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Abstract  13 

Cell-free DNA (cfDNA) has shown promise as a non-invasive biomarker for cancer screening 14 

and monitoring. The current advanced machine learning (ML) model, known as DNA evaluation 15 

of fragments for early interception (DELFI), utilizes the short and long fragmentation pattern of 16 

cfDNA and has demonstrated exceptional performance. However, the application of cfDNA-17 

based model can be limited by the high cost of whole-genome sequencing (WGS). In this study, 18 

we present a novel ML model for cancer detection that utilizes cfDNA profiles generated from 19 

all protein-coding genes in the genome (exome) with only 0.08X of WGS coverage. Our model 20 

was trained on a dataset of 721 cfDNA profiles, comprising 426 cancer patients and 295 healthy 21 

individuals. Performance evaluation using a ten-fold cross-validation approach demonstrated that 22 

the new ML model using whole-exome regions, called xDELFI, can achieve high accuracy in 23 
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cancer detection (Area under the ROC curve; AUC=0.896, 95%CI = 0.878 - 0.916), comparable 24 

to the model using WGS (AUC=0.920, 95%CI = 0.901 – 0.936). Notably, we observed distinct 25 

fragmentation patterns between exonic regions and the whole-genome, suggesting unique 26 

genomic features within exonic regions. Furthermore, we demonstrate the potential benefits of 27 

combining mutation detection in cfDNA with xDELFI, which enhance the model sensitivity. Our 28 

proof-of-principle study indicates that the fragmentomic ML model based solely on whole-29 

exome regions retains its predictive capability. With the ultra-low sequencing coverage of the 30 

new model, it could potentially improve the accessibility of cfDNA-based cancer diagnosis and 31 

aid in early detection and treatment of cancer.  32 
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Introduction 33 

Cell-free DNA (cfDNA) is a term for DNA fragments that are mostly released into body 34 

fluids from various sources, such as apoptotic or necrotic cells, as well as from active secretion 35 

[1]. The elevation of cfDNA in the blood can be an indicator of various health conditions, 36 

especially  cancer [2, 3]. Analysis of cfDNA in the context of a liquid biopsy is gaining 37 

popularity in the field of oncology as it shows variety of benefits, for example, non-invasiveness 38 

that require only blood draw, the ability of each sample to reflect all tumor lesions in the body, 39 

and ability to real-time monitor cancer progression due to short half-life of cfDNA (~2 h) [4]. A 40 

particular subset of cfDNA known as circulating tumor DNA (ctDNA), which contains genetic 41 

alterations associated with cancer development, holds immense potential for diagnosing the 42 

disease, tracking cancer progression, evaluating treatment response, and identifying potential 43 

therapeutic targets [1]. However, the extremely low concentration of ctDNA in plasma, which is 44 

lower than 0.01% of the total cfDNA concentration [5], presents a significant obstacle for 45 

accurate detection and analysis. 46 

Numerous studies demonstrated that the fragment length of cfDNA derived from normal 47 

cells is about 166 bp on average, while the cfDNA derived from tumor cells is more fragmented 48 

with the size between 90–150 bp [6-9]. Furthermore, there has been a notable observation of a 49 

positive correlation between the proportion of short cfDNA fragments (<150 bp) and the tumor 50 

DNA fraction present in the plasma [7]. In addition, numerous research studies have examined 51 

the possibility of using shorter cfDNA fragments to improve the detection of copy number 52 

variations (CNV) and single nucleotide variations (SNV) in the cancer patients [7, 10, 11]. In 53 

recent years, there has been a growing interest in the study of cfDNA fragmentation patterns, 54 

known as fragmentomics [12, 13], including various aspects of cfDNA fragmentation, such as 55 
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fragment sizes, abundance, integrity, end motifs, window protection score, and preferable end 56 

coordinates [12, 14]. The advancement of next-generation sequencing technology has enabled 57 

whole-genome sequencing (WGS) showing that cfDNA fragment size distribution patterns in 58 

cancer patients are more variable than those in healthy individuals [15]. These differences in 59 

cfDNA fragmentation patterns reflect changes in chromatin structures, as well as other genomic 60 

and epigenomic abnormalities in cancer [16] providing a framework for developing diagnostic 61 

tools [17]. Recently, a machine-learning (ML) approach was applied to learn the pattern of 62 

cfDNA fragmentation from low-coverage WGS data , known as DNA evaluation of fragments 63 

for early interception (DELFI), showing excellent performance in the classification of cancer-64 

carried individuals and healthy individuals [15]. DELFI evaluated the fragment size coverage of 65 

short cfDNA fragments (100–150 bp) and long cfDNA fragments (151–220 bp) inside 100 66 

kilobase (Kb) non-overlapping consecutive bins and integrated them into a 5-megabase (Mb) 67 

non-overlapping consecutive window. The aberrations of the ratio between short cfDNA 68 

fragments and long cfDNA fragments within each window is increased in cancer patients, but 69 

not in healthy individuals. This cfDNA fragmentation size difference was utilized as a key 70 

feature in gradient-boosting model and showed outstanding performance with an overall area 71 

under the curve (AOU) of 0.94 [15]. The performance of DELFI model has been further 72 

improved by reducing feature dimension, applying different feature extraction strategy, and 73 

utilizing ensemble algorithm [13, 18]. Nevertheless, its practical application is limited by the 74 

current WGS cost. While reducing the sequencing coverage to 0.1X WGS has been 75 

demonstrated as an effective cost-saving measure for estimating tumor fraction [19], it also 76 

introduced significant alterations in the fragmentation profiles [13, 15], which could potentially 77 

impact the accuracy and reliability of DELFI score. 78 
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While most of the human genome is non-coding and its function remains largely 79 

unknown, only 1% of the genome is comprised of protein-coding regions, known as exons. 80 

Exons are the protein-coding regions of a gene that are transcribed into mRNA and ultimately 81 

translated into proteins. The sequences of exons are typically highly conserved across different 82 

species, reflecting the importance of these regions in protein function and evolution [20]. 83 

Mutations in exons can lead to altered protein function and are often associated with genetic 84 

diseases. With the availability of large databases of known SNPs and known pathogenic variants, 85 

whole-exome sequencing (WES), an alternative approach to whole-genome sequencing (WGS) 86 

by targeting the exonic regions,  have been extensively applied to identify casual mutations in 87 

cancer patients with much lower cost than WGS [21]. Recently, researchers have been exploring 88 

the use of cfDNA fragmentation profiles at exonic regions to infer gene expression, which can 89 

apply to various clinical applications such as tumor detection, subtype classification, treatment 90 

response assessment, and prognostic implications [22]. 91 

In this study, we present a novel approach for developing the DELFI model that can 92 

classify cancer patients and healthy individuals based on exonic regions. Our new exome-based 93 

cfDNA fragmentation model, called xDELFI, can efficiently distinguish between cancer patients 94 

and healthy individuals and can classify the tissue of origin with reasonable accuracy. 95 

Furthermore, our study showed that combining xDELFI with mutation information can further 96 

enhance the prediction performance, which highlights the potential benefits of utilizing WES 97 

data in mutation calling and xDELFI score prediction. The new model paves the way to create 98 

more cost-effective methods for cancer diagnosis and monitoring. 99 

 100 

Methods 101 
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Data collection 102 

The paired-end cfDNA whole-genome sequencing samples from four different articles stored in 103 

FinaleDB database were collected. In total of 426 samples from 16 cancer types and 295 healthy 104 

individuals were processed [7, 15, 16, 23] (Supplementary Figure 1). The data was pre-processed 105 

steps, which had been proceed in finaleDB, to have high quality data by 1) trimming all 106 

sequences to 50 bp to minimize possible batch effects, 2) exclude un-properly mapped in pair, 3) 107 

exclude non-primary alignments, 4) exclude reads with mapping quality < 30, and 4) remove 108 

duplicated reads. Data quality control was proceeded by measuring correlation of the whole 109 

genome sequence coverage observed in this study and those reported in the original article 110 

(Supplementary Figure S3).  111 

 112 

DELFI and exomeDELFI score calculation 113 

DELFI score calculation is followed [15]. The original script of DELFI is available in 114 

https://github.com/cancer-genomics/delfi_scripts. Briefly, all chromosomes have been split into 115 

consecutive, non-overlapping 100 kb bins. The lowest coverage bins (top10%) and fragments 116 

falling in the Duke blacklisted regions 117 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/) were 118 

removed. Short (100 and 150 bp) and long (151 and 220 bp) cfDNA fragment coverage of each 119 

100k bin were counted. For exomeDELFI, only fragments falling in the exome regions based on 120 

Agilent - SureSelect All Exon V7 (bed file is available at https://github.com/mobidic/BARMEN) 121 

were counted. Loess regression-based approach is applied to account for GC content bias for 122 

each 100kb bin in the genome of each sample. The 100k bins were combined into 5Mb bins (504 123 

bins). Therefore, the total number of bins/features from short and long fragment coverage is 124 
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1,008. Then, GC-adjusted short and long fragment coverage were centered and scaled for each 125 

sample to have mean 0 and unit standard deviation. Feature selection, performed only on the 126 

training data (in each cross-validation run), removed bins that were highly correlated (correlation 127 

> 0.9) or had near zero variance. Gradient boosting machine (GBM) was implemented using the 128 

caret package in R with parameters of n.trees=150, interaction.depth=3, shrinkage=0.1, and 129 

n.minobsinside=10. The prediction error was evaluated by performing ten-fold cross validation 130 

(CV) repeated ten times. The final DELFI score is an average probability of the cancer class 131 

from ten repeated CV.     132 

 133 

xDELFI score calculation 134 

Firstly, we applied three fragment size thresholds, which are short (100-150), medium (150-220), 135 

and long (>220), to count the number of fragments in each 100k bin along the genome, instead of 136 

using short (100-150) and long (150-220) threshold in previous study (Figure 1B). In addition to 137 

fragment length coverage, overall fragment coverage is counted by summation of all fragments 138 

in each 100k bin. Secondly, loess regression-based approach is applied to account for GC content 139 

bias for each 100kb bin. Thirdly, the 100k bins were combined into 5Mb bins (504 bins) for each 140 

chromosome arm. Then, the fragment size distribution (FSD) of 5bp bin in range of 100 to 220bp 141 

(24 bins) in each chromosome arm (39 arms) was calculated, and loess regression-based 142 

approach is applied to account for GC content bias for each bin. Therefore, the total number of 143 

features from fragment length coverage (504x3), overall coverage (504), and FSD (24x39) is 144 

2,952. Feature selection method was applied only on the training data to remove highly 145 

correlated features (correlation > 0.9) or uninformative features (zero variance). Finally, two 146 

different machine learning models, GBM and support vector machine (SVM), were combined as 147 
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stacking ensemble by GBM to train xDELFI model. The stacking ensemble model was 148 

implemented using caretEnsemble package with GBM parameters of n.trees=70, 149 

interaction.depth=3, shrinkage=0.1, and n.minobsinside=10. Ten-fold CV repeated ten times was 150 

conducted to evaluate the prediction error and the average probability of the cancer class was 151 

used as the final xDELFI score. xDELFI script is freely available at Github: 152 

https://github.com/asangphukieo/xDELFI.  153 

 154 

 155 

Results 156 

 157 

 158 
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Figure 1 Schema of xDELFI calculation (A) general procedure of cell-free DNA process 159 

consists of blood collection, cfDNA extraction, library preparation for whole-genome sequencing 160 

or whole-exome sequencing, sequencing using next-generation sequencing platforms, and data 161 

preprocessing. (B) xDELFI feature extraction contains three fragment size count (100-150bp, 162 

151-220bp, and >220bp), overall fragment count in each 100k bin along the genome, and 163 

fragment size distribution of 5bp bin in in each chromosome arm. Loess regression-based 164 

approach is applied to correct for GC bias and z-score is applied for normalization. (C) Gradient 165 

boosting machine (GBM) is combined with support vector machine (SVM) algorithms by 166 

stacking ensemble method to learn normalized fragmentation pattern and generate xDELFI 167 

score. 168 

 169 

 170 
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 171 

 172 

Figure 2 Prediction performance of DELFI score, and exomeDELFI and xDELFI visualized by 173 

(A) Receiver operating characteristic curve (ROC) and area under the curve (AUC). Violin plot 174 

(B) shows the distribution of scores across the different DELFI methods. Scatter plot (C) of the 175 

scores in different DELFI methods stratified by each cancer type. The Y-axis displays the DELFI 176 

scores, while the X-axis represents the cancer types. Red dots represent DELFI score, blue dots 177 

represent exomeDELFI and green dot represents xDELFI. 178 

 179 

DELFI score based on exonic regions show good performance for cancer 180 

detection 181 
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To develop the whole exome-based DELFI model, the paired-end cfDNA whole-genome 182 

sequencing samples from four different articles stored in FinaleDB database were used. In total 183 

of 426 samples from 16 cancer types and 295 healthy individuals were processed 184 

(Supplementary Figure S1). Initially, we examine the reproducibility of the original DELFI score 185 

using short and long fragment coverage as a model feature. Reconstructing DELFI model with 186 

the same parameters employed in Cristiano et al., 2019 of the present dataset was conducted and 187 

showed high prediction performance with AUC score of 0.920 (95%CI = 0.901 – 0.936). The 188 

DELFI scores have a strong Pearson correlation coefficient (r) with those published in the 189 

original publication (r = 0.855) (Supplementary Figure S2), demonstrating high reproducibility 190 

of the DELFI score.  191 

To observe the potential of using whole exome for DELFI score calculation, we extracted 192 

the cfDNA fragments that localized in only exon region. With the same machine learning 193 

procedure as in DELFI, we observed the good performance of DELFI score based on the whole 194 

exome, hereafter called exomeDELFI, with AUC of 0.869 (95%CI = 0.849-0.889) (Figure 2A 195 

and Figure 2B). Although the exomeDELFI performed significantly worse than DELFI model 196 

(One sample t-test P < 0.001), the sequence coverage for constructing the model was 197 

dramatically decreased from 2.8X whole-genome coverage to 0.08X on average (97% decrease). 198 

In addition, the trend of the score is highly correlated with DELFI score (r = 0.805) (Figure 2C 199 

and Supplementary Table S2). These results suggest that exome region can be used to calculate 200 

DELFI score with high prediction performance, and it paves the way in using targeted regions of 201 

whole-exome sequencing data as a source of DELFI score calculation. 202 

To investigate whether the fragmentomic profile from the exome regions hold distinct 203 

informative features compared to the profile from whole genome, we conducted a performance 204 
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comparison between the exomeDELFI model and the DELFI model constructed using an 205 

equivalent proportion of sequencing reads. We sampled the cfDNA fragments along the genome 206 

in each sample to be equal to 0.08x whole-genome coverage and used these fragments to 207 

construct the DELFI model. Interestingly, the reduced DELFI model (AUC = 0.839; 95%CI 208 

=0.816 – 0.862) performed significantly worse than the exomeDELFI model (One sample t-test 209 

P < 0.001). The fragmentomic profile of short and long fragments along the genome in the 210 

reduced DELFI model was highly correlated with those used in the original DELFI model (r = 211 

0.654). On the other hand, fragmentomic profile of short and long fragments used in the 212 

exomeDELFI model have no correlation with those used in the original DELFI model (r = -213 

0.030) (Table 1). These findings suggest that exomeDELFI relies on distinct genomic features 214 

differing from the features utilized by the original DELFI model to differentiate between cancer 215 

patients and healthy individuals. 216 

   217 

 218 

Table 1 Correlation between whole genome-based fragmentomic profile and whole exome-based 219 

fragmentomic profile 220 

 221 

Method Source of 

fragmentomic 

profile 

Whole 

genome 

coverage 

AUC (95% CI) Accuracy (95% 

CI) 

r* 

DELFI Whole genome 2.8X 0.920 

(0.901 - 0.936) 

0.840 

(0.831- 0.848) 
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DELFI Whole genome 0.08X 0.839 

(0.816 - 0.862) 

0.755 

(0.744 - 0.764) 

0.654 

exomeDELFI Exome 0.08X 0.869 

(0.849 - 0.889 

0.787 

(0.777 - 0.796) 

-0.031 

*Pearson correlation coefficient against whole-genome fragmentomic profile 222 

Improvement of exome-based DELFI score 223 

To improve the prediction performance of exome-based DELFI score, we developed a 224 

new feature extraction strategies and redesigned the model structure (Figure 1). Firstly, we have 225 

included large cfDNA fragments (>220 bp) in the calculation, as these fragments have been 226 

found in the blood and may have been released from necrotic cells [24, 25]. Thus, we applied 227 

three fragment size thresholds, which are short (100-150 bp), medium (150-220 bp), and long 228 

(>220 bp), to count for number of fragments in each 100k bin along the genome, instead of using 229 

short (100-150 bp) and long (150-220 bp) threshold in previous study. Secondly, we included 230 

total number of fragments in each 100k bin in the model, as numerous studies have reported the 231 

predictive power of cfDNA concentration as a biomarker in cancer diagnosis [3, 26]. Thirdly, we 232 

calculated the fragment size distribution of 5 bp bins in each chromosome arm, based on its 233 

efficient prediction power from previous study [27]. Finally, we have utilized a more advanced 234 

algorithm, stacking ensemble, to learn the fragmentation pattern, as it has successfully improved 235 

the prediction performance of the cfDNA model [27-29]. The concept of stacking ensemble is to 236 

use unique advantage of different types of ML models, each of which can learn some part of the 237 

problem, to generate base models. Another model is then used to learn from the output of these 238 

base models for the same problem, leading to the improvement of overall performance. In our 239 
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model, two different ML algorithms, GBM and SVM, were combined as a stacking ensemble 240 

model for the classification.  241 

By applying these strategies, we observed the improvement of the exome-based DELFI 242 

score with AUC of 0.896 (95%CI = 0.878 - 0.916) (Figure 2), hereafter called xDELFI. A 243 

receiver operator characteristic (ROC) curve indicated the improvement of both sensitivity and 244 

specificity (Figure 2 and Supplementary Table S3). By using threshold at 90% specificity, 245 

xDELFI showed better sensitivity of 74% in comparison with exomeDELFI which had 246 

sensitivity of 69%. We also observed the strong correlation between xDELFI score and the 247 

whole genome-based DELFI score (r = 0.785) (Figure 2C and Supplementary Table S2) 248 

indicating the consistent relationship between both scores. 249 

In order to assess the importance of new features, the model was retrained using a leave-250 

one-feature-out approach. This involves iteratively removing one type of feature at a time before 251 

training the model. The contribution of the long fragment feature (>220 bp) and the overall 252 

fragment coverage to the prediction performance of xDELFI was the lowest (Supplementary 253 

Table S4). On the other hand, the ensemble stacking algorithm had the greatest impact on the 254 

prediction performance, followed by FSD. 255 

The model prediction performance on stratifying cancer type revealed that the 256 

improvement of xDELFI was observed in almost all cancer types in comparison with the 257 

prediction performance of exomeDELFI (Supplementary Table S5-S7). Prediction Performance 258 

on the three most abundant cancer types in the dataset was comparable between DELFI and 259 

xDELFI model. At 95% specificity, DELFI sensitivity performance on liver cancer (n=93), lung 260 

cancer (n=87), and breast cancer (n=60) are 88%, 76% and 57%, respectively, while xDELFI are 261 

87%, 75%, and 53%, respectively. Similarly, the performance on the stratification of cancer 262 
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stage showed that the improvement of xDELFI was observed in all cancer stages (Supplementary 263 

Figure S4 and Table S8). Especially at the most difficult stage I, the exomeDELFI achieved only 264 

53% of sensitivity score at 90% specificity threshold, while xDELFI was able to achieve 60% of 265 

the sensitivity score. 266 

To further enhance the sensitivity of cancer detection, we conducted an evaluation of the 267 

potential benefits of combining DELFI scores with mutation detection approach. To evaluate 268 

this, we analyzed mutation data from a dataset comprising 125 cancer samples [30], and initially 269 

found that the targeted mutation approach had a sensitivity of 0.656 for cancer detection. When 270 

the exomeDELFI score was combined with the mutation data using the "or" condition, we 271 

noticed a significant enhancement in sensitivity from 0.424 to 0.744 (Table 2 and Supplementary 272 

Table S1). Additionally, the use the xDELFI score together with the mutation data improved the 273 

sensitivity from 0.576 to 0.808. These findings are noteworthy because the standard sequencing 274 

coverage of WES is sufficient to detect mutations [31]. Thus, it is possible to calculate the 275 

xDELFI score and obtain the mutation profile from WES data, which can be used together to 276 

predict cancer patients with higher accuracy than the DELFI approach alone.  277 

 278 

 279 

Table 2 Detection of 125 cancer patients using different DELFI models at 95%Specificity 280 

threshold and targeted mutation cfDNA approach 281 

Method TP FN Sensitivity 

Mutations 82 43 0.656 

DELFI 93 32 0.744 

exomeDELFI 53 72 0.424 
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xDELFI 72 53 0.576 

DELFI + Mutations 108 17 0.864 

exomeDELFI+ Mutations 93 32 0.744 

xDELFI+ Mutations 101 24 0.808 

 282 

 283 

 284 

xDELFI can predict tissue of origin 285 

One potential application of cfDNA fragmentation profiles is the ability to indicate the 286 

tissue of origin. We developed a multiclass machine learning model that can classify the tissue of 287 

origin for eight types of cancer, including bile duct, breast, colorectal, gastric, liver, lung, 288 

ovarian, and pancreatic cancers. It is important to note that we excluded cancer types with a 289 

small sample size (<20) from the model. The performance of the multiclass xDELFI model was 290 

comparable to that of the multiclass exome DELFI model, with a mean balanced accuracy of 291 

0.676 (95% CI= 0.598 – 0.754) and 0.666 (95% CI= 0.596 – 0.736), respectively. There was no 292 

significant difference between the two models, as determined by a one-sample t-test (P = 0.067) 293 

(Table 3). However, xDELFI showed greater mean prediction sensitivity with a marginal 294 

significant difference (One sample t-test P = 0.054) than the exomeDELFI model, although the 295 

mean prediction specificity was not different. As expected, the DELFI model outperformed both 296 

xDELFI and exome DELFI in all evaluation metrics (One sample t-test P < 0.001). The 297 

performance of all models was higher than that of random class assignments (Binomial test P < 298 

0.001). Assessment of the prediction performance of each class showed that all the models had 299 

high specificity but lower sensitivity. Notably, liver, colorectal, and lung cancers had the highest 300 

prediction accuracy in all models, likely due to their larger sample sizes, highlighting the 301 
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importance of sample size in multiclass models (Supplementary Table S9). These findings 302 

suggest that the DELFI score based on whole-exome regions can also be used to predict the 303 

tissue of origin. 304 

 305 

 306 

Table 3 Overall prediction performance of different cfDNA fragmentation models, DELFI, 307 

exomeDELFI, and xDELFI on tissue of origin classification   308 

 309 

Method 

Mean 

balanced 

Accuracy 

(95%CI) 

Mean 

accuracy 

(95%CI) 

Accuracy of 

random 

assignment 

(95%CI) 

P-Value 

(Acc > 

Random) 

AUC (95%CI) 

Mean 

Sensitivity 

(95%CI) 

Mean 

Specificity 

(95%CI) 

exomeDELFI 

0.666 

(0.596 – 0.736) 

0.536 

(0.420 - 0.652) 

0.213  

(0.201 - 0.226) 

< 0.001 

0.823 

(0.745 – 0.902) 

0.403 

(0.278 – 0.527) 

0.930 

(0.912 – 0.947) 

xDELFI 

0.676 

(0.598 – 0.754) 

0.547  

(0.429 - 0.666) 

0.219  

(0.206 - 0.232) 

< 0.001 

0.829 

(0.762 – 0.896) 

0.422 

(0.283 – 0.561) 

0.931 

(0.913 – 0.949) 

DELFI 

0.741 

(0.657 – 0.825) 

0.638  

(0.517 - 0.759) 

0.202  

(0.190 - 0.214) 

< 0.001 

0.886 

(0.818 – 0.954) 

0.536 

(0.386 – 0.687) 

0.946 

(0.928 – 0.964) 

 310 

Discussion 311 

In our study, we have shown that it is feasible to develop a DELFI model using exome 312 

regions. This approach generally offers a significant reduction in sequencing cost, while 313 

maintaining a reasonable prediction performance. Interestingly, we observed a notable 314 

distinction in the feature profile between the WGS-based DELFI and exome-based DELFI, 315 

despite the prediction trend being similar. This finding suggests the potential for novel features 316 

that can be incorporated into the existing DELFI model to improve prediction accuracy.  317 
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 We demonstrated that implementing a new feature extraction scheme and utilizing more 318 

advanced algorithms can significantly improve the accuracy of the exome-based DELFI model. 319 

While short (100-150 bp) and long (151-220 bp) cfDNA fragment coverage within each window 320 

were the key features utilized in the DELFI model, the model performance can be enhanced by 321 

incorporating new fragmentomic features such as fragmentation size coverage (FSC), 322 

fragmentation size distribution (FSD), and employing ensemble stacking algorithms [28]. With 323 

these strategies, we can also improve exome-based DELFI performance in xDELFI. Further 324 

analysis using leave-one-feature-out approach to determine feature importance revealed that the 325 

long fragment feature (>220 bp) had the lowest contribution to the prediction performance of 326 

xDELFI. In contrast, the ensemble stacking algorithm was found to have the most contribution to 327 

the prediction performance, followed by FSD and overall coverage. These findings suggest that 328 

exome-based DELFI performance can be improved without incurring additional sequencing 329 

costs. According to suggestion in Liu's 2021 review [32], new feature extraction strategies 330 

should be developed to further enhance DELFI performance, for example, three-dimensional 331 

chromatin organization [33] , and cfDNA- accessibility score near the transcription factor-332 

binding sites [34]. Additionally, several studies have demonstrated a correlation between 333 

cfDNA-fragmentation patterns at the transcription start site (TSS) and gene expression [14, 35, 334 

36]. Thus, incorporating WES plus untranslated region (UTR) could potentially provide unique 335 

features and improve the prediction performance of DELFI.      336 

 The DELFI, exomeDELFI, and xDELFI approaches produce scores that are highly 337 

correlated with each other. However, the fragmentation patterns observed in whole genome and 338 

whole exome are different suggesting that the fragmentation pattern is not uniformly distributed 339 

across all regions. The exonic regions, which are regions of DNA that encode proteins, holds 340 
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specific fragmentation pattern different from the pattern of non-exonic regions, and can influence 341 

the prediction performance of the model. These findings are consistent with previous research 342 

showing that exonic and intronic regions have different expression and chromatin patterns [37]. 343 

 The performance of the DELFI score has been shown to be enhanced when combined 344 

with mutation detection results [15]. However, implementing two sequencing services, one for 345 

DELFI score and the other for targeted mutation detection, can be expensive and may not be 346 

feasible in practical scenarios [38]. Thus, calculating xDELFI score from WES technology is an 347 

alternative approach with comparable accuracy to DELFI score at a more affordable cost. WES 348 

can provide mutation information that can be utilized in together with the xDELFI score to 349 

improve prediction sensitivity up to 81%. However, it is important to conduct a systemic study to 350 

validate the actual performance of this approach with actual WES data, which may subject to 351 

significant bias caused by exome capture probs [39]. Therefore, a new method for correcting 352 

prob-bias is required. In summary, our findings suggest that the use of exome regions is a viable 353 

alternative for developing the DELFI score, given its reasonable accuracy and affordable cost. 354 

 355 

 356 

 357 
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