 
 

2-ALL04 
0.72% (.41%) 

 
1-GAS03 

0.70% (.54%) 

 
2-ALL04 

0.60% (.86%) 

 
2-ALL03 

0.67% (.50%) 
 

9 
 

2-MUS17 
0.70% (.11%) 

 
2-ALL04 

0.65% (.47%) 

 
1-GAS03 

0.60% (.22%) 

 
2-SKN04 

0.66% (.39%) 
 

10 
 

2-MUS04 
0.68% (.31%) 

 
2-SKN04 

0.59% (.27%) 

 
2-RES01 

0.54% (.45%) 

 
medicaid 

0.55% (.29%) 
Table 3 The top ten most predictive sequences for each classification algorithm. The gray highlighted cells represent 308 

sequences that were most predictive across all four classifiers. The orange highlighted cells indicate race variables 309 

that were most predictive. 310 

 311 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.06.24302390doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.06.24302390


 14

Table 3 presents the top ten most predictive sequences for each classification algorithm. Four 312 

temporal condition patterns were among the top ten most predictive features across all four 313 

algorithms: 1-ALL04 (a diagnosis of asthma in the pre-index visit), 2-MUS01 (a diagnosis of 314 

Musculoskeletal signs and symptoms in the index visit), 2-ALL03 (a diagnosis of allergic rhinitis 315 

in the index visit0, and 2-SKN04 (a diagnosis of acne in the index visit). A diagnosis of asthma 316 

in the pre-index visit (1-ALL04) was the most predictive feature for the XGBoost, Neural 317 

Network, and Random Forest algorithms, and was the third most predictive for Logistic 318 

Regression. To better understand the disparate machine learning model performance and 319 

permutation analysis findings, the prevalence of these four temporal condition patterns were 320 

assessed among demographic subgroups in the study population, Table 4.  321 

 322 

Table 4. Demographic Characteristics of Patient Subgroups with most predictive sequences 323 

 324 

 
 
 

 Total Study 
Population 
(n= 9 554) 

 1-ALL04 
(n= 851) 

2-MUS01  
(n= 190) 

2-ALL03  
(n= 459) 

2-SKN04  
(n= 140) 

          n (%)        n (%) n (%) n (%) n (%) 
     
Sex     
Male 5 294 (55.4%) 533 (62.6%)  99 (52.1%)  251 (54.7%)  61 (43.5%) 
Female 
 

4 260 (44.6%) 318 (37.4%)  91 (47.9%)  208 (45.3%)  79 (56.4%) 

Race      

Asian  285 (2.9%)  18 (2.1%)  1 (<1%)  13 (2.8%)  5 (3.6%) 
Black/AA 2 417 (25.3%)  421 (49.4%)  37 (19.5%)  212 (46.2%)  57 (40.7%) 
White 5 744 (60.1%)  342 (40.1%)  132 (69.5%)  189 (41.2%)  61 (43.6%) 
Hispanic  334 (3.5%)  30 (3.5%)  6 (3.2%)  15 (3.3%)  3 (2.1%) 
Multiple Race 124 (1.3%) 29 (1.3%) 4 (2.1%) 3 (<1%) 1 (<1%) 
Heterogeneous  9 (<1%)  0 (0%) 1 (<1%)  0 (0%)  0 (0%) 
Unknown   641 (6.7%)  29 (3.4%)  9 (4.7%)  27 (5.9%)  13 (9.3%) 
      
Medicaid 
Enrollment 
 

     

Medicaid/CHIP 3 067 (32.1%)  404 (47.5%)  55 (28.9%)  184 (40.1%)  44 (31.4%) 
 
Age at index visit 
 

     

2-4 years 2 426 (25.4%)  240 (28.2%)  13 (6.8%)  78 (17.0%)  2 (1.4%) 
5-11 years 3 791 (39.7%)  375 (44.1%)  67 (35.3%)  233 (50.8%)  17 (12.1%) 
12-18 years 3 337 (34.9%) 

 
 240 (27.7%) 

 
 110 (57.9%) 

 
 148 (32.2%) 

 
 121 (86.4%) 

 

 325 
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Two features that were most common among patients were also a most predictive sequence for 326 

all four classifiers: 1-ALL04 (asthma in the pre-index visit), of which 851 patients had a record 327 

in their EHR data, and 2-ALL03 (allergic rhinitis in the index visit) of which 459 patients had a 328 

record (compared to 190 patients with the 2-MUS01 sequence and 140 patients with the 2-329 

SKN04 diagnosis).  African American patients and patients enrolled in Medicaid are over-330 

represented among patients who have these diagnoses. Almost half of patients (49.4%) with a 1-331 

ALL04 diagnosis were African American, even though African American patients make up only 332 

25.3% of the study population, and 47.5% of patients with this diagnosis were enrolled in 333 

Medicaid compared to only 32.1% of the total study population. Similarly, 46.2% of patients 334 

with the 2-ALL03 diagnosis were African American and 40.1% were enrolled in Medicaid.  335 

 336 

Discussion 337 

 338 

In this study, four supervised machine learning algorithms were trained to identify pediatric 339 

patients as obese or not obese using demographic variables and temporal condition patterns 340 

previously found to be associated with obesity incidence. Model performance was evaluated for 341 

the total population and by demographic subgroups using mean AUC-ROC values. Mean AUC-342 

ROC values were consistent across algorithms, ranging from 0.72-0.80. XGBoost and Logistic 343 

regression tended to perform the best on the full study population and when evaluated by 344 

demographic subgroups. Algorithms tended to perform relatively consistently compared to one 345 

another and when each classifier’s performance was analyzed by demographic subgroups. This 346 

result is consistent with existing work demonstrating that complex machine learning models 347 

often perform no better than logistic regression when using EHR input data. (26) Our conjecture 348 

is that this is likely true when inputs consist of highly informative structured data such as that 349 

found in the EHR and similarly, the temporal patterns used in our work. 350 

 351 

A permutation analysis was conducted on the classifiers developed in our case study. The ten 352 

variables that were most predictive for each of the four classifiers developed in the obesity 353 

incidence prediction research were identified and their average impact for each model’s AUC-354 

ROC was computed. Two variables, 1-ALL04 (asthma in the pre-index visit) and 2-ALL03 355 

(allergic rhinitis in the index visit), were among the most predictive variables for all four 356 
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classifiers and were the most prevalent condition patterns among the study population. African 357 

American patients and patients enrolled in Medicaid were over-represented among patients who 358 

had this temporal condition pattern.  Our findings align with prior research on the association 359 

between asthma and pediatric obesity which provide insight into why these variables were so 360 

informative. Pediatric obesity and asthma are strongly associated, and early-life asthma 361 

contributes to the onset of pediatric obesity.(27) Although the relationship between allergic 362 

rhinitis and pediatric obesity is unclear,  (28,29)  allergic rhinitis has been shown to be comorbid 363 

with pediatric asthma.(30) Low-income, urban, and racial minority children are 364 

disproportionately impacted by both pediatric obesity and asthma, (17,31,32) which explains 365 

their over-representation amongst patients with the most predictive features and the slight 366 

classifier performance bias in their favor.     367 

 368 

Some evidence of model bias relative to population subtypes was detected, although 369 

unexpectedly the bias manifested as the classifiers tending to perform better on vulnerable 370 

subgroups including African American patients and patients enrolled in Medicaid (a proxy for 371 

lower socioeconomic status) than the entire population. These findings illustrate that there are 372 

many complex ways that bias may emerge within EHR data, and that the context in which data is 373 

collected and population impacted by a condition must be carefully considered when assessing 374 

EHR data for bias.  Prior work has shown that bias in machine learning typically results in lower 375 

model performance for minorities due to an under-representation in data. (33,34) However, 376 

possible biases need to be examined carefully. We hypothesize that the features most predictive 377 

of obesity are more represented among patients in under-represented subgroups in this study, 378 

which lends to the classification algorithms performing generally equitably if not slightly better 379 

for African American patients and patients enrolled in Medicaid (a bias that is in favor of 380 

vulnerable subpopulations). While these are simply associations and causality cannot be inferred, 381 

our results support the idea that causes of bias in datasets and the models trained from them are 382 

much more nuanced than initially thought.  383 

 384 

Limitations 385 

 386 
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While this study serves to illustrate challenges and nuances associated with bias in machine 387 

learning models developed using EHR, it does have limitations. First, the temporal condition 388 

patterns mined from EHR data that were utilized as features for the machine learning models 389 

only show associations. Findings are descriptive and the discovered temporal patterns and 390 

comorbidities should be viewed in this light. No causality can be attributed to the associations 391 

uncovered in this study. Similarly, the comparisons made in classifier performance differences 392 

between population subgroups and the prevalence of temporal condition pattern prevalence are 393 

also descriptive. No tests of statistical significance were performed, as this was a descriptive case 394 

study that represents a first step in further research into bias in machine learning models 395 

developed from EHR data. Finally, we acknowledge that when considering the outcome of 396 

obesity in the machine learning prediction problem, minority patients comprised a greater 397 

proportion of the case population compared to controls. This may have contributed to the model 398 

performance bias in favor of vulnerable subgroups. 399 

 400 

Conclusion 401 

 402 

Our paper presents a comprehensive framework of how bias may be present within EHR data 403 

and external sources of bias in the model development process, which in turn impacts machine 404 

learning model development and clinical applications. Our pediatric obesity case study describes 405 

a detailed exploration of a real-world machine learning model to contextualize how concepts 406 

related to EHR data and machine learning model bias occur in an applied setting. We describe 407 

how we evaluated our models for bias, and considered how these results are representative of 408 

health disparity issues related to pediatric obesity. Finally, our paper presents a novel application 409 

of data-driven temporal condition patterns that surround pediatric obesity incidence into a 410 

predictive machine learning model. This adds to the limited body of literature on the use of 411 

machine learning methods to study pediatric obesity and investigates the potential pitfalls in 412 

using a machine learning approach when studying social significant health issues. 413 

 414 

Bias is a complex and multi-faceted issue that is present in society and translates into data 415 

collected in applied settings. We expect that our study may be used to define the types of bias 416 

that researchers working with EHR data to develop machine learning models may look for, and 417 
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to understand that bias may manifest in machine learning models in unexpected ways. Our 418 

approach to evaluating a machine learning model for bias and contextualizing our model 419 

evaluation alongside clinical and psychosocial knowledge surrounding pediatric obesity provides 420 

a useful blueprint for researchers developing and evaluating machine learning models with EHR 421 

data in the obesity space and beyond. Finally, our findings support more equitable model 422 

development, and may be used to guide researchers and clinicians in the precision medicine 423 

space to consider the types of bias that may be present in machine learning models and how to 424 

implement these models in clinical settings in a way that helps to address and not advance 425 

existing systemic disparities.  426 

427 
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Supporting Information 557 

 558 

S1 Table. Temporal Diagnoses Included as Machine Learning Model Features 559 

 560 

 561 Diagnoses 
Pre-Index Visit Diagnoses 
 
1-Chronic pharyngitis and tonsillitis  
1-Deafness, hearing loss  
1-Respiratory signs and symptoms 
1-Sleep Apnea 
1-Sleep Problems  
1-Dermatitis and eczema 
1-Seizure Disorder  
1-Asthma w/o Status Asthmaticus  
1-Constipation  
1-Urinary Symptoms  
1-Autism Spectrum Disorder  
1-Deafness, hearing loss  
1-Fever 
1-Gasteroenteritis  
1-Headaches 
1-Nausea, vomiting 
 
Index Visit Diagnoses 
 
2-Chronic pharyngitis and tonsillitis  
2-Respiratory signs and symptoms 
2-Sleep Apnea  
2-Sleep Problems  
2-Allergic Rhinitis  
2-Dermatitis and eczema  
2-Developmental disorder 
2-Neurologic signs and symptoms  
2-Seizure Disorder 
2-Constipation  
2-Urinary Symptoms 
2-Allergic Rhinitis 
2-Asthma w/o Status Asthmaticus  
2-Dermatitis and eczema 
2-Autism Spectrum Disorder  
2-Developmental disorder  
2-Neurologic signs and symptoms 
2-Headaches 
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